Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacional
En la búsqueda de fuentes renovables, la tecnología hidrocinética es una buena alternativa de generación que aprovecha la energía de movimiento del agua mediante el uso de turbinas hidrocinéticas. La turbina Savonius, es una turbina de eje vertical que utiliza esta tecnología para producir energía e...
- Autores:
-
Chacón Gil, Karen Lorena
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/15655
- Acceso en línea:
- http://hdl.handle.net/11634/15655
- Palabra clave:
- hydrokinetic technology
Savonius rotor
methodology
performance
CFD
Turbines
Turbinas
tecnología hidrocinética
rotor Savonius
metodología
desempeño
CFD
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_831a516b87fbd3f9ca54577628ee03c2 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/15655 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacional |
title |
Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacional |
spellingShingle |
Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacional hydrokinetic technology Savonius rotor methodology performance CFD Turbines Turbinas tecnología hidrocinética rotor Savonius metodología desempeño CFD |
title_short |
Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacional |
title_full |
Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacional |
title_fullStr |
Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacional |
title_full_unstemmed |
Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacional |
title_sort |
Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacional |
dc.creator.fl_str_mv |
Chacón Gil, Karen Lorena |
dc.contributor.advisor.spa.fl_str_mv |
López Vaca, Oscar Rodrigo Ramírez Pastran, Jesús Antonio |
dc.contributor.author.spa.fl_str_mv |
Chacón Gil, Karen Lorena |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.es/citations?user=V0oEE7cAAAAJ&hl=es |
dc.contributor.cvlac.spa.fl_str_mv |
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000531359 http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001585933 |
dc.subject.keyword.spa.fl_str_mv |
hydrokinetic technology Savonius rotor methodology performance CFD Turbines |
topic |
hydrokinetic technology Savonius rotor methodology performance CFD Turbines Turbinas tecnología hidrocinética rotor Savonius metodología desempeño CFD |
dc.subject.lemb.spa.fl_str_mv |
Turbinas |
dc.subject.proposal.spa.fl_str_mv |
tecnología hidrocinética rotor Savonius metodología desempeño CFD |
description |
En la búsqueda de fuentes renovables, la tecnología hidrocinética es una buena alternativa de generación que aprovecha la energía de movimiento del agua mediante el uso de turbinas hidrocinéticas. La turbina Savonius, es una turbina de eje vertical que utiliza esta tecnología para producir energía eléctrica a pequeña escala, pero no es tan popular debido a su bajo desempeño. Ya que en la actualidad las investigaciones se han centrado en mejorar el desempeño de estas turbinas, en este trabajo se desarrolló una metodología para predecir el coeficiente de desempeño de una turbina Savonius de perfil helicoidal mediante el uso de dinámica de fluidos computacional (CFD). El presente estudio se divide en dos partes, la primera es una revisión conceptual de la tecnología hidrocinética y de los parámetros de diseño que afectan el desempeño de una turbina tipo Savonius; mientras que la segunda parte es la descripción de las etapas del modelo computacional: Pre-procesamiento, cálculo de la solución y post-procesamiento. Se encontró que el coeficiente de desempeño (Cp.) para una turbina tipo Savonius helicoidal es de 0.135 con un ángulo de torsión de 12.5° para un TSR de 0.9 a una velocidad de corriente de 2 m/s. |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-02-21T14:15:38Z |
dc.date.available.spa.fl_str_mv |
2019-02-21T14:15:38Z |
dc.date.issued.spa.fl_str_mv |
2019-01-21 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Chacón Gil Karen Lorena. (2019). Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo savonius utilizando dinámica de fluidos computacional |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/15655 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Chacón Gil Karen Lorena. (2019). Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo savonius utilizando dinámica de fluidos computacional reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/15655 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
J. Vicente, H. Antonio, and A. Prisco, “A review on the performance of Savonius wind turbines,” vol. 16, pp. 3054–3064, 2012 H. J. Vermaak, K. Kusakana, and S. P. Koko, “Status of micro-hydrokinetic river technology in rural applications : A review of literature,” vol. 29, pp. 625–633, 2014 M. Anyi and B. Kirke, “Energy for Sustainable Development Evaluation of small axial fl ow hydrokinetic turbines for remote communities,” vol. 14, pp. 110–116, 2010 M. S. Güney and K. Kaygusuz, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 2996–3004, 2010 M. S. Guney, “Evaluation and measures to increase performance coefficient of hydrokinetic turbines,” vol. 15, pp. 3669–3675, 2011 N. D. Laws and B. P. Epps, “Hydrokinetic energy conversion: Technology, research, and outlook,” Renew. Sustain. Energy Rev., vol. 57, pp. 1245–1259, 2016 M. I. Yuce and A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, 2015 A. Kumar and R. P. Saini, “Performance parameters of Savonius type hydrokinetic turbine - A Review,” Renew. Sustain. Energy Rev., vol. 64, pp. 289–310, 2016 N. K. Sarma, A. Biswas, and R. D. Misra, “Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power,” Energy Convers. Manag., vol. 83, pp. 88–98, 2014 R. H. Van Els and A. C. P. B. Junior, “The Brazilian Experience with Hydrokinetic Turbines,” Energy Procedia, vol. 75, pp. 259–264, 2015 L. L. Ladokun, B. F. Sule, K. R. Ajao, and A. G. Adeogun, “Resource assessment and feasibility study for the generation of hydrokinetic power in the tailwaters of selected hydropower stations in Nigeria,” Water Sci., no. 2017, 2018 M. N. I. Khan, M. Tariq Iqbal, M. Hinchey, and V. Masek, “Performance of savonius rotor as a water current turbine,” J. Ocean Technol., vol. 4, no. 2, pp. 71–83, 2009 W. Tian, Z. Mao, and H. Ding, “Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine,” Int. J. Nav. Archit. Ocean Eng., vol. 10, no. 6, pp. 782–793, 2018 V. Ramos and G. Iglesias, “Performance assessment of Tidal Stream Turbines: A parametric approach,” Energy Convers. Manag., vol. 69, pp. 49–57, 2013 V. Kumar and S. Sarkar, “Performance Analysis of Darrieus Hydrokinetic Turbine,” Shibayan Sarkar Int. J. Eng. Technol. Sci. Res. IJETSR www.ijetsr.com ISSN, vol. 5, no. 3, pp. 2394–3386, 2018 N. K. Sarma, A. Biswas, and R. D. Misra, “Experimental and CFD Analyses of Two Bladed Savonius Water Turbine Under Low Velocity Conditions,” 2014 J. J. A. Lopes, J. R. P. Vaz, A. L. A. Mesquita, A. L. A. Mesquita, and C. J. C. Blanco, “An Approach for the Dynamic Behavior of Hydrokinetic Turbines,” Energy Procedia, vol. 75, pp. 271–276, 2015 Y. Chen, B. Lin, J. Lin, and S. Wang, “Experimental study of wake structure behind a horizontal axis tidal stream turbine,” Appl. Energy, vol. 196, pp. 82–96, 2017 M. NAKAJIMA, S. IIO, and T. IKEDA, “Performance of Savonius Rotor for Environmentally Friendly Hydraulic Turbine,” J. Fluid Sci. Technol., vol. 3, no. 3, pp. 420–429, 2008 N. K. Sarma, A. Biswas, and R. D. Misra, “Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power,” Energy Convers. Manag., vol. 83, pp. 88–98, 2014 P. K. Talukdar, A. Sardar, V. Kulkarni, and U. K. Saha, “Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations,” Energy Convers. Manag., vol. 158, no. January, pp. 36–49, 2018 B. D. Altan and M. Atilgan, “A study on increasing the performance of Savonius wind rotors,” J. Mech. Sci. Technol., vol. 26, no. 5, pp. 1493–1499, 2012 F. Behrouzi, M. Nakisa, A. Maimun, and Y. M. Ahmed, “Global renewable energy and its potential in Malaysia : A review of Hydrokinetic turbine technology,” vol. 62, pp. 1270–1281, 2016 H. H. Al-Kayiem, B. A. Bhayo, and M. Assadi, “Comparative critique on the design parameters and their effect on the performance of S-rotors,” Renew. Energy, vol. 99, pp. 1306–1317, 2016 M. J. Khan, G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe, “Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review,” Appl. Energy, vol. 86, no. 10, pp. 1823–1835, 2009 Z. Zhou, F. Scuiller, J. F. Charpentier, M. Benbouzid, and T. Tang, “An up-to-date review of large marine tidal current turbine technologies,” Proc. - 2014 Int. Power Electron. Appl. Conf. Expo. IEEE PEAC 2014, pp. 480–484, 2014 L. Pham and S. Member, “Riverine Hydrokinetic Technology : A Review,” Oregon Tech - Ree516 Term Pap., pp. 1–6, 2014 G. Kailash, T. I. Eldho, and S. V. Prabhu, “Performance study of modified savonius water turbine with two deflector plates,” Int. J. Rotating Mach., vol. 2012, 2012 M. Zemamou, M. Aggour, and A. Toumi, “Review of savonius wind turbine design and performance,” Energy Procedia, vol. 141, pp. 383–388, 2017 Kamoji M., Kedare S., and S. Prabhu, “Experimental investigations on single stage, two stage and three stage conventional {S}avonius rotor,” Int. J. Energy Res., vol. 32, no. 10, pp. 877–895, Aug. 2008 B. D. Altan and M. Atılgan, “An experimental and numerical study on the improvement of the performance of Savonius wind rotor,” vol. 49, pp. 3425–3432, 2010 A. Damak, Z. Driss, and M. S. Abid, “Experimental investigation of helical Savonius rotor with a twist of 180°,” Renew. Energy, vol. 52, pp. 136–142, 2013 J. Tu, G. H. Yeoh, and C. Liu, “Chapter 2 - CFD Solution Procedure—A Beginning,” in Computational Fluid Dynamics, Butterworth-Heinemann, Ed. Burlington, 2008, pp. 29–64 Y. F. Wang and M. S. Zhan, “3-Dimensional CFD simulation and analysis on performance of a micro-wind turbine resembling lotus in shape,” Energy Build., vol. 65, pp. 66–74, 2013 A. Lozano. D, “Capitulo 2: Apuntes sobre dinámica de fluidos computaciones.” pp. 20–45, 2015 A. Kumar and R. P. Saini, “Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades,” Renew. Energy, vol. 113, pp. 461–478, 2017. T. C. J. Rs. F. K. E. Laurendeau and Computational, Computational Fluid Dynamics for Engineers. 2005 J. A. Capote, D. Alvear, O. V Abreu, M. Lázaro, and P. Espina, “Influencia del modelo de turbulencia y del refinamiento de la discretización espacial en la exactitud de las simulaciones computacionales de incendios,” Rev. Int. Mét. Num. Cálc. Dis. Ing, vol. 24, no. 3, pp. 227–245, 2008 “ANSYS FLUENT 12.0 Theory Guide - 16.5.11 Turbulence Models.” [Online]. Available: http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node330.htm. [Accessed: 06-Nov-2018] M. H. Mohamed, A. M. Ali, and A. A. Hafiz, “CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter,” Engineering Science and Technology, an International Journal, vol. 18, no. 1, pp. 1–13, 2015 |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Mecánica |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/15655/1/2019_KarenChac%c3%b3n%20.pdf https://repository.usta.edu.co/bitstream/11634/15655/2/Carta%20aprobaci%c3%b3n.pdf https://repository.usta.edu.co/bitstream/11634/15655/3/Carta%20Derechos%20de%20Autor.pdf https://repository.usta.edu.co/bitstream/11634/15655/4/license.txt https://repository.usta.edu.co/bitstream/11634/15655/5/2019_KarenChac%c3%b3n%20.pdf.jpg https://repository.usta.edu.co/bitstream/11634/15655/6/Carta%20aprobaci%c3%b3n.pdf.jpg https://repository.usta.edu.co/bitstream/11634/15655/7/Carta%20Derechos%20de%20Autor.pdf.jpg |
bitstream.checksum.fl_str_mv |
5bbc33fc4bd49d2904d20386e73e65d8 792acb0d382189efc12d2432bb3260a5 f8506429cd9b1a56774fde41f3d5744c f6b8c5608fa6b2f649b2d63e10c5fa73 f139e0eeb42705a10bcdbe1670366b63 eae6fb0d9cbaf0bfbb4e60bb3e84e1c1 75ad7cb0c12f0fd8c4731595262a16c3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026207226757120 |
spelling |
López Vaca, Oscar RodrigoRamírez Pastran, Jesús AntonioChacón Gil, Karen Lorenahttps://scholar.google.es/citations?user=V0oEE7cAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000531359http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00015859332019-02-21T14:15:38Z2019-02-21T14:15:38Z2019-01-21Chacón Gil Karen Lorena. (2019). Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo savonius utilizando dinámica de fluidos computacionalhttp://hdl.handle.net/11634/15655reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn la búsqueda de fuentes renovables, la tecnología hidrocinética es una buena alternativa de generación que aprovecha la energía de movimiento del agua mediante el uso de turbinas hidrocinéticas. La turbina Savonius, es una turbina de eje vertical que utiliza esta tecnología para producir energía eléctrica a pequeña escala, pero no es tan popular debido a su bajo desempeño. Ya que en la actualidad las investigaciones se han centrado en mejorar el desempeño de estas turbinas, en este trabajo se desarrolló una metodología para predecir el coeficiente de desempeño de una turbina Savonius de perfil helicoidal mediante el uso de dinámica de fluidos computacional (CFD). El presente estudio se divide en dos partes, la primera es una revisión conceptual de la tecnología hidrocinética y de los parámetros de diseño que afectan el desempeño de una turbina tipo Savonius; mientras que la segunda parte es la descripción de las etapas del modelo computacional: Pre-procesamiento, cálculo de la solución y post-procesamiento. Se encontró que el coeficiente de desempeño (Cp.) para una turbina tipo Savonius helicoidal es de 0.135 con un ángulo de torsión de 12.5° para un TSR de 0.9 a una velocidad de corriente de 2 m/s.In search of renewable sources, hydrokinetic technology is a good generation alternative which takes advantage of water movement using hydrokinetic turbines. Savonius turbine, is a vertical shaft axis turbine that uses this technology to produce electricity in small scale, but it is not so popular due to its low performance. Nowadays, searches have been focused on improve the performance of these turbines, that is the reason why in this research a methodology was developed to predict the coefficient of performance for a helical profile Savonius turbine by using computational fluid dynamics (CFD). This research is divided in two parts, the first is a review about hydrokinetic technology and the design parameters that affect Savonius turbine performance; On the other hand, the second part is a description of computational model stages: Pre-processing, Calculation of solution and Post-processing. It was found that coefficient of performance (Cp) for a helical Savonius turbine is 0.135 with torsion angle of 12.5° for a TSR of 0.9 at a current speed of 2 m/s.Ingeniero Mecánicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería MecánicaFacultad de Ingeniería MecánicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacionalhydrokinetic technologySavonius rotormethodologyperformanceCFDTurbinesTurbinastecnología hidrocinéticarotor SavoniusmetodologíadesempeñoCFDTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáJ. Vicente, H. Antonio, and A. Prisco, “A review on the performance of Savonius wind turbines,” vol. 16, pp. 3054–3064, 2012H. J. Vermaak, K. Kusakana, and S. P. Koko, “Status of micro-hydrokinetic river technology in rural applications : A review of literature,” vol. 29, pp. 625–633, 2014M. Anyi and B. Kirke, “Energy for Sustainable Development Evaluation of small axial fl ow hydrokinetic turbines for remote communities,” vol. 14, pp. 110–116, 2010M. S. Güney and K. Kaygusuz, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 2996–3004, 2010M. S. Guney, “Evaluation and measures to increase performance coefficient of hydrokinetic turbines,” vol. 15, pp. 3669–3675, 2011N. D. Laws and B. P. Epps, “Hydrokinetic energy conversion: Technology, research, and outlook,” Renew. Sustain. Energy Rev., vol. 57, pp. 1245–1259, 2016M. I. Yuce and A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, 2015A. Kumar and R. P. Saini, “Performance parameters of Savonius type hydrokinetic turbine - A Review,” Renew. Sustain. Energy Rev., vol. 64, pp. 289–310, 2016N. K. Sarma, A. Biswas, and R. D. Misra, “Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power,” Energy Convers. Manag., vol. 83, pp. 88–98, 2014R. H. Van Els and A. C. P. B. Junior, “The Brazilian Experience with Hydrokinetic Turbines,” Energy Procedia, vol. 75, pp. 259–264, 2015L. L. Ladokun, B. F. Sule, K. R. Ajao, and A. G. Adeogun, “Resource assessment and feasibility study for the generation of hydrokinetic power in the tailwaters of selected hydropower stations in Nigeria,” Water Sci., no. 2017, 2018M. N. I. Khan, M. Tariq Iqbal, M. Hinchey, and V. Masek, “Performance of savonius rotor as a water current turbine,” J. Ocean Technol., vol. 4, no. 2, pp. 71–83, 2009W. Tian, Z. Mao, and H. Ding, “Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine,” Int. J. Nav. Archit. Ocean Eng., vol. 10, no. 6, pp. 782–793, 2018V. Ramos and G. Iglesias, “Performance assessment of Tidal Stream Turbines: A parametric approach,” Energy Convers. Manag., vol. 69, pp. 49–57, 2013V. Kumar and S. Sarkar, “Performance Analysis of Darrieus Hydrokinetic Turbine,” Shibayan Sarkar Int. J. Eng. Technol. Sci. Res. IJETSR www.ijetsr.com ISSN, vol. 5, no. 3, pp. 2394–3386, 2018N. K. Sarma, A. Biswas, and R. D. Misra, “Experimental and CFD Analyses of Two Bladed Savonius Water Turbine Under Low Velocity Conditions,” 2014J. J. A. Lopes, J. R. P. Vaz, A. L. A. Mesquita, A. L. A. Mesquita, and C. J. C. Blanco, “An Approach for the Dynamic Behavior of Hydrokinetic Turbines,” Energy Procedia, vol. 75, pp. 271–276, 2015Y. Chen, B. Lin, J. Lin, and S. Wang, “Experimental study of wake structure behind a horizontal axis tidal stream turbine,” Appl. Energy, vol. 196, pp. 82–96, 2017M. NAKAJIMA, S. IIO, and T. IKEDA, “Performance of Savonius Rotor for Environmentally Friendly Hydraulic Turbine,” J. Fluid Sci. Technol., vol. 3, no. 3, pp. 420–429, 2008N. K. Sarma, A. Biswas, and R. D. Misra, “Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power,” Energy Convers. Manag., vol. 83, pp. 88–98, 2014P. K. Talukdar, A. Sardar, V. Kulkarni, and U. K. Saha, “Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations,” Energy Convers. Manag., vol. 158, no. January, pp. 36–49, 2018B. D. Altan and M. Atilgan, “A study on increasing the performance of Savonius wind rotors,” J. Mech. Sci. Technol., vol. 26, no. 5, pp. 1493–1499, 2012F. Behrouzi, M. Nakisa, A. Maimun, and Y. M. Ahmed, “Global renewable energy and its potential in Malaysia : A review of Hydrokinetic turbine technology,” vol. 62, pp. 1270–1281, 2016H. H. Al-Kayiem, B. A. Bhayo, and M. Assadi, “Comparative critique on the design parameters and their effect on the performance of S-rotors,” Renew. Energy, vol. 99, pp. 1306–1317, 2016M. J. Khan, G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe, “Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review,” Appl. Energy, vol. 86, no. 10, pp. 1823–1835, 2009Z. Zhou, F. Scuiller, J. F. Charpentier, M. Benbouzid, and T. Tang, “An up-to-date review of large marine tidal current turbine technologies,” Proc. - 2014 Int. Power Electron. Appl. Conf. Expo. IEEE PEAC 2014, pp. 480–484, 2014L. Pham and S. Member, “Riverine Hydrokinetic Technology : A Review,” Oregon Tech - Ree516 Term Pap., pp. 1–6, 2014G. Kailash, T. I. Eldho, and S. V. Prabhu, “Performance study of modified savonius water turbine with two deflector plates,” Int. J. Rotating Mach., vol. 2012, 2012M. Zemamou, M. Aggour, and A. Toumi, “Review of savonius wind turbine design and performance,” Energy Procedia, vol. 141, pp. 383–388, 2017Kamoji M., Kedare S., and S. Prabhu, “Experimental investigations on single stage, two stage and three stage conventional {S}avonius rotor,” Int. J. Energy Res., vol. 32, no. 10, pp. 877–895, Aug. 2008B. D. Altan and M. Atılgan, “An experimental and numerical study on the improvement of the performance of Savonius wind rotor,” vol. 49, pp. 3425–3432, 2010A. Damak, Z. Driss, and M. S. Abid, “Experimental investigation of helical Savonius rotor with a twist of 180°,” Renew. Energy, vol. 52, pp. 136–142, 2013J. Tu, G. H. Yeoh, and C. Liu, “Chapter 2 - CFD Solution Procedure—A Beginning,” in Computational Fluid Dynamics, Butterworth-Heinemann, Ed. Burlington, 2008, pp. 29–64Y. F. Wang and M. S. Zhan, “3-Dimensional CFD simulation and analysis on performance of a micro-wind turbine resembling lotus in shape,” Energy Build., vol. 65, pp. 66–74, 2013A. Lozano. D, “Capitulo 2: Apuntes sobre dinámica de fluidos computaciones.” pp. 20–45, 2015A. Kumar and R. P. Saini, “Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades,” Renew. Energy, vol. 113, pp. 461–478, 2017.T. C. J. Rs. F. K. E. Laurendeau and Computational, Computational Fluid Dynamics for Engineers. 2005J. A. Capote, D. Alvear, O. V Abreu, M. Lázaro, and P. Espina, “Influencia del modelo de turbulencia y del refinamiento de la discretización espacial en la exactitud de las simulaciones computacionales de incendios,” Rev. Int. Mét. Num. Cálc. Dis. Ing, vol. 24, no. 3, pp. 227–245, 2008“ANSYS FLUENT 12.0 Theory Guide - 16.5.11 Turbulence Models.” [Online]. Available: http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node330.htm. [Accessed: 06-Nov-2018]M. H. Mohamed, A. M. Ali, and A. A. Hafiz, “CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter,” Engineering Science and Technology, an International Journal, vol. 18, no. 1, pp. 1–13, 2015ORIGINAL2019_KarenChacón .pdf2019_KarenChacón .pdfapplication/pdf1281926https://repository.usta.edu.co/bitstream/11634/15655/1/2019_KarenChac%c3%b3n%20.pdf5bbc33fc4bd49d2904d20386e73e65d8MD51open accessCarta aprobación.pdfCarta aprobación.pdfapplication/pdf36495https://repository.usta.edu.co/bitstream/11634/15655/2/Carta%20aprobaci%c3%b3n.pdf792acb0d382189efc12d2432bb3260a5MD52metadata only accessCarta Derechos de Autor.pdfCarta Derechos de Autor.pdfapplication/pdf395726https://repository.usta.edu.co/bitstream/11634/15655/3/Carta%20Derechos%20de%20Autor.pdff8506429cd9b1a56774fde41f3d5744cMD53metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/15655/4/license.txtf6b8c5608fa6b2f649b2d63e10c5fa73MD54open accessTHUMBNAIL2019_KarenChacón .pdf.jpg2019_KarenChacón .pdf.jpgIM Thumbnailimage/jpeg7706https://repository.usta.edu.co/bitstream/11634/15655/5/2019_KarenChac%c3%b3n%20.pdf.jpgf139e0eeb42705a10bcdbe1670366b63MD55open accessCarta aprobación.pdf.jpgCarta aprobación.pdf.jpgIM Thumbnailimage/jpeg6717https://repository.usta.edu.co/bitstream/11634/15655/6/Carta%20aprobaci%c3%b3n.pdf.jpgeae6fb0d9cbaf0bfbb4e60bb3e84e1c1MD56open accessCarta Derechos de Autor.pdf.jpgCarta Derechos de Autor.pdf.jpgIM Thumbnailimage/jpeg6669https://repository.usta.edu.co/bitstream/11634/15655/7/Carta%20Derechos%20de%20Autor.pdf.jpg75ad7cb0c12f0fd8c4731595262a16c3MD57open access11634/15655oai:repository.usta.edu.co:11634/156552022-10-10 16:15:05.091open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBIGRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhIGluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZSBncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEgTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zIG1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbiBpcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |