Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana
En la presente investigación se evaluó el empleo de la cascarilla de café modificada en la extracción de iones metálicos de Pb(II), Cd(II), Cu(II) y Cr(III) en solución acuosa. La modificación de la cascarilla y la lignina de café se realizó mediante el método de impregnación, usando como precursore...
- Autores:
-
Guevara Bernal, Daniel Fernando
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/28803
- Acceso en línea:
- http://hdl.handle.net/11634/28803
- Palabra clave:
- Bioadsorption
Coffee shell
Lignin
Heavy metals
Silver nanoparticles
Adsorción
Bioquímica
Enzimas-aplicaciones industriales
Lignina-biodegradación
Café
Bioadsorción
Cascarilla de café
Lignina
Metales pesados
Nanopartículas de plata
Café
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_84fdc97c22fc2399bc66b0cf3d447613 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/28803 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana |
title |
Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana |
spellingShingle |
Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana Bioadsorption Coffee shell Lignin Heavy metals Silver nanoparticles Adsorción Bioquímica Enzimas-aplicaciones industriales Lignina-biodegradación Café Bioadsorción Cascarilla de café Lignina Metales pesados Nanopartículas de plata Café |
title_short |
Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana |
title_full |
Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana |
title_fullStr |
Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana |
title_full_unstemmed |
Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana |
title_sort |
Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana |
dc.creator.fl_str_mv |
Guevara Bernal, Daniel Fernando |
dc.contributor.advisor.spa.fl_str_mv |
Candela Soto, Angélica María Palet Ballús, Cristina Gutiérrez Cifuentes, Jorge Andrés |
dc.contributor.author.spa.fl_str_mv |
Guevara Bernal, Daniel Fernando |
dc.subject.keyword.spa.fl_str_mv |
Bioadsorption Coffee shell Lignin Heavy metals Silver nanoparticles |
topic |
Bioadsorption Coffee shell Lignin Heavy metals Silver nanoparticles Adsorción Bioquímica Enzimas-aplicaciones industriales Lignina-biodegradación Café Bioadsorción Cascarilla de café Lignina Metales pesados Nanopartículas de plata Café |
dc.subject.lemb.spa.fl_str_mv |
Adsorción Bioquímica Enzimas-aplicaciones industriales Lignina-biodegradación Café |
dc.subject.proposal.spa.fl_str_mv |
Bioadsorción Cascarilla de café Lignina Metales pesados Nanopartículas de plata Café |
description |
En la presente investigación se evaluó el empleo de la cascarilla de café modificada en la extracción de iones metálicos de Pb(II), Cd(II), Cu(II) y Cr(III) en solución acuosa. La modificación de la cascarilla y la lignina de café se realizó mediante el método de impregnación, usando como precursores el nitrato de plata (AgNO3) y borohidruro de sodio (NaBH4). Con la finalidad de evaluar la extracción de los iones metálicos se realizó una cinética de extracción e isotermas, así como también se realizó la caracterización de los materiales mediante técnicas como FT-IR, SEM y DLS. En adición, la plata tiene propiedades antimicrobianas, por ende, se realizaron pruebas de actividad bactericida y antifúngica sobre diferentes especies que suelen afectar a la sociedad. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-08-04T16:14:52Z |
dc.date.available.spa.fl_str_mv |
2020-08-04T16:14:52Z |
dc.date.issued.spa.fl_str_mv |
2020-07-21 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Guevara Bernal, D.F (2020) Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana [Trabajo de pregrado] Universidad Santo Tomás. Bucaramanga, Colombia |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/28803 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Guevara Bernal, D.F (2020) Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana [Trabajo de pregrado] Universidad Santo Tomás. Bucaramanga, Colombia reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/28803 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahmad, N., Plorde, J., & Drew, L. (2011). Sherris. Microbiología Médica (5th ed.). McGraw-Hill Al-Qahtani, K. M. (2017). Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. The Egyptian Journal of Aquatic Research, 43(4), 269–274. https://doi.org/https://doi.org/10.1016/j.ejar.2017.10.003 Alatzas, S., Moustakas, K., Malamis, D., & Vakalis, S. (2019). Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies, 12(6), 1095. https://doi.org/10.3390/en12061095 Alzagameem, A., Klein, S. E., Bergs, M., Do, X. T., Korte, I., Dohlen, S., Hüwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., & Schulze, M. (2019). Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites Against Selected Pathogenic and Spoilage Microorganisms. Polymers, 11(4), 670. https://doi.org/10.3390/polym11040670 Andrada, A. M. (2012). Nanotecnología: descubriendo lo invisible. Editorial Maipue. Andrade Estévez, A. C., & Valdiviezo Aguilar, A. B. (2012). Control microbiológico de cosméticos elaborados artesanalmente en base de productos naturales en la ciudad de Quito [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/9579/merged %2848%29.pdf?sequence=1&isAllowed=y Arenas Guzmán, R. (2008). Micología Médica Ilustrada (3rd ed.). McGraw-Hill. Association for Professionals in Infection Control and Epidemiology. (n.d.). Staphylococcus aureus. Retrieved February 20, 2020, from https://apic.org/monthly_alerts/staphylococcus-aureus/ Audesirk, T., Audesirk, G., Byers, B. E., Garc\’\ia, H. J. E., & Garc\’\ia, R. L. E. (2003). Biología: la vida en la tierra. Pearson Educación. https://books.google.com.co/books?id=uO48-6v7GcoC Ávalos, A., Haza, A., & Morales, P. (2013). Nanopartículas de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente. Revista Complutense de Ciencias Veterinarias, 7(2), 1–23. https://doi.org/10.5209/rev_RCCV.2013.v7.n2.43408 Bajwa, D. S., Pourhashem, G., Ullah, A. H., & Bajwa, S. G. (2019). A concise review of current lignin production, applications, products and their environment impact. Industrial Crops and Products, 139. https://doi.org/10.1016/j.indcrop.2019.111526 Balu, A. M. (2012). Nanopartículas Soportadas Sobre Materiales Porosos Para La Síntesis De Productos De Alto Valor Añadido Tesis Doctoral [Universidad de Córdoba]. www.uco.es/publicaciones Banu, J. R., Kavitha, S., Kannah, R. Y., Kumar, M. D., Preethi, J., Atabani, A. E., & Kumar, G. (2020). Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresource Technology, 122821. https://doi.org/10.1016/j.biortech.2020.122821 Bazzicalupi, C., García-España, E., & Delgado-Pinar, E. (2014). Metals in supramolecular chemistry. Inorganica Chimica Acta, 417, 3–26. https://doi.org/10.1016/J.ICA.2014.03.001 Behrens, M. (2010). Synthesis of Solid Catalysts. Angewandte Chemie International Edition, 49(12), 2095–2095. https://doi.org/10.1002/anie.200907333 Bilal, M., & Iqbal, H. M. N. (2019). Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coordination Chemistry Reviews, 388, 1–23. https://doi.org/10.1016/J.CCR.2019.02.024 Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin Biosynthesis. Annual Review of Plant Biology, 54(1), 519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938 Burbano Patiño, A. A. (2018). Síntesis y caracterización de nanopartículas magnéticas del tipo core-shell Fe3O4@Ag soportadas sobre lignina y cascarilla de café [Universidad Santo Tomás]. http://hdl.handle.net/11634/16926 Cadogan, E. I., Lee, C.-H., Popuri, S. R., & Lin, H.-Y. (2014). Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and characterization. International Biodeterioration & Biodegradation, 95, 232–240. https://doi.org/https://doi.org/10.1016/j.ibiod.2014.06.003 Candela Soto, A. M. (2013). Desarrollo y caracterización de métdos de separación y preconcentración de Uranio (VI) a nivel de trazas para su efectiva determinación. Universitat Autònoma de Barcelona. Cardoso, P. (2016). Nanopartículas de plata: obtención, utilización como antimicrobiano e impacto en el área de la salud. Rev. Hosp. Niños (B. Aires), 58(260), 19–28. http://revistapediatria.com.ar/wp-content/uploads/2016/04/260-Nanopartículas-de-plata.pdf Chatterjee, S. K., Bhattacharjee, I., & Chandra, G. (2010). Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Journal of Hazardous Materials, 175(1), 117–125. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.09.136 Chemistry of Coffee: Science Behind the Black Nectar. (2019). https://goodcoffeeplace.com/coffee-chemistry/ Chen, H., Qu, X., Liu, N., Wang, S., Chen, X., & Liu, S. (2018). Study of the adsorption process of heavy metals cations on Kraft lignin. Chemical Engineering Research and Design, 139, 248–258. https://doi.org/10.1016/j.cherd.2018.09.028 Choi, J., Lee, J. Y., & Yang, J.-S. (2009). Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. Journal of Hazardous Materials, 161(1), 157–162. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.03.065 Clinical and Laboratory Standards Institute. (1999). M26-A Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline This document provides procedures for determining the lethal activity of antimicrobial agents. www.clsi.org. Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., Pezzin, A. P. T., Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., & Pezzin, A. P. T. (2018). Influência do teor de argila nas propriedades do polipropileno e a reciclagem dos nanocompósitos obtidos por injeção. Matéria (Rio de Janeiro), 22(suppl 1). https://doi.org/10.1590/s1517-707620170005.0267 Control de Infecciones y Epidemiología. (2004, April). Pseudomonas aeruginosa. https://codeinep.org/pseudomonas-aeruginosa/ Covarrubias, S. A., & Cabriales, J. J. P. (2017). Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Revista Internacional de Contaminación Ambiental, 33(0), 7–21. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/RICA.2017.33.esp01.01/46640 Cruz, G., Braz, C., Ferreira, S., Moreira, A., & Crnkovic, P. (2013). PHYSICOCHEMICAL PROPERTIES OF BRAZILIAN BIOMASSES: POTENTIAL APPLICATIONS AS RENEWABLE ENERGY SOURCE. https://doi.org/10.13140/2.1.4761.2485 Cuervo, L., Folch, J. L., & Quiroz, R. E. (2009). Lignocelulosa Como Fuente de Azúcares Para la Producción de Etanol . BioTecnologia, 13(3), 11–25. https://doi.org/10.1016/j.vetpar.2008.12.007 Egas Vivero, P. R. (2016). Caracterización fenotípica y genotípica del bacteriófago 5Q18 activo contra Escherichia coli enteropatógena multirresistente [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12525/DISERTACIÓN FINAL_CDs_jul13.pdf?sequence=1&isAllowed=y Fackler, J. P. (2007). Catalysis by Gold By Geoffrey C. Bond (Brunel University, U.K.), Catherine Louis (Université Pierre et Marie Curie, France), and David T. Thompson (Consultant, World Gold Council, UK). From the Series: Catalytic Science Series, Volume 6. Series Edited by. Journal of the American Chemical Society, 129(13), 4107. https://doi.org/10.1021/ja069835l Florez Rojas, J. (2015). Energías alternativas en Colombia bajo la ley 1715. Universidad Militar Nueva Granada. Gadd, G. M. (1994). Interactions of Fungi with Toxic Metals (K. A. Powell, A. Renwick, & J. F. Peberdy (Eds.); pp. 361–374). Springer US. https://doi.org/10.1007/978-1-4899-0981-7_28 García Cárdenas, J. N. (2012). Prevalencia de Staphylococcus aureus en manipuladores de alimentos en el área de producción (cocina caliente y fría, pastelería, carnes), de una empresa privada [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12084/TESIS NATHALI GARCIA CARDENAS.pdf?sequence=1&isAllowed=y Ge, H., Hua, T., & Chen, X. (2016). Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. Journal of Hazardous Materials, 308, 225–232. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.01.042 Gharehkhani, S., Zhang, Y., & Fatehi, P. (2019). Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science, 72, 59–89. https://doi.org/https://doi.org/10.1016/j.pecs.2019.01.002 Gómez, S., García, S. M., de Bedout, S., & García, A. M. (2011). Análisis del perfil proteico de aislamientos clínicos de Candida guilliermondii sensibles y resistentes al fluconazol. Infectio, 15(1), 20–24. Guo, Y., & Zhao, W. (2019). In situ formed nanomaterials for colorimetric and fluorescent sensing. Coordination Chemistry Reviews, 387, 249–261. https://doi.org/10.1016/J.CCR.2019.02.019 Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355–2388. https://doi.org/https://doi.org/10.1016/j.jenvman.2011.06.009 Huang, J., Fu, S., & Gan, L. (2019). Lignin Chemistry and Applications. Elsevier Science. Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. In Resources, Conservation and Recycling (Vol. 128, pp. 110–117). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2017.10.001 Joseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.04.198 Karmee, S. K. (2018). A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. In Waste Management (Vol. 72, pp. 240–254). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2017.10.042 Kondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent Coffee Grounds as a Versatile Source of Green Energy. Journal of Agricultural and Food Chemistry, 56(24), 11757–11760. https://doi.org/10.1021/jf802487s Lazo, J., Navarro, A., Sun-Kou, M., & Llanos, B. (2008). Síntesis y caracterización de arcillas organofílicas y su aplicación como adsorbentes del fenol. Rev Soc Quím Perú, 74(1), 3–19. Lezcano Valverde, J. M., González González, F., & Ballester Pérez, A. (2009). Efecto del pretratamiento de biomasa procedente de un hábitat eutrofizado sobre la bioabsorción de metales pesados. Universidad Complutense de Madrid. Lupoi, J. S., Singh, S., Parthasarathi, R., Simmons, B. A., & Henry, R. J. (2015). Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. In Renewable and Sustainable Energy Reviews (Vol. 49, pp. 871–906). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.04.091 Malvern Panalytical. (n.d.). Dispersión de luz dinámica para la caracterización de tamaño. Retrieved February 23, 2020, from https://www.malvernpanalytical.com/es/products/technology/light-scattering/dynamic-light-scattering Masindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. In Heavy Metals. InTech. https://doi.org/10.5772/intechopen.76082 Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517. https://doi.org/10.1038/415514a Ministerio de Ambiente y Desarrollo Sostenible. (2018). Resolución 0883 del 18 de Mayo del 2018. http://www.minambiente.gov.co/images/normativa/app/resoluciones/18-res 883 de 2018.pdf Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059 Mudalige, T., Qu, H., Van Haute, D., Ansar, S. M., Paredes, A., & Ingle, T. (2019). Chapter 11 - Characterization of Nanomaterials: Tools and Challenges. In A. López Rubio, M. J. Fabra Rovira, M. martínez Sanz, & L. G. B. T.-N. for F. A. Gómez-Mascaraque (Eds.), Micro and Nano Technologies (pp. 313–353). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814130-4.00011-7 Müller, M. (2016). Clinical Pharmacology: Current Topics and Case Studies. Springer International Publishing. https://books.google.com.co/books?id=ZgfNCwAAQBAJ Muñoz-Rojas, D., Maindron, T., Esteve, A., Piallat, F., Kools, J. C. S., & Decams, J.-M. (2019). Speeding up the unique assets of atomic layer deposition. Materials Today Chemistry, 12, 96–120. https://doi.org/10.1016/J.MTCHEM.2018.11.013 Muralikrishna, I. V., & Manickam, V. (2017). Introduction. In Environmental Management (pp. 1–4). Elsevier. https://doi.org/10.1016/b978-0-12-811989-1.00001-4 Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. In Resources, Conservation and Recycling (Vol. 66, pp. 45–58). https://doi.org/10.1016/j.resconrec.2012.06.005 Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368–374. https://doi.org/10.1016/j.carbpol.2010.07.063 Nada, A.-A. M. A., Yousef, M. A., Shaffei, K. A., & Salah, A. M. (1998). Infrared spectroscopy of some treated lignins. Polymer Degradation and Stability, 62(1), 157–163. https://doi.org/https://doi.org/10.1016/S0141-3910(97)00273-5 Nanotechnology Timeline. (n.d.). Retrieved March 31, 2019, from https://www.nano.gov/timeline Noor, N. M., Othman, R., Mubarak, N. M., & Abdullah, E. C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78, 168–177. https://doi.org/https://doi.org/10.1016/j.jtice.2017.05.023 Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., & Levin, E. D. (2009). The toxicology of climate change: Environmental contaminants in a warming world. Environment International, 35(6), 971–986. https://doi.org/https://doi.org/10.1016/j.envint.2009.02.006 Ogar, A., Tylko, G., & Turnau, K. (2015). Antifungal properties of silver nanoparticles against indoor mould growth. Science of The Total Environment, 521–522, 305–314. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.03.101 Panayiotou, H., & Kokot, S. (1999). Matching and discrimination of single human-scalp hair by FT-IR micro-espectroscopy and chemometrics. Analytica Chimica Acta, 392(3). Pankey, G. A., & Sabath, L. D. (2004). Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections. Clinical Infectious Diseases, 38(6), 864–870. https://doi.org/10.1086/381972 Paredes Guerrero, D. J. (2011). Estudio Del Efecto Antibacteriano De Nanoparticulas De Plata Sobre Escherichia Coli Staphylococcus Aureus [Universidad Industrial de Santander]. https://docplayer.es/27008958-Estudio-del-efecto-antibacteriano-de-nanoparticulas-de-plata-sobre-escherichia-coli-y-staphylococcus-aureus-daissy-julieth-paredes-guerrero.html Pérez-Arantegui, J., Molera, J., Larrea, A., Pradell, T., Vendrell-Saz, M., Borgia, I., Brunetti, B. G., Cariati, F., Fermo, P., Mellini, M., Sgamellotti, A., & Viti, C. (2004). Luster Pottery from the Thirteenth Century to the Sixteenth Century: A Nanostructured Thin Metallic Film. Journal of the American Ceramic Society, 84(2), 442–446. https://doi.org/10.1111/j.1151-2916.2001.tb00674.x Perna, N. T., Plunkett, G., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., … Blattner, F. R. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 . Nature, 409(6819), 529–533. https://doi.org/10.1038/35054089 Perú21. (2019, July 20). ¡Cuidado! Conoce la infección de hongos vaginales que puede ser mortal. https://peru21.pe/ciencia/candidiasis-infeccion-hongos-mortal-491285-noticia/ Poole, C. P., & Owens, F. J. (2007). Introducción a la nanotecnología. Editorial Reverté. Puerta Quintero, G. I. (2011). Composición química de una taza de café. Avances Técnicos Cenicafé, 414. Qing, Y., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., Liu, H., & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 13, 3311–3327. https://doi.org/10.2147/IJN.S16512 Ragauskas, A. J. (2006). The Path Forward for Biofuels and Biomaterials. Science, 311(5760), 484–489. https://doi.org/10.1126/science.1114736 Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/https://doi.org/10.1016/j.biotechadv.2008.09.002 Requejo Leal, S. (2011). Degradación química de madera y PET reciclado y su aplicación en la síntesis de resinas de poliéster. Universidad Autónoma de Nuevo León. Rossi, G. (1990). Biohydrometallurgy. McGraw-Hill. Sabiiti, E. (2011). Utilising agricultural waste to enhance food security and conserve the environment | Sabiiti | African Journal of Food, Agriculture, Nutrition and Development. African Journal of Food, Agriculture, Nutrition and Development JOURNAL HOME ABOUT THIS JOURNAL ADVANCED SEARCH CURRENT ISSUE ARCHIVES, 11(6). https://www.ajol.info/index.php/ajfand/article/view/72668 Salomoni, R., Léo, P., Montemor, A. F., Rinaldi, B. G., & Rodrigues, M. (2017). Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, Science and Applications, 10, 115–121. https://doi.org/10.2147/NSA.S133415 Sant Joan de Déu Barcelona - Hospital. (2016, March 10). Consecuencias de una infección por E. coli. https://faros.hsjdbcn.org/es/articulo/consecuencias-infeccion-coli Sarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation - A critical review. Chemosphere, 158, 37–49. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.05.043 Servicio Geológico Colombiano, Medina Hernández, P., & Mejía Silva, M. T. (n.d.). Monografía de la Plata (Ag). Retrieved March 31, 2019, from https://www.sgm.gob.mx/Web/MuseoVirtual/pdfs/Monografia PLATA.pdf Shankar, S., & Rhim, J.-W. (2017). Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids, 71, 76–84. https://doi.org/https://doi.org/10.1016/j.foodhyd.2017.05.002 Shelley, T., & Sarret Grau, J. (2006). Nanotecnología : nuevas promesas, nuevos peligros. El Viejo Topo. Singh, C. K., Kumar, A., & Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports, 8(1), 2913. https://doi.org/10.1038/s41598-018-21326-9 Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure. http://www.nrel.gov/biomass/analytical_procedures.html Sociedad Andaluza de Enfermedades Infecciosas. (n.d.). La infección por el VIH. Guía práctica (2nd ed.). Gráficas Monterreina. Soriano, L. M., Zougagh, M., Valcárcel, M., & Ríos, Á. (2018). Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta, 177, 104–121. https://doi.org/10.1016/j.talanta.2017.09.012 Struthers, K. (2018). Microbiología clínica. Editorial El Manual Moderno. http://ebookcentral.proquest.com/lib/bibliotecaustasp/detail.action?docID=5635082 Sun, S., Yu, Q., Li, M., Zhao, H., & Wu, C. (2019). Preparation of coffee-shell activated carbon and its application for water vapor adsorption. Renewable Energy, 142, 11–19. https://doi.org/10.1016/j.renene.2019.04.097 Takeuchi, N. (2010). Nanociencia y nanotecnología. FCE - Fondo de Cultura Económica. Tejada-Tovar, C., Villabona-Ortíz, Á., & Garcés-Jaraba, L. (2015). Adsorción de Metales Pesados en Agua Residuales Usando Materiales de Origen Biológico. Tecno Lógicas, 18(34), 109–123. Terra Green. (2019). Global Waste — Solvable Problem as a Renewable Energy Resource. https://medium.com/@support_61820/global-waste-solvable-problem-as-a-renewable-energy-resource-5d8f05cc1a7d The University of Texas at Austin. (n.d.). What is nanoscience? Retrieved February 9, 2020, from https://tmi.utexas.edu/resources/what-is-nanoscience/ Torgeson, D. (2012). Fungicides. Elsevier. Torres Acosta, L., Mendieta, I., Hernández, G., Núñez, R., & Castaño, V. (2011). Citotoxicidad y genotoxicidad de AgNPs para disminuir la adherencia de Candida Albicans en prótesis dentales. USEPA. (2019). National Primary Drinking Water Regulations. United States Environmental Protection Agency. https://www.mallard-inc.com/wp-content/uploads/2019/05/Drinking-Water-Standards.pdf Volesky, B. (2003). Sorption and Biosorption. Volesky, B. (2007). Biosorption and me. Water Research, 41(18), 4017–4029. https://doi.org/10.1016/j.watres.2007.05.062 Vullo, D. (2003). Microorganismos y metales pesados: Una interacción en beneficio del medio ambiente. Quíimica Viva, 2(3). Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5), 427–451. https://doi.org/https://doi.org/10.1016/j.biotechadv.2006.03.001 Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002 WHO. (n.d.). Water. Retrieved January 28, 2020, from https://www.who.int/topics/water/en/ WHO. (2011). Guidelines for drinking-water quality. World Health Organization, 216. WHO. (2018). Progress on Drinking Water, Sanitation and Hygiene. World Health Organization. Xia, J., Duan, Q.-Y., Luo, Y., Xie, Z.-H., Liu, Z.-Y., & Mo, X.-G. (2017). Climate change and water resources: Case study of Eastern Monsoon Region of China. Advances in Climate Change Research, 8(2), 63–67. https://doi.org/https://doi.org/10.1016/j.accre.2017.03.007 Xu, P., Zeng, G. M., Huang, D. L., Lai, C., Zhao, M. H., Wei, Z., Li, N. J., Huang, C., & Xie, G. X. (2012). Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chemical Engineering Journal, 203, 423–431. https://doi.org/https://doi.org/10.1016/j.cej.2012.07.048 Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. https://doi.org/10.1016/j.fuel.2006.12.013 Yao, L., Ye, Z., Tong, M., Lai, P., & Ni, J. (2009). Removal of Cr3+ from aqueous solution by biosorption with aerobic granules. Journal of Hazardous Materials, 165(1), 250–255. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.09.110 Ye, J., Yin, H., Mai, B., Peng, H., Qin, H., He, B., & Zhang, N. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technology, 101(11), 3893–3902. https://doi.org/https://doi.org/10.1016/j.biortech.2010.01.014 Zanella, R. (2012). Metodologías para la síntesis de nanopartículas. Mundo Nano, 5(1). Zanella, R., Giorgio, S., Henry, C. R., & Louis, C. (2002). Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2. The Journal of Physical Chemistry B, 106(31), 7634–7642. https://doi.org/10.1021/jp0144810 Zhang, H. (2014). Biosorption of heavy metals from aqueous solutions using keratin biomaterials [Universitat Autònoma de Barcelona]. https://www.tdx.cat/handle/10803/284239 Zhu, Z., Gao, C., Wu, Y., Sun, L., Huang, X., Ran, W., & Shen, Q. (2013). Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite. Bioresource Technology, 147, 378–386. https://doi.org/https://doi.org/10.1016/j.biortech.2013.08.049 |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bucaramanga |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Química Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Química Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/28803/11/2020GuevaraDaniel.pdf.jpg https://repository.usta.edu.co/bitstream/11634/28803/12/2020GuevaraDaniel1.pdf.jpg https://repository.usta.edu.co/bitstream/11634/28803/13/2020GuevaraDaniel2.pdf.jpg https://repository.usta.edu.co/bitstream/11634/28803/6/2020GuevaraDaniel.pdf https://repository.usta.edu.co/bitstream/11634/28803/7/2020GuevaraDaniel1.pdf https://repository.usta.edu.co/bitstream/11634/28803/8/2020GuevaraDaniel2.pdf https://repository.usta.edu.co/bitstream/11634/28803/9/license_rdf https://repository.usta.edu.co/bitstream/11634/28803/10/license.txt |
bitstream.checksum.fl_str_mv |
f38fac0b6fc94efd7bc246e65576b5ca c3f63a350b43ad415872bff167f44cbf 5a9eadadf6ab4e2e38308f5a6bd1c517 810ffd626f355fc01b2e183582d8d6a9 3b95db058e80a1d053a45575d8d93a64 9bfbffa8c172a50a56ddee6ebe422328 217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026211663282176 |
spelling |
Candela Soto, Angélica MaríaPalet Ballús, CristinaGutiérrez Cifuentes, Jorge AndrésGuevara Bernal, Daniel Fernando2020-08-04T16:14:52Z2020-08-04T16:14:52Z2020-07-21Guevara Bernal, D.F (2020) Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana [Trabajo de pregrado] Universidad Santo Tomás. Bucaramanga, Colombiahttp://hdl.handle.net/11634/28803reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn la presente investigación se evaluó el empleo de la cascarilla de café modificada en la extracción de iones metálicos de Pb(II), Cd(II), Cu(II) y Cr(III) en solución acuosa. La modificación de la cascarilla y la lignina de café se realizó mediante el método de impregnación, usando como precursores el nitrato de plata (AgNO3) y borohidruro de sodio (NaBH4). Con la finalidad de evaluar la extracción de los iones metálicos se realizó una cinética de extracción e isotermas, así como también se realizó la caracterización de los materiales mediante técnicas como FT-IR, SEM y DLS. En adición, la plata tiene propiedades antimicrobianas, por ende, se realizaron pruebas de actividad bactericida y antifúngica sobre diferentes especies que suelen afectar a la sociedad.The investigation is about, the use of modified coffee husk in the extraction of metal ions of Pb(II), Cd(II), Cu(II) and Cr(III) in aqueous solution. The modification of husk and coffee lignin was carried out by the impregnation method, using silver nitrate (AgNO3), and sodium borohydride (NaBH4) as precursors. In order to evaluate the extraction of metal ions, extraction kinetics and isotherms were performed, as well as the characterization of materials using techniques such as FT-IR, SEM and DLS. In addition, silver has antimicrobial properties, therefore, tests for bactericidal and antifungal activity were carried out on different species that usually affect society.Químico Ambientalhttp://www.ustabuca.edu.co/ustabmanga/presentacionPregradoapplication/pdfspaUniversidad Santo TomásPregrado Química AmbientalFacultad de Química AmbientalAtribución-NoComercial-SinDerivadas 2.5 ColombiaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobianaBioadsorptionCoffee shellLigninHeavy metalsSilver nanoparticlesAdsorciónBioquímicaEnzimas-aplicaciones industrialesLignina-biodegradaciónCaféBioadsorciónCascarilla de caféLigninaMetales pesadosNanopartículas de plataCaféTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BucaramangaAhmad, N., Plorde, J., & Drew, L. (2011). Sherris. Microbiología Médica (5th ed.). McGraw-HillAl-Qahtani, K. M. (2017). Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. The Egyptian Journal of Aquatic Research, 43(4), 269–274. https://doi.org/https://doi.org/10.1016/j.ejar.2017.10.003Alatzas, S., Moustakas, K., Malamis, D., & Vakalis, S. (2019). Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies, 12(6), 1095. https://doi.org/10.3390/en12061095Alzagameem, A., Klein, S. E., Bergs, M., Do, X. T., Korte, I., Dohlen, S., Hüwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., & Schulze, M. (2019). Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites Against Selected Pathogenic and Spoilage Microorganisms. Polymers, 11(4), 670. https://doi.org/10.3390/polym11040670Andrada, A. M. (2012). Nanotecnología: descubriendo lo invisible. Editorial Maipue.Andrade Estévez, A. C., & Valdiviezo Aguilar, A. B. (2012). Control microbiológico de cosméticos elaborados artesanalmente en base de productos naturales en la ciudad de Quito [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/9579/merged %2848%29.pdf?sequence=1&isAllowed=yArenas Guzmán, R. (2008). Micología Médica Ilustrada (3rd ed.). McGraw-Hill.Association for Professionals in Infection Control and Epidemiology. (n.d.). Staphylococcus aureus. Retrieved February 20, 2020, from https://apic.org/monthly_alerts/staphylococcus-aureus/Audesirk, T., Audesirk, G., Byers, B. E., Garc\’\ia, H. J. E., & Garc\’\ia, R. L. E. (2003). Biología: la vida en la tierra. Pearson Educación. https://books.google.com.co/books?id=uO48-6v7GcoCÁvalos, A., Haza, A., & Morales, P. (2013). Nanopartículas de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente. Revista Complutense de Ciencias Veterinarias, 7(2), 1–23. https://doi.org/10.5209/rev_RCCV.2013.v7.n2.43408Bajwa, D. S., Pourhashem, G., Ullah, A. H., & Bajwa, S. G. (2019). A concise review of current lignin production, applications, products and their environment impact. Industrial Crops and Products, 139. https://doi.org/10.1016/j.indcrop.2019.111526Balu, A. M. (2012). Nanopartículas Soportadas Sobre Materiales Porosos Para La Síntesis De Productos De Alto Valor Añadido Tesis Doctoral [Universidad de Córdoba]. www.uco.es/publicacionesBanu, J. R., Kavitha, S., Kannah, R. Y., Kumar, M. D., Preethi, J., Atabani, A. E., & Kumar, G. (2020). Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresource Technology, 122821. https://doi.org/10.1016/j.biortech.2020.122821Bazzicalupi, C., García-España, E., & Delgado-Pinar, E. (2014). Metals in supramolecular chemistry. Inorganica Chimica Acta, 417, 3–26. https://doi.org/10.1016/J.ICA.2014.03.001Behrens, M. (2010). Synthesis of Solid Catalysts. Angewandte Chemie International Edition, 49(12), 2095–2095. https://doi.org/10.1002/anie.200907333Bilal, M., & Iqbal, H. M. N. (2019). Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coordination Chemistry Reviews, 388, 1–23. https://doi.org/10.1016/J.CCR.2019.02.024Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin Biosynthesis. Annual Review of Plant Biology, 54(1), 519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938Burbano Patiño, A. A. (2018). Síntesis y caracterización de nanopartículas magnéticas del tipo core-shell Fe3O4@Ag soportadas sobre lignina y cascarilla de café [Universidad Santo Tomás]. http://hdl.handle.net/11634/16926Cadogan, E. I., Lee, C.