Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana

En la presente investigación se evaluó el empleo de la cascarilla de café modificada en la extracción de iones metálicos de Pb(II), Cd(II), Cu(II) y Cr(III) en solución acuosa. La modificación de la cascarilla y la lignina de café se realizó mediante el método de impregnación, usando como precursore...

Full description

Autores:
Guevara Bernal, Daniel Fernando
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/28803
Acceso en línea:
http://hdl.handle.net/11634/28803
Palabra clave:
Bioadsorption
Coffee shell
Lignin
Heavy metals
Silver nanoparticles
Adsorción
Bioquímica
Enzimas-aplicaciones industriales
Lignina-biodegradación
Café
Bioadsorción
Cascarilla de café
Lignina
Metales pesados
Nanopartículas de plata
Café
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_84fdc97c22fc2399bc66b0cf3d447613
oai_identifier_str oai:repository.usta.edu.co:11634/28803
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana
title Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana
spellingShingle Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana
Bioadsorption
Coffee shell
Lignin
Heavy metals
Silver nanoparticles
Adsorción
Bioquímica
Enzimas-aplicaciones industriales
Lignina-biodegradación
Café
Bioadsorción
Cascarilla de café
Lignina
Metales pesados
Nanopartículas de plata
Café
title_short Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana
title_full Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana
title_fullStr Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana
title_full_unstemmed Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana
title_sort Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana
dc.creator.fl_str_mv Guevara Bernal, Daniel Fernando
dc.contributor.advisor.spa.fl_str_mv Candela Soto, Angélica María
Palet Ballús, Cristina
Gutiérrez Cifuentes, Jorge Andrés
dc.contributor.author.spa.fl_str_mv Guevara Bernal, Daniel Fernando
dc.subject.keyword.spa.fl_str_mv Bioadsorption
Coffee shell
Lignin
Heavy metals
Silver nanoparticles
topic Bioadsorption
Coffee shell
Lignin
Heavy metals
Silver nanoparticles
Adsorción
Bioquímica
Enzimas-aplicaciones industriales
Lignina-biodegradación
Café
Bioadsorción
Cascarilla de café
Lignina
Metales pesados
Nanopartículas de plata
Café
dc.subject.lemb.spa.fl_str_mv Adsorción
Bioquímica
Enzimas-aplicaciones industriales
Lignina-biodegradación
Café
dc.subject.proposal.spa.fl_str_mv Bioadsorción
Cascarilla de café
Lignina
Metales pesados
Nanopartículas de plata
Café
description En la presente investigación se evaluó el empleo de la cascarilla de café modificada en la extracción de iones metálicos de Pb(II), Cd(II), Cu(II) y Cr(III) en solución acuosa. La modificación de la cascarilla y la lignina de café se realizó mediante el método de impregnación, usando como precursores el nitrato de plata (AgNO3) y borohidruro de sodio (NaBH4). Con la finalidad de evaluar la extracción de los iones metálicos se realizó una cinética de extracción e isotermas, así como también se realizó la caracterización de los materiales mediante técnicas como FT-IR, SEM y DLS. En adición, la plata tiene propiedades antimicrobianas, por ende, se realizaron pruebas de actividad bactericida y antifúngica sobre diferentes especies que suelen afectar a la sociedad.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-08-04T16:14:52Z
dc.date.available.spa.fl_str_mv 2020-08-04T16:14:52Z
dc.date.issued.spa.fl_str_mv 2020-07-21
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Guevara Bernal, D.F (2020) Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana [Trabajo de pregrado] Universidad Santo Tomás. Bucaramanga, Colombia
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/28803
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Guevara Bernal, D.F (2020) Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana [Trabajo de pregrado] Universidad Santo Tomás. Bucaramanga, Colombia
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/28803
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahmad, N., Plorde, J., & Drew, L. (2011). Sherris. Microbiología Médica (5th ed.). McGraw-Hill
Al-Qahtani, K. M. (2017). Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. The Egyptian Journal of Aquatic Research, 43(4), 269–274. https://doi.org/https://doi.org/10.1016/j.ejar.2017.10.003
Alatzas, S., Moustakas, K., Malamis, D., & Vakalis, S. (2019). Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies, 12(6), 1095. https://doi.org/10.3390/en12061095
Alzagameem, A., Klein, S. E., Bergs, M., Do, X. T., Korte, I., Dohlen, S., Hüwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., & Schulze, M. (2019). Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites Against Selected Pathogenic and Spoilage Microorganisms. Polymers, 11(4), 670. https://doi.org/10.3390/polym11040670
Andrada, A. M. (2012). Nanotecnología: descubriendo lo invisible. Editorial Maipue.
Andrade Estévez, A. C., & Valdiviezo Aguilar, A. B. (2012). Control microbiológico de cosméticos elaborados artesanalmente en base de productos naturales en la ciudad de Quito [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/9579/merged %2848%29.pdf?sequence=1&isAllowed=y
Arenas Guzmán, R. (2008). Micología Médica Ilustrada (3rd ed.). McGraw-Hill.
Association for Professionals in Infection Control and Epidemiology. (n.d.). Staphylococcus aureus. Retrieved February 20, 2020, from https://apic.org/monthly_alerts/staphylococcus-aureus/
Audesirk, T., Audesirk, G., Byers, B. E., Garc\’\ia, H. J. E., & Garc\’\ia, R. L. E. (2003). Biología: la vida en la tierra. Pearson Educación. https://books.google.com.co/books?id=uO48-6v7GcoC
Ávalos, A., Haza, A., & Morales, P. (2013). Nanopartículas de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente. Revista Complutense de Ciencias Veterinarias, 7(2), 1–23. https://doi.org/10.5209/rev_RCCV.2013.v7.n2.43408
Bajwa, D. S., Pourhashem, G., Ullah, A. H., & Bajwa, S. G. (2019). A concise review of current lignin production, applications, products and their environment impact. Industrial Crops and Products, 139. https://doi.org/10.1016/j.indcrop.2019.111526
Balu, A. M. (2012). Nanopartículas Soportadas Sobre Materiales Porosos Para La Síntesis De Productos De Alto Valor Añadido Tesis Doctoral [Universidad de Córdoba]. www.uco.es/publicaciones
Banu, J. R., Kavitha, S., Kannah, R. Y., Kumar, M. D., Preethi, J., Atabani, A. E., & Kumar, G. (2020). Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresource Technology, 122821. https://doi.org/10.1016/j.biortech.2020.122821
Bazzicalupi, C., García-España, E., & Delgado-Pinar, E. (2014). Metals in supramolecular chemistry. Inorganica Chimica Acta, 417, 3–26. https://doi.org/10.1016/J.ICA.2014.03.001
Behrens, M. (2010). Synthesis of Solid Catalysts. Angewandte Chemie International Edition, 49(12), 2095–2095. https://doi.org/10.1002/anie.200907333
Bilal, M., & Iqbal, H. M. N. (2019). Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coordination Chemistry Reviews, 388, 1–23. https://doi.org/10.1016/J.CCR.2019.02.024
Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin Biosynthesis. Annual Review of Plant Biology, 54(1), 519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938
Burbano Patiño, A. A. (2018). Síntesis y caracterización de nanopartículas magnéticas del tipo core-shell Fe3O4@Ag soportadas sobre lignina y cascarilla de café [Universidad Santo Tomás]. http://hdl.handle.net/11634/16926
Cadogan, E. I., Lee, C.-H., Popuri, S. R., & Lin, H.-Y. (2014). Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and characterization. International Biodeterioration & Biodegradation, 95, 232–240. https://doi.org/https://doi.org/10.1016/j.ibiod.2014.06.003
Candela Soto, A. M. (2013). Desarrollo y caracterización de métdos de separación y preconcentración de Uranio (VI) a nivel de trazas para su efectiva determinación. Universitat Autònoma de Barcelona.
Cardoso, P. (2016). Nanopartículas de plata: obtención, utilización como antimicrobiano e impacto en el área de la salud. Rev. Hosp. Niños (B. Aires), 58(260), 19–28. http://revistapediatria.com.ar/wp-content/uploads/2016/04/260-Nanopartículas-de-plata.pdf
Chatterjee, S. K., Bhattacharjee, I., & Chandra, G. (2010). Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Journal of Hazardous Materials, 175(1), 117–125. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.09.136
Chemistry of Coffee: Science Behind the Black Nectar. (2019). https://goodcoffeeplace.com/coffee-chemistry/
Chen, H., Qu, X., Liu, N., Wang, S., Chen, X., & Liu, S. (2018). Study of the adsorption process of heavy metals cations on Kraft lignin. Chemical Engineering Research and Design, 139, 248–258. https://doi.org/10.1016/j.cherd.2018.09.028
Choi, J., Lee, J. Y., & Yang, J.-S. (2009). Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. Journal of Hazardous Materials, 161(1), 157–162. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.03.065
Clinical and Laboratory Standards Institute. (1999). M26-A Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline This document provides procedures for determining the lethal activity of antimicrobial agents. www.clsi.org.
Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., Pezzin, A. P. T., Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., & Pezzin, A. P. T. (2018). Influência do teor de argila nas propriedades do polipropileno e a reciclagem dos nanocompósitos obtidos por injeção. Matéria (Rio de Janeiro), 22(suppl 1). https://doi.org/10.1590/s1517-707620170005.0267
Control de Infecciones y Epidemiología. (2004, April). Pseudomonas aeruginosa. https://codeinep.org/pseudomonas-aeruginosa/
Covarrubias, S. A., & Cabriales, J. J. P. (2017). Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Revista Internacional de Contaminación Ambiental, 33(0), 7–21. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/RICA.2017.33.esp01.01/46640
Cruz, G., Braz, C., Ferreira, S., Moreira, A., & Crnkovic, P. (2013). PHYSICOCHEMICAL PROPERTIES OF BRAZILIAN BIOMASSES: POTENTIAL APPLICATIONS AS RENEWABLE ENERGY SOURCE. https://doi.org/10.13140/2.1.4761.2485
Cuervo, L., Folch, J. L., & Quiroz, R. E. (2009). Lignocelulosa Como Fuente de Azúcares Para la Producción de Etanol . BioTecnologia, 13(3), 11–25. https://doi.org/10.1016/j.vetpar.2008.12.007
Egas Vivero, P. R. (2016). Caracterización fenotípica y genotípica del bacteriófago 5Q18 activo contra Escherichia coli enteropatógena multirresistente [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12525/DISERTACIÓN FINAL_CDs_jul13.pdf?sequence=1&isAllowed=y
Fackler, J. P. (2007). Catalysis by Gold By Geoffrey C. Bond (Brunel University, U.K.), Catherine Louis (Université Pierre et Marie Curie, France), and David T. Thompson (Consultant, World Gold Council, UK). From the Series:  Catalytic Science Series, Volume 6. Series Edited by. Journal of the American Chemical Society, 129(13), 4107. https://doi.org/10.1021/ja069835l
Florez Rojas, J. (2015). Energías alternativas en Colombia bajo la ley 1715. Universidad Militar Nueva Granada.
Gadd, G. M. (1994). Interactions of Fungi with Toxic Metals (K. A. Powell, A. Renwick, & J. F. Peberdy (Eds.); pp. 361–374). Springer US. https://doi.org/10.1007/978-1-4899-0981-7_28
García Cárdenas, J. N. (2012). Prevalencia de Staphylococcus aureus en manipuladores de alimentos en el área de producción (cocina caliente y fría, pastelería, carnes), de una empresa privada [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12084/TESIS NATHALI GARCIA CARDENAS.pdf?sequence=1&isAllowed=y
Ge, H., Hua, T., & Chen, X. (2016). Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. Journal of Hazardous Materials, 308, 225–232. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.01.042
Gharehkhani, S., Zhang, Y., & Fatehi, P. (2019). Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science, 72, 59–89. https://doi.org/https://doi.org/10.1016/j.pecs.2019.01.002
Gómez, S., García, S. M., de Bedout, S., & García, A. M. (2011). Análisis del perfil proteico de aislamientos clínicos de Candida guilliermondii sensibles y resistentes al fluconazol. Infectio, 15(1), 20–24.
Guo, Y., & Zhao, W. (2019). In situ formed nanomaterials for colorimetric and fluorescent sensing. Coordination Chemistry Reviews, 387, 249–261. https://doi.org/10.1016/J.CCR.2019.02.019
Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355–2388. https://doi.org/https://doi.org/10.1016/j.jenvman.2011.06.009
Huang, J., Fu, S., & Gan, L. (2019). Lignin Chemistry and Applications. Elsevier Science.
Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. In Resources, Conservation and Recycling (Vol. 128, pp. 110–117). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2017.10.001
Joseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.04.198
Karmee, S. K. (2018). A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. In Waste Management (Vol. 72, pp. 240–254). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2017.10.042
Kondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent Coffee Grounds as a Versatile Source of Green Energy. Journal of Agricultural and Food Chemistry, 56(24), 11757–11760. https://doi.org/10.1021/jf802487s
Lazo, J., Navarro, A., Sun-Kou, M., & Llanos, B. (2008). Síntesis y caracterización de arcillas organofílicas y su aplicación como adsorbentes del fenol. Rev Soc Quím Perú, 74(1), 3–19.
Lezcano Valverde, J. M., González González, F., & Ballester Pérez, A. (2009). Efecto del pretratamiento de biomasa procedente de un hábitat eutrofizado sobre la bioabsorción de metales pesados. Universidad Complutense de Madrid.
Lupoi, J. S., Singh, S., Parthasarathi, R., Simmons, B. A., & Henry, R. J. (2015). Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. In Renewable and Sustainable Energy Reviews (Vol. 49, pp. 871–906). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.04.091
Malvern Panalytical. (n.d.). Dispersión de luz dinámica para la caracterización de tamaño. Retrieved February 23, 2020, from https://www.malvernpanalytical.com/es/products/technology/light-scattering/dynamic-light-scattering
Masindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. In Heavy Metals. InTech. https://doi.org/10.5772/intechopen.76082
Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517. https://doi.org/10.1038/415514a
Ministerio de Ambiente y Desarrollo Sostenible. (2018). Resolución 0883 del 18 de Mayo del 2018. http://www.minambiente.gov.co/images/normativa/app/resoluciones/18-res 883 de 2018.pdf
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059
Mudalige, T., Qu, H., Van Haute, D., Ansar, S. M., Paredes, A., & Ingle, T. (2019). Chapter 11 - Characterization of Nanomaterials: Tools and Challenges. In A. López Rubio, M. J. Fabra Rovira, M. martínez Sanz, & L. G. B. T.-N. for F. A. Gómez-Mascaraque (Eds.), Micro and Nano Technologies (pp. 313–353). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814130-4.00011-7
Müller, M. (2016). Clinical Pharmacology: Current Topics and Case Studies. Springer International Publishing. https://books.google.com.co/books?id=ZgfNCwAAQBAJ
Muñoz-Rojas, D., Maindron, T., Esteve, A., Piallat, F., Kools, J. C. S., & Decams, J.-M. (2019). Speeding up the unique assets of atomic layer deposition. Materials Today Chemistry, 12, 96–120. https://doi.org/10.1016/J.MTCHEM.2018.11.013
Muralikrishna, I. V., & Manickam, V. (2017). Introduction. In Environmental Management (pp. 1–4). Elsevier. https://doi.org/10.1016/b978-0-12-811989-1.00001-4
Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. In Resources, Conservation and Recycling (Vol. 66, pp. 45–58). https://doi.org/10.1016/j.resconrec.2012.06.005
Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368–374. https://doi.org/10.1016/j.carbpol.2010.07.063
Nada, A.-A. M. A., Yousef, M. A., Shaffei, K. A., & Salah, A. M. (1998). Infrared spectroscopy of some treated lignins. Polymer Degradation and Stability, 62(1), 157–163. https://doi.org/https://doi.org/10.1016/S0141-3910(97)00273-5
Nanotechnology Timeline. (n.d.). Retrieved March 31, 2019, from https://www.nano.gov/timeline
Noor, N. M., Othman, R., Mubarak, N. M., & Abdullah, E. C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78, 168–177. https://doi.org/https://doi.org/10.1016/j.jtice.2017.05.023
Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., & Levin, E. D. (2009). The toxicology of climate change: Environmental contaminants in a warming world. Environment International, 35(6), 971–986. https://doi.org/https://doi.org/10.1016/j.envint.2009.02.006
Ogar, A., Tylko, G., & Turnau, K. (2015). Antifungal properties of silver nanoparticles against indoor mould growth. Science of The Total Environment, 521–522, 305–314. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.03.101
Panayiotou, H., & Kokot, S. (1999). Matching and discrimination of single human-scalp hair by FT-IR micro-espectroscopy and chemometrics. Analytica Chimica Acta, 392(3).
Pankey, G. A., & Sabath, L. D. (2004). Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections. Clinical Infectious Diseases, 38(6), 864–870. https://doi.org/10.1086/381972
Paredes Guerrero, D. J. (2011). Estudio Del Efecto Antibacteriano De Nanoparticulas De Plata Sobre Escherichia Coli Staphylococcus Aureus [Universidad Industrial de Santander]. https://docplayer.es/27008958-Estudio-del-efecto-antibacteriano-de-nanoparticulas-de-plata-sobre-escherichia-coli-y-staphylococcus-aureus-daissy-julieth-paredes-guerrero.html
Pérez-Arantegui, J., Molera, J., Larrea, A., Pradell, T., Vendrell-Saz, M., Borgia, I., Brunetti, B. G., Cariati, F., Fermo, P., Mellini, M., Sgamellotti, A., & Viti, C. (2004). Luster Pottery from the Thirteenth Century to the Sixteenth Century: A Nanostructured Thin Metallic Film. Journal of the American Ceramic Society, 84(2), 442–446. https://doi.org/10.1111/j.1151-2916.2001.tb00674.x
Perna, N. T., Plunkett, G., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., … Blattner, F. R. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 . Nature, 409(6819), 529–533. https://doi.org/10.1038/35054089
Perú21. (2019, July 20). ¡Cuidado! Conoce la infección de hongos vaginales que puede ser mortal. https://peru21.pe/ciencia/candidiasis-infeccion-hongos-mortal-491285-noticia/
Poole, C. P., & Owens, F. J. (2007). Introducción a la nanotecnología. Editorial Reverté.
Puerta Quintero, G. I. (2011). Composición química de una taza de café. Avances Técnicos Cenicafé, 414.
Qing, Y., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., Liu, H., & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 13, 3311–3327. https://doi.org/10.2147/IJN.S16512
Ragauskas, A. J. (2006). The Path Forward for Biofuels and Biomaterials. Science, 311(5760), 484–489. https://doi.org/10.1126/science.1114736
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/https://doi.org/10.1016/j.biotechadv.2008.09.002
Requejo Leal, S. (2011). Degradación química de madera y PET reciclado y su aplicación en la síntesis de resinas de poliéster. Universidad Autónoma de Nuevo León.
Rossi, G. (1990). Biohydrometallurgy. McGraw-Hill.
Sabiiti, E. (2011). Utilising agricultural waste to enhance food security and conserve the environment | Sabiiti | African Journal of Food, Agriculture, Nutrition and Development. African Journal of Food, Agriculture, Nutrition and Development JOURNAL HOME ABOUT THIS JOURNAL ADVANCED SEARCH CURRENT ISSUE ARCHIVES, 11(6). https://www.ajol.info/index.php/ajfand/article/view/72668
Salomoni, R., Léo, P., Montemor, A. F., Rinaldi, B. G., & Rodrigues, M. (2017). Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, Science and Applications, 10, 115–121. https://doi.org/10.2147/NSA.S133415
Sant Joan de Déu Barcelona - Hospital. (2016, March 10). Consecuencias de una infección por E. coli. https://faros.hsjdbcn.org/es/articulo/consecuencias-infeccion-coli
Sarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation - A critical review. Chemosphere, 158, 37–49. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.05.043
Servicio Geológico Colombiano, Medina Hernández, P., & Mejía Silva, M. T. (n.d.). Monografía de la Plata (Ag). Retrieved March 31, 2019, from https://www.sgm.gob.mx/Web/MuseoVirtual/pdfs/Monografia PLATA.pdf
Shankar, S., & Rhim, J.-W. (2017). Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids, 71, 76–84. https://doi.org/https://doi.org/10.1016/j.foodhyd.2017.05.002
Shelley, T., & Sarret Grau, J. (2006). Nanotecnología : nuevas promesas, nuevos peligros. El Viejo Topo.
Singh, C. K., Kumar, A., & Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports, 8(1), 2913. https://doi.org/10.1038/s41598-018-21326-9
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure. http://www.nrel.gov/biomass/analytical_procedures.html
Sociedad Andaluza de Enfermedades Infecciosas. (n.d.). La infección por el VIH. Guía práctica (2nd ed.). Gráficas Monterreina.
Soriano, L. M., Zougagh, M., Valcárcel, M., & Ríos, Á. (2018). Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta, 177, 104–121. https://doi.org/10.1016/j.talanta.2017.09.012
Struthers, K. (2018). Microbiología clínica. Editorial El Manual Moderno. http://ebookcentral.proquest.com/lib/bibliotecaustasp/detail.action?docID=5635082
Sun, S., Yu, Q., Li, M., Zhao, H., & Wu, C. (2019). Preparation of coffee-shell activated carbon and its application for water vapor adsorption. Renewable Energy, 142, 11–19. https://doi.org/10.1016/j.renene.2019.04.097
Takeuchi, N. (2010). Nanociencia y nanotecnología. FCE - Fondo de Cultura Económica.
Tejada-Tovar, C., Villabona-Ortíz, Á., & Garcés-Jaraba, L. (2015). Adsorción de Metales Pesados en Agua Residuales Usando Materiales de Origen Biológico. Tecno Lógicas, 18(34), 109–123.
Terra Green. (2019). Global Waste — Solvable Problem as a Renewable Energy Resource. https://medium.com/@support_61820/global-waste-solvable-problem-as-a-renewable-energy-resource-5d8f05cc1a7d
The University of Texas at Austin. (n.d.). What is nanoscience? Retrieved February 9, 2020, from https://tmi.utexas.edu/resources/what-is-nanoscience/
Torgeson, D. (2012). Fungicides. Elsevier.
Torres Acosta, L., Mendieta, I., Hernández, G., Núñez, R., & Castaño, V. (2011). Citotoxicidad y genotoxicidad de AgNPs para disminuir la adherencia de Candida Albicans en prótesis dentales.
USEPA. (2019). National Primary Drinking Water Regulations. United States Environmental Protection Agency. https://www.mallard-inc.com/wp-content/uploads/2019/05/Drinking-Water-Standards.pdf
Volesky, B. (2003). Sorption and Biosorption.
Volesky, B. (2007). Biosorption and me. Water Research, 41(18), 4017–4029. https://doi.org/10.1016/j.watres.2007.05.062
Vullo, D. (2003). Microorganismos y metales pesados: Una interacción en beneficio del medio ambiente. Quíimica Viva, 2(3).
Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5), 427–451. https://doi.org/https://doi.org/10.1016/j.biotechadv.2006.03.001
Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002
WHO. (n.d.). Water. Retrieved January 28, 2020, from https://www.who.int/topics/water/en/
WHO. (2011). Guidelines for drinking-water quality. World Health Organization, 216.
WHO. (2018). Progress on Drinking Water, Sanitation and Hygiene. World Health Organization.
Xia, J., Duan, Q.-Y., Luo, Y., Xie, Z.-H., Liu, Z.-Y., & Mo, X.-G. (2017). Climate change and water resources: Case study of Eastern Monsoon Region of China. Advances in Climate Change Research, 8(2), 63–67. https://doi.org/https://doi.org/10.1016/j.accre.2017.03.007
Xu, P., Zeng, G. M., Huang, D. L., Lai, C., Zhao, M. H., Wei, Z., Li, N. J., Huang, C., & Xie, G. X. (2012). Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chemical Engineering Journal, 203, 423–431. https://doi.org/https://doi.org/10.1016/j.cej.2012.07.048
Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. https://doi.org/10.1016/j.fuel.2006.12.013
Yao, L., Ye, Z., Tong, M., Lai, P., & Ni, J. (2009). Removal of Cr3+ from aqueous solution by biosorption with aerobic granules. Journal of Hazardous Materials, 165(1), 250–255. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.09.110
Ye, J., Yin, H., Mai, B., Peng, H., Qin, H., He, B., & Zhang, N. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technology, 101(11), 3893–3902. https://doi.org/https://doi.org/10.1016/j.biortech.2010.01.014
Zanella, R. (2012). Metodologías para la síntesis de nanopartículas. Mundo Nano, 5(1).
Zanella, R., Giorgio, S., Henry, C. R., & Louis, C. (2002). Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2. The Journal of Physical Chemistry B, 106(31), 7634–7642. https://doi.org/10.1021/jp0144810
Zhang, H. (2014). Biosorption of heavy metals from aqueous solutions using keratin biomaterials [Universitat Autònoma de Barcelona]. https://www.tdx.cat/handle/10803/284239
Zhu, Z., Gao, C., Wu, Y., Sun, L., Huang, X., Ran, W., & Shen, Q. (2013). Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite. Bioresource Technology, 147, 378–386. https://doi.org/https://doi.org/10.1016/j.biortech.2013.08.049
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bucaramanga
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Química Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Química Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/28803/11/2020GuevaraDaniel.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/28803/12/2020GuevaraDaniel1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/28803/13/2020GuevaraDaniel2.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/28803/6/2020GuevaraDaniel.pdf
https://repository.usta.edu.co/bitstream/11634/28803/7/2020GuevaraDaniel1.pdf
https://repository.usta.edu.co/bitstream/11634/28803/8/2020GuevaraDaniel2.pdf
https://repository.usta.edu.co/bitstream/11634/28803/9/license_rdf
https://repository.usta.edu.co/bitstream/11634/28803/10/license.txt
bitstream.checksum.fl_str_mv f38fac0b6fc94efd7bc246e65576b5ca
c3f63a350b43ad415872bff167f44cbf
5a9eadadf6ab4e2e38308f5a6bd1c517
810ffd626f355fc01b2e183582d8d6a9
3b95db058e80a1d053a45575d8d93a64
9bfbffa8c172a50a56ddee6ebe422328
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026211663282176
spelling Candela Soto, Angélica MaríaPalet Ballús, CristinaGutiérrez Cifuentes, Jorge AndrésGuevara Bernal, Daniel Fernando2020-08-04T16:14:52Z2020-08-04T16:14:52Z2020-07-21Guevara Bernal, D.F (2020) Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobiana [Trabajo de pregrado] Universidad Santo Tomás. Bucaramanga, Colombiahttp://hdl.handle.net/11634/28803reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn la presente investigación se evaluó el empleo de la cascarilla de café modificada en la extracción de iones metálicos de Pb(II), Cd(II), Cu(II) y Cr(III) en solución acuosa. La modificación de la cascarilla y la lignina de café se realizó mediante el método de impregnación, usando como precursores el nitrato de plata (AgNO3) y borohidruro de sodio (NaBH4). Con la finalidad de evaluar la extracción de los iones metálicos se realizó una cinética de extracción e isotermas, así como también se realizó la caracterización de los materiales mediante técnicas como FT-IR, SEM y DLS. En adición, la plata tiene propiedades antimicrobianas, por ende, se realizaron pruebas de actividad bactericida y antifúngica sobre diferentes especies que suelen afectar a la sociedad.The investigation is about, the use of modified coffee husk in the extraction of metal ions of Pb(II), Cd(II), Cu(II) and Cr(III) in aqueous solution. The modification of husk and coffee lignin was carried out by the impregnation method, using silver nitrate (AgNO3), and sodium borohydride (NaBH4) as precursors. In order to evaluate the extraction of metal ions, extraction kinetics and isotherms were performed, as well as the characterization of materials using techniques such as FT-IR, SEM and DLS. In addition, silver has antimicrobial properties, therefore, tests for bactericidal and antifungal activity were carried out on different species that usually affect society.Químico Ambientalhttp://www.ustabuca.edu.co/ustabmanga/presentacionPregradoapplication/pdfspaUniversidad Santo TomásPregrado Química AmbientalFacultad de Química AmbientalAtribución-NoComercial-SinDerivadas 2.5 ColombiaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Implementación de cascarilla de café en la bioadsorción de metales pesados y su actividad antimicrobianaBioadsorptionCoffee shellLigninHeavy metalsSilver nanoparticlesAdsorciónBioquímicaEnzimas-aplicaciones industrialesLignina-biodegradaciónCaféBioadsorciónCascarilla de caféLigninaMetales pesadosNanopartículas de plataCaféTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BucaramangaAhmad, N., Plorde, J., & Drew, L. (2011). Sherris. Microbiología Médica (5th ed.). McGraw-HillAl-Qahtani, K. M. (2017). Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. The Egyptian Journal of Aquatic Research, 43(4), 269–274. https://doi.org/https://doi.org/10.1016/j.ejar.2017.10.003Alatzas, S., Moustakas, K., Malamis, D., & Vakalis, S. (2019). Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies, 12(6), 1095. https://doi.org/10.3390/en12061095Alzagameem, A., Klein, S. E., Bergs, M., Do, X. T., Korte, I., Dohlen, S., Hüwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., & Schulze, M. (2019). Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites Against Selected Pathogenic and Spoilage Microorganisms. Polymers, 11(4), 670. https://doi.org/10.3390/polym11040670Andrada, A. M. (2012). Nanotecnología: descubriendo lo invisible. Editorial Maipue.Andrade Estévez, A. C., & Valdiviezo Aguilar, A. B. (2012). Control microbiológico de cosméticos elaborados artesanalmente en base de productos naturales en la ciudad de Quito [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/9579/merged %2848%29.pdf?sequence=1&isAllowed=yArenas Guzmán, R. (2008). Micología Médica Ilustrada (3rd ed.). McGraw-Hill.Association for Professionals in Infection Control and Epidemiology. (n.d.). Staphylococcus aureus. Retrieved February 20, 2020, from https://apic.org/monthly_alerts/staphylococcus-aureus/Audesirk, T., Audesirk, G., Byers, B. E., Garc\’\ia, H. J. E., & Garc\’\ia, R. L. E. (2003). Biología: la vida en la tierra. Pearson Educación. https://books.google.com.co/books?id=uO48-6v7GcoCÁvalos, A., Haza, A., & Morales, P. (2013). Nanopartículas de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente. Revista Complutense de Ciencias Veterinarias, 7(2), 1–23. https://doi.org/10.5209/rev_RCCV.2013.v7.n2.43408Bajwa, D. S., Pourhashem, G., Ullah, A. H., & Bajwa, S. G. (2019). A concise review of current lignin production, applications, products and their environment impact. Industrial Crops and Products, 139. https://doi.org/10.1016/j.indcrop.2019.111526Balu, A. M. (2012). Nanopartículas Soportadas Sobre Materiales Porosos Para La Síntesis De Productos De Alto Valor Añadido Tesis Doctoral [Universidad de Córdoba]. www.uco.es/publicacionesBanu, J. R., Kavitha, S., Kannah, R. Y., Kumar, M. D., Preethi, J., Atabani, A. E., & Kumar, G. (2020). Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresource Technology, 122821. https://doi.org/10.1016/j.biortech.2020.122821Bazzicalupi, C., García-España, E., & Delgado-Pinar, E. (2014). Metals in supramolecular chemistry. Inorganica Chimica Acta, 417, 3–26. https://doi.org/10.1016/J.ICA.2014.03.001Behrens, M. (2010). Synthesis of Solid Catalysts. Angewandte Chemie International Edition, 49(12), 2095–2095. https://doi.org/10.1002/anie.200907333Bilal, M., & Iqbal, H. M. N. (2019). Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coordination Chemistry Reviews, 388, 1–23. https://doi.org/10.1016/J.CCR.2019.02.024Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin Biosynthesis. Annual Review of Plant Biology, 54(1), 519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938Burbano Patiño, A. A. (2018). Síntesis y caracterización de nanopartículas magnéticas del tipo core-shell Fe3O4@Ag soportadas sobre lignina y cascarilla de café [Universidad Santo Tomás]. http://hdl.handle.net/11634/16926Cadogan, E. I., Lee, C.-H., Popuri, S. R., & Lin, H.-Y. (2014). Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and characterization. International Biodeterioration & Biodegradation, 95, 232–240. https://doi.org/https://doi.org/10.1016/j.ibiod.2014.06.003Candela Soto, A. M. (2013). Desarrollo y caracterización de métdos de separación y preconcentración de Uranio (VI) a nivel de trazas para su efectiva determinación. Universitat Autònoma de Barcelona.Cardoso, P. (2016). Nanopartículas de plata: obtención, utilización como antimicrobiano e impacto en el área de la salud. Rev. Hosp. Niños (B. Aires), 58(260), 19–28. http://revistapediatria.com.ar/wp-content/uploads/2016/04/260-Nanopartículas-de-plata.pdfChatterjee, S. K., Bhattacharjee, I., & Chandra, G. (2010). Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Journal of Hazardous Materials, 175(1), 117–125. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.09.136Chemistry of Coffee: Science Behind the Black Nectar. (2019). https://goodcoffeeplace.com/coffee-chemistry/Chen, H., Qu, X., Liu, N., Wang, S., Chen, X., & Liu, S. (2018). Study of the adsorption process of heavy metals cations on Kraft lignin. Chemical Engineering Research and Design, 139, 248–258. https://doi.org/10.1016/j.cherd.2018.09.028Choi, J., Lee, J. Y., & Yang, J.-S. (2009). Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. Journal of Hazardous Materials, 161(1), 157–162. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.03.065Clinical and Laboratory Standards Institute. (1999). M26-A Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline This document provides procedures for determining the lethal activity of antimicrobial agents. www.clsi.org.Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., Pezzin, A. P. T., Colonetti, G. C., Fuckner, J. K. W., Nogueira, A. L., & Pezzin, A. P. T. (2018). Influência do teor de argila nas propriedades do polipropileno e a reciclagem dos nanocompósitos obtidos por injeção. Matéria (Rio de Janeiro), 22(suppl 1). https://doi.org/10.1590/s1517-707620170005.0267Control de Infecciones y Epidemiología. (2004, April). Pseudomonas aeruginosa. https://codeinep.org/pseudomonas-aeruginosa/Covarrubias, S. A., & Cabriales, J. J. P. (2017). Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Revista Internacional de Contaminación Ambiental, 33(0), 7–21. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/RICA.2017.33.esp01.01/46640Cruz, G., Braz, C., Ferreira, S., Moreira, A., & Crnkovic, P. (2013). PHYSICOCHEMICAL PROPERTIES OF BRAZILIAN BIOMASSES: POTENTIAL APPLICATIONS AS RENEWABLE ENERGY SOURCE. https://doi.org/10.13140/2.1.4761.2485Cuervo, L., Folch, J. L., & Quiroz, R. E. (2009). Lignocelulosa Como Fuente de Azúcares Para la Producción de Etanol . BioTecnologia, 13(3), 11–25. https://doi.org/10.1016/j.vetpar.2008.12.007Egas Vivero, P. R. (2016). Caracterización fenotípica y genotípica del bacteriófago 5Q18 activo contra Escherichia coli enteropatógena multirresistente [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12525/DISERTACIÓN FINAL_CDs_jul13.pdf?sequence=1&isAllowed=yFackler, J. P. (2007). Catalysis by Gold By Geoffrey C. Bond (Brunel University, U.K.), Catherine Louis (Université Pierre et Marie Curie, France), and David T. Thompson (Consultant, World Gold Council, UK). From the Series:  Catalytic Science Series, Volume 6. Series Edited by. Journal of the American Chemical Society, 129(13), 4107. https://doi.org/10.1021/ja069835lFlorez Rojas, J. (2015). Energías alternativas en Colombia bajo la ley 1715. Universidad Militar Nueva Granada.Gadd, G. M. (1994). Interactions of Fungi with Toxic Metals (K. A. Powell, A. Renwick, & J. F. Peberdy (Eds.); pp. 361–374). Springer US. https://doi.org/10.1007/978-1-4899-0981-7_28García Cárdenas, J. N. (2012). Prevalencia de Staphylococcus aureus en manipuladores de alimentos en el área de producción (cocina caliente y fría, pastelería, carnes), de una empresa privada [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/bitstream/handle/22000/12084/TESIS NATHALI GARCIA CARDENAS.pdf?sequence=1&isAllowed=yGe, H., Hua, T., & Chen, X. (2016). Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. Journal of Hazardous Materials, 308, 225–232. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.01.042Gharehkhani, S., Zhang, Y., & Fatehi, P. (2019). Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science, 72, 59–89. https://doi.org/https://doi.org/10.1016/j.pecs.2019.01.002Gómez, S., García, S. M., de Bedout, S., & García, A. M. (2011). Análisis del perfil proteico de aislamientos clínicos de Candida guilliermondii sensibles y resistentes al fluconazol. Infectio, 15(1), 20–24.Guo, Y., & Zhao, W. (2019). In situ formed nanomaterials for colorimetric and fluorescent sensing. Coordination Chemistry Reviews, 387, 249–261. https://doi.org/10.1016/J.CCR.2019.02.019Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355–2388. https://doi.org/https://doi.org/10.1016/j.jenvman.2011.06.009Huang, J., Fu, S., & Gan, L. (2019). Lignin Chemistry and Applications. Elsevier Science.Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. In Resources, Conservation and Recycling (Vol. 128, pp. 110–117). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2017.10.001Joseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.04.198Karmee, S. K. (2018). A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. In Waste Management (Vol. 72, pp. 240–254). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2017.10.042Kondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent Coffee Grounds as a Versatile Source of Green Energy. Journal of Agricultural and Food Chemistry, 56(24), 11757–11760. https://doi.org/10.1021/jf802487sLazo, J., Navarro, A., Sun-Kou, M., & Llanos, B. (2008). Síntesis y caracterización de arcillas organofílicas y su aplicación como adsorbentes del fenol. Rev Soc Quím Perú, 74(1), 3–19.Lezcano Valverde, J. M., González González, F., & Ballester Pérez, A. (2009). Efecto del pretratamiento de biomasa procedente de un hábitat eutrofizado sobre la bioabsorción de metales pesados. Universidad Complutense de Madrid.Lupoi, J. S., Singh, S., Parthasarathi, R., Simmons, B. A., & Henry, R. J. (2015). Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. In Renewable and Sustainable Energy Reviews (Vol. 49, pp. 871–906). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.04.091Malvern Panalytical. (n.d.). Dispersión de luz dinámica para la caracterización de tamaño. Retrieved February 23, 2020, from https://www.malvernpanalytical.com/es/products/technology/light-scattering/dynamic-light-scatteringMasindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. In Heavy Metals. InTech. https://doi.org/10.5772/intechopen.76082Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517. https://doi.org/10.1038/415514aMinisterio de Ambiente y Desarrollo Sostenible. (2018). Resolución 0883 del 18 de Mayo del 2018. http://www.minambiente.gov.co/images/normativa/app/resoluciones/18-res 883 de 2018.pdfMorones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059Mudalige, T., Qu, H., Van Haute, D., Ansar, S. M., Paredes, A., & Ingle, T. (2019). Chapter 11 - Characterization of Nanomaterials: Tools and Challenges. In A. López Rubio, M. J. Fabra Rovira, M. martínez Sanz, & L. G. B. T.-N. for F. A. Gómez-Mascaraque (Eds.), Micro and Nano Technologies (pp. 313–353). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814130-4.00011-7Müller, M. (2016). Clinical Pharmacology: Current Topics and Case Studies. Springer International Publishing. https://books.google.com.co/books?id=ZgfNCwAAQBAJMuñoz-Rojas, D., Maindron, T., Esteve, A., Piallat, F., Kools, J. C. S., & Decams, J.-M. (2019). Speeding up the unique assets of atomic layer deposition. Materials Today Chemistry, 12, 96–120. https://doi.org/10.1016/J.MTCHEM.2018.11.013Muralikrishna, I. V., & Manickam, V. (2017). Introduction. In Environmental Management (pp. 1–4). Elsevier. https://doi.org/10.1016/b978-0-12-811989-1.00001-4Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. In Resources, Conservation and Recycling (Vol. 66, pp. 45–58). https://doi.org/10.1016/j.resconrec.2012.06.005Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368–374. https://doi.org/10.1016/j.carbpol.2010.07.063Nada, A.-A. M. A., Yousef, M. A., Shaffei, K. A., & Salah, A. M. (1998). Infrared spectroscopy of some treated lignins. Polymer Degradation and Stability, 62(1), 157–163. https://doi.org/https://doi.org/10.1016/S0141-3910(97)00273-5Nanotechnology Timeline. (n.d.). Retrieved March 31, 2019, from https://www.nano.gov/timelineNoor, N. M., Othman, R., Mubarak, N. M., & Abdullah, E. C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78, 168–177. https://doi.org/https://doi.org/10.1016/j.jtice.2017.05.023Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., & Levin, E. D. (2009). The toxicology of climate change: Environmental contaminants in a warming world. Environment International, 35(6), 971–986. https://doi.org/https://doi.org/10.1016/j.envint.2009.02.006Ogar, A., Tylko, G., & Turnau, K. (2015). Antifungal properties of silver nanoparticles against indoor mould growth. Science of The Total Environment, 521–522, 305–314. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.03.101Panayiotou, H., & Kokot, S. (1999). Matching and discrimination of single human-scalp hair by FT-IR micro-espectroscopy and chemometrics. Analytica Chimica Acta, 392(3).Pankey, G. A., & Sabath, L. D. (2004). Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections. Clinical Infectious Diseases, 38(6), 864–870. https://doi.org/10.1086/381972Paredes Guerrero, D. J. (2011). Estudio Del Efecto Antibacteriano De Nanoparticulas De Plata Sobre Escherichia Coli Staphylococcus Aureus [Universidad Industrial de Santander]. https://docplayer.es/27008958-Estudio-del-efecto-antibacteriano-de-nanoparticulas-de-plata-sobre-escherichia-coli-y-staphylococcus-aureus-daissy-julieth-paredes-guerrero.htmlPérez-Arantegui, J., Molera, J., Larrea, A., Pradell, T., Vendrell-Saz, M., Borgia, I., Brunetti, B. G., Cariati, F., Fermo, P., Mellini, M., Sgamellotti, A., & Viti, C. (2004). Luster Pottery from the Thirteenth Century to the Sixteenth Century: A Nanostructured Thin Metallic Film. Journal of the American Ceramic Society, 84(2), 442–446. https://doi.org/10.1111/j.1151-2916.2001.tb00674.xPerna, N. T., Plunkett, G., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., … Blattner, F. R. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 . Nature, 409(6819), 529–533. https://doi.org/10.1038/35054089Perú21. (2019, July 20). ¡Cuidado! Conoce la infección de hongos vaginales que puede ser mortal. https://peru21.pe/ciencia/candidiasis-infeccion-hongos-mortal-491285-noticia/Poole, C. P., & Owens, F. J. (2007). Introducción a la nanotecnología. Editorial Reverté.Puerta Quintero, G. I. (2011). Composición química de una taza de café. Avances Técnicos Cenicafé, 414.Qing, Y., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., Liu, H., & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 13, 3311–3327. https://doi.org/10.2147/IJN.S16512Ragauskas, A. J. (2006). The Path Forward for Biofuels and Biomaterials. Science, 311(5760), 484–489. https://doi.org/10.1126/science.1114736Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/https://doi.org/10.1016/j.biotechadv.2008.09.002Requejo Leal, S. (2011). Degradación química de madera y PET reciclado y su aplicación en la síntesis de resinas de poliéster. Universidad Autónoma de Nuevo León.Rossi, G. (1990). Biohydrometallurgy. McGraw-Hill.Sabiiti, E. (2011). Utilising agricultural waste to enhance food security and conserve the environment | Sabiiti | African Journal of Food, Agriculture, Nutrition and Development. African Journal of Food, Agriculture, Nutrition and Development JOURNAL HOME ABOUT THIS JOURNAL ADVANCED SEARCH CURRENT ISSUE ARCHIVES, 11(6). https://www.ajol.info/index.php/ajfand/article/view/72668Salomoni, R., Léo, P., Montemor, A. F., Rinaldi, B. G., & Rodrigues, M. (2017). Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, Science and Applications, 10, 115–121. https://doi.org/10.2147/NSA.S133415Sant Joan de Déu Barcelona - Hospital. (2016, March 10). Consecuencias de una infección por E. coli. https://faros.hsjdbcn.org/es/articulo/consecuencias-infeccion-coliSarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation - A critical review. Chemosphere, 158, 37–49. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.05.043Servicio Geológico Colombiano, Medina Hernández, P., & Mejía Silva, M. T. (n.d.). Monografía de la Plata (Ag). Retrieved March 31, 2019, from https://www.sgm.gob.mx/Web/MuseoVirtual/pdfs/Monografia PLATA.pdfShankar, S., & Rhim, J.-W. (2017). Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids, 71, 76–84. https://doi.org/https://doi.org/10.1016/j.foodhyd.2017.05.002Shelley, T., & Sarret Grau, J. (2006). Nanotecnología : nuevas promesas, nuevos peligros. El Viejo Topo.Singh, C. K., Kumar, A., & Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports, 8(1), 2913. https://doi.org/10.1038/s41598-018-21326-9Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure. http://www.nrel.gov/biomass/analytical_procedures.htmlSociedad Andaluza de Enfermedades Infecciosas. (n.d.). La infección por el VIH. Guía práctica (2nd ed.). Gráficas Monterreina.Soriano, L. M., Zougagh, M., Valcárcel, M., & Ríos, Á. (2018). Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta, 177, 104–121. https://doi.org/10.1016/j.talanta.2017.09.012Struthers, K. (2018). Microbiología clínica. Editorial El Manual Moderno. http://ebookcentral.proquest.com/lib/bibliotecaustasp/detail.action?docID=5635082Sun, S., Yu, Q., Li, M., Zhao, H., & Wu, C. (2019). Preparation of coffee-shell activated carbon and its application for water vapor adsorption. Renewable Energy, 142, 11–19. https://doi.org/10.1016/j.renene.2019.04.097Takeuchi, N. (2010). Nanociencia y nanotecnología. FCE - Fondo de Cultura Económica.Tejada-Tovar, C., Villabona-Ortíz, Á., & Garcés-Jaraba, L. (2015). Adsorción de Metales Pesados en Agua Residuales Usando Materiales de Origen Biológico. Tecno Lógicas, 18(34), 109–123.Terra Green. (2019). Global Waste — Solvable Problem as a Renewable Energy Resource. https://medium.com/@support_61820/global-waste-solvable-problem-as-a-renewable-energy-resource-5d8f05cc1a7dThe University of Texas at Austin. (n.d.). What is nanoscience? Retrieved February 9, 2020, from https://tmi.utexas.edu/resources/what-is-nanoscience/Torgeson, D. (2012). Fungicides. Elsevier.Torres Acosta, L., Mendieta, I., Hernández, G., Núñez, R., & Castaño, V. (2011). Citotoxicidad y genotoxicidad de AgNPs para disminuir la adherencia de Candida Albicans en prótesis dentales.USEPA. (2019). National Primary Drinking Water Regulations. United States Environmental Protection Agency. https://www.mallard-inc.com/wp-content/uploads/2019/05/Drinking-Water-Standards.pdfVolesky, B. (2003). Sorption and Biosorption.Volesky, B. (2007). Biosorption and me. Water Research, 41(18), 4017–4029. https://doi.org/10.1016/j.watres.2007.05.062Vullo, D. (2003). Microorganismos y metales pesados: Una interacción en beneficio del medio ambiente. Quíimica Viva, 2(3).Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5), 427–451. https://doi.org/https://doi.org/10.1016/j.biotechadv.2006.03.001Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002WHO. (n.d.). Water. Retrieved January 28, 2020, from https://www.who.int/topics/water/en/WHO. (2011). Guidelines for drinking-water quality. World Health Organization, 216.WHO. (2018). Progress on Drinking Water, Sanitation and Hygiene. World Health Organization.Xia, J., Duan, Q.-Y., Luo, Y., Xie, Z.-H., Liu, Z.-Y., & Mo, X.-G. (2017). Climate change and water resources: Case study of Eastern Monsoon Region of China. Advances in Climate Change Research, 8(2), 63–67. https://doi.org/https://doi.org/10.1016/j.accre.2017.03.007Xu, P., Zeng, G. M., Huang, D. L., Lai, C., Zhao, M. H., Wei, Z., Li, N. J., Huang, C., & Xie, G. X. (2012). Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chemical Engineering Journal, 203, 423–431. https://doi.org/https://doi.org/10.1016/j.cej.2012.07.048Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. https://doi.org/10.1016/j.fuel.2006.12.013Yao, L., Ye, Z., Tong, M., Lai, P., & Ni, J. (2009). Removal of Cr3+ from aqueous solution by biosorption with aerobic granules. Journal of Hazardous Materials, 165(1), 250–255. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.09.110Ye, J., Yin, H., Mai, B., Peng, H., Qin, H., He, B., & Zhang, N. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technology, 101(11), 3893–3902. https://doi.org/https://doi.org/10.1016/j.biortech.2010.01.014Zanella, R. (2012). Metodologías para la síntesis de nanopartículas. Mundo Nano, 5(1).Zanella, R., Giorgio, S., Henry, C. R., & Louis, C. (2002). Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2. The Journal of Physical Chemistry B, 106(31), 7634–7642. https://doi.org/10.1021/jp0144810Zhang, H. (2014). Biosorption of heavy metals from aqueous solutions using keratin biomaterials [Universitat Autònoma de Barcelona]. https://www.tdx.cat/handle/10803/284239Zhu, Z., Gao, C., Wu, Y., Sun, L., Huang, X., Ran, W., & Shen, Q. (2013). Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite. Bioresource Technology, 147, 378–386. https://doi.org/https://doi.org/10.1016/j.biortech.2013.08.049THUMBNAIL2020GuevaraDaniel.pdf.jpg2020GuevaraDaniel.pdf.jpgGenerated Thumbnailimage/jpeg2849https://repository.usta.edu.co/bitstream/11634/28803/11/2020GuevaraDaniel.pdf.jpgf38fac0b6fc94efd7bc246e65576b5caMD511open access2020GuevaraDaniel1.pdf.jpg2020GuevaraDaniel1.pdf.jpgGenerated Thumbnailimage/jpeg3961https://repository.usta.edu.co/bitstream/11634/28803/12/2020GuevaraDaniel1.pdf.jpgc3f63a350b43ad415872bff167f44cbfMD512open access2020GuevaraDaniel2.pdf.jpg2020GuevaraDaniel2.pdf.jpgGenerated Thumbnailimage/jpeg5435https://repository.usta.edu.co/bitstream/11634/28803/13/2020GuevaraDaniel2.pdf.jpg5a9eadadf6ab4e2e38308f5a6bd1c517MD513open accessORIGINAL2020GuevaraDaniel.pdf2020GuevaraDaniel.pdfTrabajo de gradoapplication/pdf3358618https://repository.usta.edu.co/bitstream/11634/28803/6/2020GuevaraDaniel.pdf810ffd626f355fc01b2e183582d8d6a9MD56metadata only access2020GuevaraDaniel1.pdf2020GuevaraDaniel1.pdfAprobación facultadapplication/pdf208716https://repository.usta.edu.co/bitstream/11634/28803/7/2020GuevaraDaniel1.pdf3b95db058e80a1d053a45575d8d93a64MD57metadata only access2020GuevaraDaniel2.pdf2020GuevaraDaniel2.pdfAcuerdo de confidencialidadapplication/pdf116669https://repository.usta.edu.co/bitstream/11634/28803/8/2020GuevaraDaniel2.pdf9bfbffa8c172a50a56ddee6ebe422328MD58metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/28803/9/license_rdf217700a34da79ed616c2feb68d4c5e06MD59open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/28803/10/license.txtaedeaf396fcd827b537c73d23464fc27MD510open access11634/28803oai:repository.usta.edu.co:11634/288032022-10-10 14:46:19.448metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K