-H., Popuri, S. R., & Lin, H.-Y. (2014). Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and characterization. International Biodeterioration & Biodegradation, 95, 232–240. https://doi.org/https://doi.org/10.1016/j.ibiod.2014.06.003Candela Soto, A. M. (2013). Desarrollo y caracterización de métdos de separación y preconcentración de Uranio (VI) a nivel de trazas para su efectiva determinación. Universitat Autònoma de Barcelona.Cardoso, P. (2016). Nanopartículas de plata: obtención, utilización como antimicrobiano e impacto en el área de la salud. Rev. Hosp. Niños (B. Aires), 58(260), 19–28. http://revistapediatria.com.ar/wp-content/uploads/2016/04/260-Nanopartículas-de-plata.pdfChatterjee, S. K., Bhattacharjee, I., & Chandra, G. (2010). Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Journal of Hazardous Materials, 175(1), 117–125. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.09.136Chemistry of Coffee: Science Behind the Black Nectar. (2019). https://goodcoffeeplace.com/coffee-chemistry/Chen, H., Qu, X., Liu, N., Wang, S., Chen, X., & Liu, S. (2018). Study of the adsorption process of heavy metals cations on Kraft lignin. Chemical Engineering Research and Design, 139, 248–258. https://doi.org/10.1016/j.cherd.2018.09.028Choi, J., Lee, J. Y., & Yang, J.-S. (2009). Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. Journal of Hazardous Materials, 161(1), 157–162. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.03.065Clinical and Laboratory Standards Institute. (1999). M26-A Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline This document provides procedures for determining the lethal activity of antimicrobial agents. www.clsi.org.Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., Pezzin, A. P. T., Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., & Pezzin, A. P. T. (2018). Influência do teor de argila nas propriedades do polipropileno e a reciclagem dos nanocompósitos obtidos por injeção. Matéria (Rio de Janeiro), 22(suppl 1). https://doi.org/10.1590/s1517-707620170005.0267Control de Infecciones y Epidemiología. (2004, April). Pseudomonas aeruginosa. https://codeinep.org/pseudomonas-aeruginosa/Covarrubias, S. A., & Cabriales, J. J. P. (2017). Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Revista Internacional de Contaminación Ambiental, 33(0), 7–21. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/RICA.2017.33.esp01.01/46640Cruz, G., Braz, C., Ferreira, S., Moreira, A., & Crnkovic, P. (2013). PHYSICOCHEMICAL PROPERTIES OF BRAZILIAN BIOMASSES: POTENTIAL APPLICATIONS AS RENEWABLE ENERGY SOURCE. https://doi.org/10.13140/2.1.4761.2485Cuervo, L., Folch, J. L., & Quiroz, R. E. (2009). Lignocelulosa Como Fuente de Azúcares Para la Producción de Etanol . BioTecnologia, 13(3), 11–25. https://doi.org/10.1016/j.vetpar.2008.12.007Egas Vivero, P. R. (2016). Caracterización fenotípica y genotípica del bacteriófago 5Q18 activo contra Escherichia coli enteropatógena multirresistente [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12525/DISERTACIÓN FINAL_CDs_jul13.pdf?sequence=1&isAllowed=yFackler, J. P. (2007). Catalysis by Gold By Geoffrey C. Bond (Brunel University, U.K.), Catherine Louis (Université Pierre et Marie Curie, France), and David T. Thompson (Consultant, World Gold Council, UK). From the Series: Catalytic Science Series, Volume 6. Series Edited by. Journal of the American Chemical Society, 129(13), 4107. https://doi.org/10.1021/ja069835lFlorez Rojas, J. (2015). Energías alternativas en Colombia bajo la ley 1715. Universidad Militar Nueva Granada.Gadd, G. M. (1994). Interactions of Fungi with Toxic Metals (K. A. Powell, A. Renwick, & J. F. Peberdy (Eds.); pp. 361–374). Springer US. https://doi.org/10.1007/978-1-4899-0981-7_28García Cárdenas, J. N. (2012). Prevalencia de Staphylococcus aureus en manipuladores de alimentos en el área de producción (cocina caliente y fría, pastelería, carnes), de una empresa privada [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12084/TESIS NATHALI GARCIA CARDENAS.pdf?sequence=1&isAllowed=yGe, H., Hua, T., & Chen, X. (2016). Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. Journal of Hazardous Materials, 308, 225–232. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.01.042Gharehkhani, S., Zhang, Y., & Fatehi, P. (2019). Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science, 72, 59–89. https://doi.org/https://doi.org/10.1016/j.pecs.2019.01.002Gómez, S., García, S. M., de Bedout, S., & García, A. M. (2011). Análisis del perfil proteico de aislamientos clínicos de Candida guilliermondii sensibles y resistentes al fluconazol. Infectio, 15(1), 20–24.Guo, Y., & Zhao, W. (2019). In situ formed nanomaterials for colorimetric and fluorescent sensing. Coordination Chemistry Reviews, 387, 249–261. https://doi.org/10.1016/J.CCR.2019.02.019Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355–2388. https://doi.org/https://doi.org/10.1016/j.jenvman.2011.06.009Huang, J., Fu, S., & Gan, L. (2019). Lignin Chemistry and Applications. Elsevier Science.Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. In Resources, Conservation and Recycling (Vol. 128, pp. 110–117). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2017.10.001Joseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.04.198Karmee, S. K. (2018). A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. In Waste Management (Vol. 72, pp. 240–254). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2017.10.042Kondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent Coffee Grounds as a Versatile Source of Green Energy. Journal of Agricultural and Food Chemistry, 56(24), 11757–11760. https://doi.org/10.1021/jf802487sLazo, J., Navarro, A., Sun-Kou, M., & Llanos, B. (2008). Síntesis y caracterización de arcillas organofílicas y su aplicación como adsorbentes del fenol. Rev Soc Quím Perú, 74(1), 3–19.Lezcano Valverde, J. M., González González, F., & Ballester Pérez, A. (2009). Efecto del pretratamiento de biomasa procedente de un hábitat eutrofizado sobre la bioabsorción de metales pesados. Universidad Complutense de Madrid.Lupoi, J. S., Singh, S., Parthasarathi, R., Simmons, B. A., & Henry, R. J. (2015). Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. In Renewable and Sustainable Energy Reviews (Vol. 49, pp. 871–906). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.04.091Malvern Panalytical. (n.d.). Dispersión de luz dinámica para la caracterización de tamaño. Retrieved February 23, 2020, from https://www.malvernpanalytical.com/es/products/technology/light-scattering/dynamic-light-scatteringMasindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. In Heavy Metals. InTech. https://doi.org/10.5772/intechopen.76082Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517. https://doi.org/10.1038/415514aMinisterio de Ambiente y Desarrollo Sostenible. (2018). Resolución 0883 del 18 de Mayo del 2018. http://www.minambiente.gov.co/images/normativa/app/resoluciones/18-res 883 de 2018.pdfMorones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059Mudalige, T., Qu, H., Van Haute, D., Ansar, S. M., Paredes, A., & Ingle, T. (2019). Chapter 11 - Characterization of Nanomaterials: Tools and Challenges. In A. López Rubio, M. J. Fabra Rovira, M. martínez Sanz, & L. G. B. T.-N. for F. A. Gómez-Mascaraque (Eds.), Micro and Nano Technologies (pp. 313–353). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814130-4.00011-7Müller, M. (2016). Clinical Pharmacology: Current Topics and Case Studies. Springer International Publishing. https://books.google.com.co/books?id=ZgfNCwAAQBAJMuñoz-Rojas, D., Maindron, T., Esteve, A., Piallat, F., Kools, J. C. S., & Decams, J.-M. (2019). Speeding up the unique assets of atomic layer deposition. Materials Today Chemistry, 12, 96–120. https://doi.org/10.1016/J.MTCHEM.2018.11.013Muralikrishna, I. V., & Manickam, V. (2017). Introduction. In Environmental Management (pp. 1–4). Elsevier. https://doi.org/10.1016/b978-0-12-811989-1.00001-4Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. In Resources, Conservation and Recycling (Vol. 66, pp. 45–58). https://doi.org/10.1016/j.resconrec.2012.06.005Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368–374. https://doi.org/10.1016/j.carbpol.2010.07.063Nada, A.-A. M. A., Yousef, M. A., Shaffei, K. A., & Salah, A. M. (1998). Infrared spectroscopy of some treated lignins. Polymer Degradation and Stability, 62(1), 157–163. https://doi.org/https://doi.org/10.1016/S0141-3910(97)00273-5Nanotechnology Timeline. (n.d.). Retrieved March 31, 2019, from https://www.nano.gov/timelineNoor, N. M., Othman, R., Mubarak, N. M., & Abdullah, E. C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78, 168–177. https://doi.org/https://doi.org/10.1016/j.jtice.2017.05.023Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., & Levin, E. D. (2009). The toxicology of climate change: Environmental contaminants in a warming world. Environment International, 35(6), 971–986. https://doi.org/https://doi.org/10.1016/j.envint.2009.02.006Ogar, A., Tylko, G., & Turnau, K. (2015). Antifungal properties of silver nanoparticles against indoor mould growth. Science of The Total Environment, 521–522, 305–314. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.03.101Panayiotou, H., & Kokot, S. (1999). Matching and discrimination of single human-scalp hair by FT-IR micro-espectroscopy and chemometrics. Analytica Chimica Acta, 392(3).Pankey, G. A., & Sabath, L. D. (2004). Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections. Clinical Infectious Diseases, 38(6), 864–870. https://doi.org/10.1086/381972Paredes Guerrero, D. J. (2011). Estudio Del Efecto Antibacteriano De Nanoparticulas De Plata Sobre Escherichia Coli Staphylococcus Aureus [Universidad Industrial de Santander]. https://docplayer.es/27008958-Estudio-del-efecto-antibacteriano-de-nanoparticulas-de-plata-sobre-escherichia-coli-y-staphylococcus-aureus-daissy-julieth-paredes-guerrero.htmlPérez-Arantegui, J., Molera, J., Larrea, A., Pradell, T., Vendrell-Saz, M., Borgia, I., Brunetti, B. G., Cariati, F., Fermo, P., Mellini, M., Sgamellotti, A., & Viti, C. (2004). Luster Pottery from the Thirteenth Century to the Sixteenth Century: A Nanostructured Thin Metallic Film. Journal of the American Ceramic Society, 84(2), 442–446. https://doi.org/10.1111/j.1151-2916.2001.tb00674.xPerna, N. T., Plunkett, G., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., … Blattner, F. R. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 . Nature, 409(6819), 529–533. https://doi.org/10.1038/35054089Perú21. (2019, July 20). ¡Cuidado! Conoce la infección de hongos vaginales que puede ser mortal. https://peru21.pe/ciencia/candidiasis-infeccion-hongos-mortal-491285-noticia/Poole, C. P., & Owens, F. J. (2007). Introducción a la nanotecnología. Editorial Reverté.Puerta Quintero, G. I. (2011). Composición química de una taza de café. Avances Técnicos Cenicafé, 414.Qing, Y., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., Liu, H., & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 13, 3311–3327. https://doi.org/10.2147/IJN.S16512Ragauskas, A. J. (2006). The Path Forward for Biofuels and Biomaterials. Science, 311(5760), 484–489. https://doi.org/10.1126/science.1114736Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/https://doi.org/10.1016/j.biotechadv.2008.09.002Requejo Leal, S. (2011). Degradación química de madera y PET reciclado y su aplicación en la síntesis de resinas de poliéster. Universidad Autónoma de Nuevo León.Rossi, G. (1990). Biohydrometallurgy. McGraw-Hill.Sabiiti, E. (2011). Utilising agricultural waste to enhance food security and conserve the environment | Sabiiti | African Journal of Food, Agriculture, Nutrition and Development. African Journal of Food, Agriculture, Nutrition and Development JOURNAL HOME ABOUT THIS JOURNAL ADVANCED SEARCH CURRENT ISSUE ARCHIVES, 11(6). https://www.ajol.info/index.php/ajfand/article/view/72668Salomoni, R., Léo, P., Montemor, A. F., Rinaldi, B. G., & Rodrigues, M. (2017). Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, Science and Applications, 10, 115–121. https://doi.org/10.2147/NSA.S133415Sant Joan de Déu Barcelona - Hospital. (2016, March 10). Consecuencias de una infección por E. coli. https://faros.hsjdbcn.org/es/articulo/consecuencias-infeccion-coliSarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation - A critical review. Chemosphere, 158, 37–49. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.05.043Servicio Geológico Colombiano, Medina Hernández, P., & Mejía Silva, M. T. (n.d.). Monografía de la Plata (Ag). Retrieved March 31, 2019, from https://www.sgm.gob.mx/Web/MuseoVirtual/pdfs/Monografia PLATA.pdfShankar, S., & Rhim, J.-W. (2017). Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids, 71, 76–84. https://doi.org/https://doi.org/10.1016/j.foodhyd.2017.05.002Shelley, T., & Sarret Grau, J. (2006). Nanotecnología : nuevas promesas, nuevos peligros. El Viejo Topo.Singh, C. K., Kumar, A., & Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports, 8(1), 2913. https://doi.org/10.1038/s41598-018-21326-9Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure. http://www.nrel.gov/biomass/analytical_procedures.htmlSociedad Andaluza de Enfermedades Infecciosas. (n.d.). La infección por el VIH. Guía práctica (2nd ed.). Gráficas Monterreina.Soriano, L. M., Zougagh, M., Valcárcel, M., & Ríos, Á. (2018). Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta, 177, 104–121. https://doi.org/10.1016/j.talanta.2017.09.012Struthers, K. (2018). Microbiología clínica. Editorial El Manual Moderno. http://ebookcentral.proquest.com/lib/bibliotecaustasp/detail.action?docID=5635082Sun, S., Yu, Q., Li, M., Zhao, H., & Wu, C. (2019). Preparation of coffee-shell activated carbon and its application for water vapor adsorption. Renewable Energy, 142, 11–19. https://doi.org/10.1016/j.renene.2019.04.097Takeuchi, N. (2010). Nanociencia y nanotecnología. FCE - Fondo de Cultura Económica.Tejada-Tovar, C., Villabona-Ortíz, Á., & Garcés-Jaraba, L. (2015). Adsorción de Metales Pesados en Agua Residuales Usando Materiales de Origen Biológico. Tecno Lógicas, 18(34), 109–123.Terra Green. (2019). Global Waste — Solvable Problem as a Renewable Energy Resource. https://medium.com/@support_61820/global-waste-solvable-problem-as-a-renewable-energy-resource-5d8f05cc1a7dThe University of Texas at Austin. (n.d.). What is nanoscience? Retrieved February 9, 2020, from https://tmi.utexas.edu/resources/what-is-nanoscience/Torgeson, D. (2012). Fungicides. Elsevier.Torres Acosta, L., Mendieta, I., Hernández, G., Núñez, R., & Castaño, V. (2011). Citotoxicidad y genotoxicidad de AgNPs para disminuir la adherencia de Candida Albicans en prótesis dentales.USEPA. (2019). National Primary Drinking Water Regulations. United States Environmental Protection Agency. https://www.mallard-inc.com/wp-content/uploads/2019/05/Drinking-Water-Standards.pdfVolesky, B. (2003). Sorption and Biosorption.Volesky, B. (2007). Biosorption and me. Water Research, 41(18), 4017–4029. https://doi.org/10.1016/j.watres.2007.05.062Vullo, D. (2003). Microorganismos y metales pesados: Una interacción en beneficio del medio ambiente. Quíimica Viva, 2(3).Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5), 427–451. https://doi.org/https://doi.org/10.1016/j.biotechadv.2006.03.001Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002WHO. (n.d.). Water. Retrieved January 28, 2020, from https://www.who.int/topics/water/en/WHO. (2011). Guidelines for drinking-water quality. World Health Organization, 216.WHO. (2018). Progress on Drinking Water, Sanitation and Hygiene. World Health Organization.Xia, J., Duan, Q.-Y., Luo, Y., Xie, Z.-H., Liu, Z.-Y., & Mo, X.-G. (2017). Climate change and water resources: Case study of Eastern Monsoon Region of China. Advances in Climate Change Research, 8(2), 63–67. https://doi.org/https://doi.org/10.1016/j.accre.2017.03.007Xu, P., Zeng, G. M., Huang, D. L., Lai, C., Zhao, M. H., Wei, Z., Li, N. J., Huang, C., & Xie, G. X. (2012). Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chemical Engineering Journal, 203, 423–431. https://doi.org/https://doi.org/10.1016/j.cej.2012.07.048Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. https://doi.org/10.1016/j.fuel.2006.12.013Yao, L., Ye, Z., Tong, M., Lai, P., & Ni, J. (2009). Removal of Cr3+ from aqueous solution by biosorption with aerobic granules. Journal of Hazardous Materials, 165(1), 250–255. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.09.110Ye, J., Yin, H., Mai, B., Peng, H., Qin, H., He, B., & Zhang, N. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technology, 101(11), 3893–3902. https://doi.org/https://doi.org/10.1016/j.biortech.2010.01.014Zanella, R. (2012). Metodologías para la síntesis de nanopartículas. Mundo Nano, 5(1).Zanella, R., Giorgio, S., Henry, C. R., & Louis, C. (2002). Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2. The Journal of Physical Chemistry B, 106(31), 7634–7642. https://doi.org/10.1021/jp0144810Zhang, H. (2014). Biosorption of heavy metals from aqueous solutions using keratin biomaterials [Universitat Autònoma de Barcelona]. https://www.tdx.cat/handle/10803/284239Zhu, Z., Gao, C., Wu, Y., Sun, L., Huang, X., Ran, W., & Shen, Q. (2013). Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite. Bioresource Technology, 147, 378–386. https://doi.org/https://doi.org/10.1016/j.biortech.2013.08.049THUMBNAIL2020GuevaraDaniel.pdf.jpg2020GuevaraDaniel.pdf.jpgGenerated Thumbnailimage/jpeg2849https://repository.usta.edu.co/bitstream/11634/28803/11/2020GuevaraDaniel.pdf.jpgf38fac0b6fc94efd7bc246e65576b5caMD511open access2020GuevaraDaniel1.pdf.jpg2020GuevaraDaniel1.pdf.jpgGenerated Thumbnailimage/jpeg3961https://repository.usta.edu.co/bitstream/11634/28803/12/2020GuevaraDaniel1.pdf.jpgc3f63a350b43ad415872bff167f44cbfMD512open access2020GuevaraDaniel2.pdf.jpg2020GuevaraDaniel2.pdf.jpgGenerated Thumbnailimage/jpeg5435https://repository.usta.edu.co/bitstream/11634/28803/13/2020GuevaraDaniel2.pdf.jpg5a9eadadf6ab4e2e38308f5a6bd1c517MD513open accessORIGINAL2020GuevaraDaniel.pdf2020GuevaraDaniel.pdfTrabajo de gradoapplication/pdf3358618https://repository.usta.edu.co/bitstream/11634/28803/6/2020GuevaraDaniel.pdf810ffd626f355fc01b2e183582d8d6a9MD56metadata only access2020GuevaraDaniel1.pdf2020GuevaraDaniel1.pdfAprobación facultadapplication/pdf208716https://repository.usta.edu.co/bitstream/11634/28803/7/2020GuevaraDaniel1.pdf3b95db058e80a1d053a45575d8d93a64MD57metadata only access2020GuevaraDaniel2.pdf2020GuevaraDaniel2.pdfAcuerdo de confidencialidadapplication/pdf116669https://repository.usta.edu.co/bitstream/11634/28803/8/2020GuevaraDaniel2.pdf9bfbffa8c172a50a56ddee6ebe422328MD58metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/28803/9/license_rdf217700a34da79ed616c2feb68d4c5e06MD59open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/28803/10/license.txtaedeaf396fcd827b537c73d23464fc27MD510open access11634/28803oai:repository.usta.edu.co:11634/288032022-10-10 14:46:19.448metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |