Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática

En los últimos años, ha tenido gran relevancia el uso de nuevos materiales como las nanopartículas (NPs) de óxido de grafeno (GO) en la fabricación de fibras poliméricas compuestas obtenidas por la técnica de electrospinning a escala micro y nanométricas para aplicaciones en la eliminación de microo...

Full description

Autores:
Torres Becerra, Daniela Astrid
Sandoval Acuña, Leydi Johana
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/33354
Acceso en línea:
http://hdl.handle.net/11634/33354
Palabra clave:
Graphene oxide
Electrospinning
Nanofibers
Microorganisms
Polymers
Composite materials
óxido de grafeno
Electrospinning
Nanofibras
Microorganismos
Polímeros
Materiales compuestos
Rights
openAccess
License
CC0 1.0 Universal
id SANTTOMAS2_7dca9e5357b65a951372b6126e1463ad
oai_identifier_str oai:repository.usta.edu.co:11634/33354
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática
title Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática
spellingShingle Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática
Graphene oxide
Electrospinning
Nanofibers
Microorganisms
Polymers
Composite materials
óxido de grafeno
Electrospinning
Nanofibras
Microorganismos
Polímeros
Materiales compuestos
title_short Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática
title_full Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática
title_fullStr Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática
title_full_unstemmed Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática
title_sort Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática
dc.creator.fl_str_mv Torres Becerra, Daniela Astrid
Sandoval Acuña, Leydi Johana
dc.contributor.advisor.none.fl_str_mv Sánchez Cepeda, Ángela Patricia
Sáchica Castillo, Ever Humberto
Montes Malagón, Luz Amanda
Segura Peña, Sully
dc.contributor.author.none.fl_str_mv Torres Becerra, Daniela Astrid
Sandoval Acuña, Leydi Johana
dc.subject.keyword.spa.fl_str_mv Graphene oxide
Electrospinning
Nanofibers
Microorganisms
Polymers
Composite materials
topic Graphene oxide
Electrospinning
Nanofibers
Microorganisms
Polymers
Composite materials
óxido de grafeno
Electrospinning
Nanofibras
Microorganismos
Polímeros
Materiales compuestos
dc.subject.proposal.spa.fl_str_mv óxido de grafeno
Electrospinning
Nanofibras
Microorganismos
Polímeros
Materiales compuestos
description En los últimos años, ha tenido gran relevancia el uso de nuevos materiales como las nanopartículas (NPs) de óxido de grafeno (GO) en la fabricación de fibras poliméricas compuestas obtenidas por la técnica de electrospinning a escala micro y nanométricas para aplicaciones en la eliminación de microorganismos presentes en el agua. En este estudio, se realizó una metodología de revisión sistemática con el uso del Software Parsifal, mediante 4 fases: planificación, búsqueda de documentos en las bases de datos, extracción de datos y análisis de datos extraídos. La investigación llevo a un total de 906 artículos donde 169 eran duplicados, quedando 737 artículos a los cuales se realizó un filtro de clasificación por exclusión e inclusión: total artículos seleccionados, aceptados, rechazados y duplicados. De acuerdo al formulario e extracción de datos se utilizaron 222 artículos dando respuesta a las preguntas de investigación que se plantearon en esta revisión sistemática. El desarrollo de esta investigación condujo a la identificación de las propiedades de NPs de GO como agentes biocidas de dos casos de estudio de membranas poliméricas desnudas o puras, (matriz polimérica), las cuales fueron modificadas de la siguiente forma: caso 1, membranas de microfiltración (MF) de poliacrilonitrilo (PAN) modificadas con NPs de plata/oxido de grafeno (Ag/GO) vs membranas de Poli (ácido láctico)/poliacrilonitrilo (PLA/PAN) modificadas con nanocristales de celulosa (NCC) y nanocristales de quitina (NCQ). Para el estudio del caso 2, las membranas de MF de Poli (fluoruro de vinilideno) (PVDF) modificadas con NPs de GO vs membranas de Policaprolactama también llamada (poliamida 6) (PA-6) modificadas con NPs de dióxido de titanio (TiO2). Como resultado a estos dos casos de estudio , para el caso 1 , las NPs de Ag/GO vs NCC y NCQ tuvieron una excelente actividad antibacteriana y antiincrustante con una efectividad en la eliminación de microorganismos con las NPs de Ag/GO y una tasa de reducción del 100% para la E. coli y un 87.6 % para el S. aureus, en comparación con los NCQ y NCC, la efectividad en la eliminación bacteriana con los dos nanocristales fue de un 85% para la E. coli por exclusión de tamaño y un 95% con el uso de NCQ. Para el estudio del caso 2, las membranas de MF de (PVDF) modificadas con NPs de GO vs membranas de PA-6 modificadas con NPs de (TiO2), la respuesta fue una tasa de reducción de bacterias con el uso de las NPs de GO en un 100% para la E. coli y un 99% para el S. aureus y con las NPs de TiO2 fue de un 99.99% para el S. aureus después de 6 h de exposición a rayos UV.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-04-09T21:30:49Z
dc.date.available.none.fl_str_mv 2021-04-09T21:30:49Z
dc.date.issued.none.fl_str_mv 2021-04-07
dc.type.none.fl_str_mv bachelor thesis
dc.type.local.spa.fl_str_mv Tesis de pregrado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Torres, D. Sandoval, L. (2021). Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática. Tesis de pregrado, Universidad Santo Tomás, Tunja.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/33354
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Torres, D. Sandoval, L. (2021). Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática. Tesis de pregrado, Universidad Santo Tomás, Tunja.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/33354
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acosta Castellanos Pedro Mauricio, C. C. (2015). Análisis de interferencia de parámetros físicos del agua, en desinfección por radiación UV. Revista de Tecnología, 105-112.
Alejo, J. C. (2011). EVALUACIÓN DE RIESGOS DE STAPHYLOCOCCUS AUREUS ENTEROTOXIGÉNICO EN ALIMENTOS PREPARADOS NO. BOGOTA: Instituto Nacional de Salud.
Araque, I. D. (2018). Diagnóstico y propuesta de fitorremediación para el tratamiento de aguas residuales, sector tierra negra. L'esprit Ingénieux, 132-140.
Cornellio, V. C. (2016). Astaxantina integrada en Nanowhiskas de Quitina: estudio de la degradacion termica. Morelia Mochoacán: privada.
Becerra, D. A., & Acuña, L. J. (2021). Montaje Electroespinning. Tunja: Propia.
Dr. D. García, F. (2017). Mapping sistemáticos de literatura. Caso práctico de planificación usando Parsifal. Mexico: Instituto de ciencias basicas.
Lina Patricia Vega and Gustavo A. Peñuela, P. (2018). High Frequency Sonochemical Degradation of Benzophenone-3 in Water. Journal of Environmental Engineering.
Abd Halim, N. S., Wirzal, M. D. H., Hizam, S. M., Bilad, M. R., Nordin, N. A. H. M., Sambudi, N. S., . . . Yusoff, A. R. M. (2020). Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. Journal of Environmental Chemical Engineering, 104613. doi:https://doi.org/10.1016/j.jece.2020.104613
Abdulla, N. K., Siddiqui, S. I., Fatima, B., Sultana, R., Tara, N., Hashmi, A. A., . . . Chaudhry, S. A. (2021). Silver based hybrid nanocomposite: A novel antibacterial material for water cleansing. Journal of Cleaner Production, 284. doi: 10.1016/j.jclepro.2020.124746
Acosta, H. A., Villada, H. S., & Prieto, P. A. (2006). Envejecimiento de almidones termoplásticos agrios de yuca y nativos de papa por microscopía de fuerza atómica. Información tecnológica, 17(3), 71-78.
Ademola Bode-Aluko, C., Pereao, O., Kyaw, H. H., Al-Naamani, L., Al-Abri, M. Z., Tay Zar Myint, M., . . . Dobretsov, S. (2021). Photocatalytic and antifouling properties of electrospun TiO2 polyacrylonitrile composite nanofibers under visible light. Materials Science and Engineering: B, 264, 114913. doi:https://doi.org/10.1016/j.mseb.2020.114913
Aghapour Aktij, S., Taghipour, A., Rahimpour, A., Mollahosseini, A., & Tiraferri, A. (2020). A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics, 108, 106228. doi:https://doi.org/10.1016/j.ultras.2020.106228
Ahire, J. J., Neveling, D. P., & Dicks, L. M. T. (2018). Polyacrylonitrile (PAN) nanofibres spun with copper nanoparticles: an anti-Escherichia coli membrane for water treatment. Applied Microbiology and Biotechnology, 102(16), 7171-7181. doi:10.1007/s00253-018-9051-0
Ahmad, A., qureshi, A. S., Li, L., Bao, J., Jia, X., Xu, Y., & Guo, X. (2016). Antibacterial activity of graphene supported FeAg bimetallic nanocomposites. Colloids and Surfaces B: Biointerfaces, 143, 490-498. doi:https://doi.org/10.1016/j.colsurfb.2016.03.065
Aijuka, M., Santiago, A. E., Girón, J. A., Nataro, J. P., & Buys, E. M. (2018). Enteroaggregative Escherichia coli is the predominant diarrheagenic E. coli pathotype among irrigation water and food sources in South Africa. International Journal of Food Microbiology, 278, 44-51. doi:https://doi.org/10.1016/j.ijfoodmicro.2018.04.018
Akhavan, O., & Ghaderi, E. (2010). Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. Acs Nano, 4(10), 5731-5736. doi:10.1021/nn101390x
Al Aani, S., Mustafa, T. N., & Hilal, N. (2020). Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. Journal of Water Process Engineering, 35, 101241. doi:https://doi.org/10.1016/j.jwpe.2020.101241
ALDANA, A. S., SANDOVAL, E. R., & QUINTERO, A. F. (2005). Aplicación del análisis por calorimetría diferencial de barrido (DSC) para la caracterización de las modificaciones del almidón. Dyna, 72(146), 45-53.
Alejo, J., Cortes, M, Correa, D, Cebeiro, K Herrera, J. (2011). EVALUACIÓN DE RIESGOS DE STAPHYLOCOCCUS AUREUS ENTEROTOXIGÉNICO EN ALIMENTOS PREPARADOS NO. BOGOTA: Instituto Nacional de Salud.
Amiri, S., Asghari, A., Vatanpour, V., & Rajabi, M. (2020). Fabrication and characterization of a novel polyvinyl alcohol-graphene oxide-sodium alginate nanocomposite hydrogel blended PES nanofiltration membrane for improved water purification. Separation and Purification Technology, 250, 117216. doi:https://doi.org/10.1016/j.seppur.2020.117216
Angel, N., Guo, L., Yan, F., Wang, H., & Kong, L. (2020). Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology. Journal of Agriculture and Food Research, 2, 100015. doi:https://doi.org/10.1016/j.jafr.2019.100015
Anis, S. F., Hashaikeh, R., & Hilal, N. (2019). Microfiltration membrane processes: A review of research trends over the past decade. Journal of Water Process Engineering, 32, 100941. doi:https://doi.org/10.1016/j.jwpe.2019.100941
Arenas, G. N., & Cañas, L. A. (2007). Procedimiento para medir ángulos de contacto en sólidos particulados finos. Scientia et technica, 1(36).
Ashfaq, M. Y., Al-Ghouti, M. A., & Zouari, N. (2020). Functionalization of reverse osmosis membrane with graphene oxide to reduce both membrane scaling and biofouling. Carbon, 166, 374-387. doi:https://doi.org/10.1016/j.carbon.2020.05.017
Azizi-Lalabadi, M., Hashemi, H., Feng, J., & Jafari, S. M. (2020). Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Advances in Colloid and Interface Science, 284, 102250. doi:https://doi.org/10.1016/j.cis.2020.102250
Bao, Q., Zhang, D., & Qi, P. (2011). Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Journal of Colloid and Interface Science, 360(2), 463-470. doi:10.1016/j.jcis.2011.05.009
Bao, Q., Zhang, D., & Qi, P. (2011). Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Journal of Colloid and Interface Science, 360(2), 463-470. doi:10.1016/j.jcis.2011.05.009
Barani, M., Bazgir, S., Keyvan Hosseini, M., & Keyvan Hosseini, P. (2021). Eco-facile application of electrospun nanofibers to the oil-water emulsion separation via coalescing filtration in pilot- scale and beyond. Process Safety and Environmental Protection, 148, 342-357. doi:https://doi.org/10.1016/j.psep.2020.10.015
Barco-Bonilla, N., Romero-González, R., Plaza-Bolaños, P., Garrido Frenich, A., & Martínez Vidal, J. L. (2010). Analysis and study of the distribution of polar and non-polar pesticides in wastewater effluents from modern and conventional treatments. Journal of Chromatography A, 1217(50), 7817-7825. doi:https://doi.org/10.1016/j.chroma.2010.10.011
Barua, B., & Saha, M. C. (2015). Investigation on jet stability, fiber diameter, and tensile properties of electrospun polyacrylonitrile nanofibrous yarns. Journal of Applied Polymer Science, 132(18). doi:10.1002/app.41918
Bassyouni, M., Abdel-Aziz, M. H., Zoromba, M. S., Abdel-Hamid, S. M. S., & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification. Journal of Industrial and Engineering Chemistry, 73, 19-46. doi:https://doi.org/10.1016/j.jiec.2019.01.045
Becerra, D. A. T., & Acuña, L. J. S. (2021). Montaje Electroespinning. Retrieved from Tunja:
Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A., & Mameri, N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29(1), 48-56. doi:10.1016/j.foodhyd.2012.02.013
Bhoj, Y., Tharmavaram, M., & Rawtani, D. (2020). A comprehensive approach to antifouling strategies in desalination, marine environment, and wastewater treatment. Chemical Physics Impact, 100008. doi:https://doi.org/10.1016/j.chphi.2020.100008
Bjorge, D., Daels, N., De Vrieze, S., Dejans, P., Van Camp, T., Audenaert, W., . . . Van Hulle, S. W. H. (2009). Performance assessment of electrospun nanofibers for filter applications. Desalination, 249(3), 942-948. doi:https://doi.org/10.1016/j.desal.2009.06.064
Buruga, K., Song, H., Shang, J., Bolan, N., Jagannathan, T. K., & Kim, K.-H. (2019). A review on functional polymer-clay based nanocomposite membranes for treatment of water. Journal of Hazardous Materials, 379, 120584. doi:https://doi.org/10.1016/j.jhazmat.2019.04.067
Cassano, A., & Basile, A. (2013). 7 - Integrating different membrane operations and combining membranes with conventional separation techniques in industrial processes. In A. Basile (Ed.), Handbook of Membrane Reactors (Vol. 2, pp. 296-343): Woodhead Publishing.
Cornellio, V. C. (2016). Astaxantina integrada en Nanowhiskas de Quitina: estudio de la degradacion termica. Morelia Mochoacán: privada.
Chae, H. R., Lee, J., Lee, C. H., Kim, I. C., & Park, P. K. (2015). Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. Journal of Membrane Science, 483, 128-135. doi:10.1016/j.memsci.2015.02.045
Chakraborty, S., & Biswas, M. C. (2020). 3D printing technology of polymer-fiber composites in textile and fashion industry: A potential roadmap of concept to consumer. Composite Structures, 248, 112562. doi:https://doi.org/10.1016/j.compstruct.2020.112562
Chakraborty, S., & Biswas, M. C. (2020). 3D printing technology of polymer-fiber composites in textile and fashion industry: A potential roadmap of concept to consumer. Composite Structures, 248, 112562. doi:https://doi.org/10.1016/j.compstruct.2020.112562
Chen, H., Huang, M., Liu, Y., Meng, L., & Ma, M. (2020). Functionalized electrospun nanofiber membranes for water treatment: A review. Science of The Total Environment, 739, 139944. doi:https://doi.org/10.1016/j.scitotenv.2020.139944
Chen, H., Huang, M., Wang, Z., Gao, P., Cai, T., Song, J., . . . Meng, L. (2020). Enhancing rejection performance of tetracycline resistance genes by a TiO2/AgNPs-modified nanofiber forward osmosis membrane. Chemical Engineering Journal, 382, 123052. doi:https://doi.org/10.1016/j.cej.2019.123052
Chen, H., Ni, J., Chen, J., Xue, W., Wang, J., Na, H., & Zhu, J. (2015). Activation of corn cellulose with alcohols to improve its dissolvability in fabricating ultrafine fibers via electrospinning. Carbohydrate Polymers, 123, 174-179. doi:https://doi.org/10.1016/j.carbpol.2015.01.023
Chen, H. Q., Gao, D., Wang, B., Zhao, R. F., Guan, M., Zheng, L. N., . . . Feng, W. Y. (2014). Graphene oxide as an anaerobic membrane scaffold for the enhancement of B. adolescentis proliferation and antagonistic effects against pathogens E-coli and S-aureus. Nanotechnology, 25(16). doi:10.1088/0957-4484/25/16/165101
Chen, J., Peng, H., Wang, X., Shao, F., Yuan, Z., & Han, H. (2014). Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 6(3), 1879-1889. doi:10.1039/c3nr04941h
Daels, N., De Vrieze, S., Sampers, I., Decostere, B., Westbroek, P., Dumoulin, A., . . . Van Hulle, S. W. H. (2011). Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter. Desalination, 275(1-3), 285-290. doi:10.1016/j.desal.2011.03.012
Daels, N., Radoicic, M., Radetic, M., De Clerck, K., & Van Hulle, S. W. H. (2015). Electrospun nanofibre membranes functionalised with TiO<inf>2</inf> nanoparticles: Evaluation of humic acid and bacterial removal from polluted water. Separation and Purification Technology, 149, 488-494. doi:10.1016/j.seppur.2015.06.016
Daels, N., Radoicic, M., Radetic, M., Van Hulle, S. W. H., & De Clerck, K. (2014). Functionalisation of electrospun polymer nanofibre membranes with TiO <inf>2</inf> nanoparticles in view of dissolved organic matter photodegradation. Separation and Purification Technology, 133, 282-290. doi:10.1016/j.seppur.2014.06.040
Daghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: a review. Environmental Chemistry Letters, 11(3), 209-227. doi:10.1007/s10311-013-0404-8
Dasari, A., Quirós, J., Herrero, B., Boltes, K., García-Calvo, E., & Rosal, R. (2012). Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. Journal of Membrane Science, 405-406, 134-140. doi:https://doi.org/10.1016/j.memsci.2012.02.060
Deng, D., Aouad, W., Braff, W. A., Schlumpberger, S., Suss, M. E., & Bazant, M. Z. (2015). Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection. Desalination, 357, 77-83. doi:https://doi.org/10.1016/j.desal.2014.11.011
Dhanawade, A., Bhosle, R., Jagtap, R., & Sorate, K. A. (2020). Comparative study of lead zirconate titanate ceramic and carbon fiber reinforced polymer composite surfaces machined by abrasive water jet. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2020.10.918
Ding, W., Jin, W., Cao, S., Zhou, X., Wang, C., Jiang, Q., . . . Wang, Q. (2019). Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Research, 160, 339-349. doi:https://doi.org/10.1016/j.watres.2019.05.014
Cui, J., Li, F., Wang, Y., Zhang, Q., Ma, W., & Huang, C. (2020). Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology, 250, 117116. doi:https://doi.org/10.1016/j.seppur.2020.117116
Dong, F., Lin, Q., Li, C., Wang, L., & García, A. (2021). UV/chlorination process of algal-laden water: Algal inactivation and disinfection byproducts attenuation. Separation and Purification Technology, 257, 117896. doi:https://doi.org/10.1016/j.seppur.2020.117896
Dr. D. García, F. (2017). Mapping sistemáticos de literatura. Caso práctico de planificación usando Parsifal. Mexico: Instituto de ciencias basicas
Du, J., Li, N., Tian, Y., Zhang, J., & Zuo, W. (2020). Preparation of PVDF membrane blended with graphene oxide-zinc sulfide (GO-ZnS) nanocomposite for improving the anti-fouling property. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112694. doi:https://doi.org/10.1016/j.jphotochem.2020.112694
Dubey, S. P., Thakur, V. K., Krishnaswamy, S., Abhyankar, H. A., Marchante, V., & Brighton, J. L. (2017). Progress in environmental-friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum, 146, 655-663. doi:10.1016/j.vacuum.2017.07.009
Dwivedi, M., & Shaw, A. (2021). Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie, 182, 85-98. doi:https://doi.org/10.1016/j.biochi.2021.01.004
Esfahani, M. R., Aktij, S. A., Dabaghian, Z., Firouzjaei, M. D., Rahimpour, A., Eke, J., . . . Koutahzadeh, N. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 213, 465-499. doi:https://doi.org/10.1016/j.seppur.2018.12.050
Fahimirad, S., Fahimirad, Z., & Sillanpää, M. (2021). Efficient removal of water bacteria and viruses using electrospun nanofibers. Science of The Total Environment, 751, 141673. doi:https://doi.org/10.1016/j.scitotenv.2020.141673
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. doi:10.1016/j.addr.2016.06.012
Feng, W., Zhang, Y.-s., Shao, Y.-w., Huang, T., Zhang, N., Yang, J.-h., . . . Wang, Y. (2021). Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles. European Polymer Journal, 145, 110245. doi:https://doi.org/10.1016/j.eurpolymj.2020.110245
Firouzjaei, M. D., Seyedpour, S. F., Aktij, S. A., Giagnorio, M., Bazrafshan, N., Mollahosseini, A., . . . Rahimpour, A. (2020). Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. Journal of Membrane Science, 596, 117604. doi:https://doi.org/10.1016/j.memsci.2019.117604
Gallego-Urrea, J. A., Hammes, J., Cornelis, G., & Hassellöv, M. (2016). Coagulation and sedimentation of gold nanoparticles and illite in model natural waters: Influence of initial particle concentration. NanoImpact, 3-4, 67-74. doi:https://doi.org/10.1016/j.impact.2016.10.004
García Guirado, C. (2020). Aplicaciones biomédicas del óxido de grafeno.
Ghosal, K., Agatemor, C., Špitálsky, Z., Thomas, S., & Kny, E. (2019). Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chemical Engineering Journal, 358, 1262-1278. doi:https://doi.org/10.1016/j.cej.2018.10.117
Goetz, L. A., Jalvo, B., Rosal, R., & Mathew, A. P. (2016). Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. Journal of Membrane Science, 510, 238-248. doi:https://doi.org/10.1016/j.memsci.2016.02.069
Greiner, A., & Wendorff, J. H. (2007). Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angewandte Chemie-International Edition, 46(30), 5670-5703. doi:10.1002/anie.20060464
Grylewicz, A., & Mozia, S. (2021). Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Separation and Purification Technology, 256, 117827. doi:https://doi.org/10.1016/j.seppur.2020.117827
Guerra, C., Ringuedé, A., Azocar, M. I., Walter, M., Galarce, C., Bedioui, F., . . . Sancy, M. (2021). Corrosion Analysis of AISI 430 Stainless Steel in the presence of Escherichia coli and Staphylococcus aureus. Corrosion Science, 109204. doi:https://doi.org/10.1016/j.corsci.2020.109204
Gwenzi, W., Musiyiwa, K., & Mangori, L. (2020). Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: A hotspot reservoir. Journal of Environmental Chemical Engineering, 8(1). doi:10.1016/j.jece.2018.02.028
Halley, P. J., & Dorgan, J. R. (2011). Next-generation biopolymers: Advanced functionality and improved sustainability. MRS Bulletin, 36(9), 687-691. doi:10.1557/mrs.2011.180
Hamdy Makhlouf, A. S., Perez, A., & Guerrero, E. (2020). Chapter 13 - Recent trends in smart polymeric coatings in biomedicine and drug delivery applications. In A. S. H. Makhlouf & N. Y. Abu-Thabit (Eds.), Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications (pp. 359-381): Elsevier.
Han, N., Wang, W., Lv, X., Zhang, W., Yang, C., Wang, M., . . . Zhang, X. (2019a). Highly Efficient Purification of Multicomponent Wastewater by Electrospinning Kidney-Bean-Skin-like Porous H-PPAN/rGO- g-PAO@Ag+/Ag Composite Nanofibrous Membranes. ACS Applied Materials and Interfaces, 11(50), 46920-46929. doi:10.1021/acsami.9b16889
Han, N., Wang, W. J., Lv, X. S., Zhang, W. X., Yang, C., Wang, M. L., . . . Zhang, X. X. (2019b). Highly Efficient Purification of Multicomponent Wastewater by Electrospinning Kidney-Bean-Skin-like Porous H-PPAN/rGO-g-PAO@Ag+/Ag Composite Nanofibrous Membranes. Acs Applied Materials & Interfaces, 11(50), 46920-46929. doi:10.1021/acsami.9b16889
Havlíček, K., Svobodová, L., Bakalova, T., & Lederer, T. (2020). Influence of electrospinning methods on characteristics of polyvinyl butyral and polyurethane nanofibres essential for biological applications. Materials & Design, 194, 108898. doi:https://doi.org/10.1016/j.matdes.2020.108898
Holloway, R. W., Miller-Robbie, L., Patel, M., Stokes, J. R., Munakata-Marr, J., Dadakis, J., & Cath, T. Y. (2016). Life-cycle assessment of two potable water reuse technologies: MF/RO/UV–AOP treatment and hybrid osmotic membrane bioreactors. Journal of Membrane Science, 507, 165-178. doi:https://doi.org/10.1016/j.memsci.2016.01.045
Hossain, F., Perales-Perez, O. J., Hwang, S., & Román, F. (2014). Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Science of The Total Environment, 466-467, 1047-1059. doi:10.1016/j.scitotenv.2013.08.009
Hottle, T. A., Bilec, M. M., & Landis, A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9), 1898-1907. doi:https://doi.org/10.1016/j.polymdegradstab.2013.06.016
Hu, M., Zheng, S. X., & Mi, B. X. (2016). Organic Fouling of Graphene Oxide Membranes and Its Implications for Membrane Fouling Control in Engineered Osmosis. Environmental Science & Technology, 50(2), 685-693. doi:10.1021/acs.est.5b03916
Hu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., . . . Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200-204. doi:https://doi.org/10.1016/j.memsci.2014.11.043
Huang, M.-Y., Chen, Y., Yan, X., Guo, X.-J., Dong, L., & Lang, W.-Z. (2020). Two-dimensional Montmorillonite membranes with efficient water filtration. Journal of Membrane Science, 614, 118540. doi:https://doi.org/10.1016/j.memsci.2020.118540
Ibrahim, H. M., & Klingner, A. (2020). A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 90, 106647. doi:https://doi.org/10.1016/j.polymertesting.2020.106647
Iqbal, A. K. M. A., Sakib, N., Iqbal, A. K. M. P., & Nuruzzaman, D. M. (2020). Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia, 12, 100815. doi:https://doi.org/10.1016/j.mtla.2020.100815
Jalvo, B., Mathew, A. P., & Rosal, R. (2017). Coaxial poly(lactic acid) electrospun composite membranes incorporating cellulose and chitin nanocrystals. Journal of Membrane Science, 544, 261-271. doi:https://doi.org/10.1016/j.memsci.2017.09.033
Jang, W., Yun, J., Jeon, K., & Byun, H. (2015). PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications. Rsc Advances, 5(58), 46711-46717. doi:10.1039/c5ra04439a
Jang, W., Yun, J., Park, Y., Park, I. K., Byun, H., & Lee, C. H. (2020a). Polyacrylonitrile Nanofiber Membrane Modified with Ag/GO Composite for Water Purification System. Polymers, 12(11). doi:10.3390/polym12112441
Jang, W., Yun, J., Park, Y., Park, I. K., Byun, H., & Lee, C. H. (2020b). Polyacrylonitrile nanofiber membrane modified with ag/go composite for water purification system. Polymers, 12(11), 1-12. doi:10.3390/polym12112441
Ji, H., Sun, H., & Qu, X. (2016). Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Advanced Drug Delivery Reviews, 105, 176-189. doi:https://doi.org/10.1016/j.addr.2016.04.009
Juncos Bombin, A. D., Dunne, N. J., & McCarthy, H. O. (2020). Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Materials Science and Engineering: C, 114, 110994. doi:https://doi.org/10.1016/j.msec.2020.110994
Karagoz, S., Kiremitler, N. B., Sakir, M., Salem, S., Onses, M. S., Sahmetlioglu, E., . . . Yilmaz, E. (2020). Synthesis of Ag and TiO2 modified polycaprolactone electrospun nanofibers (PCL/TiO2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications. Ecotoxicology and Environmental Safety, 188, 109856. doi:https://doi.org/10.1016/j.ecoenv.2019.109856
Karami, P., Khorshidi, B., McGregor, M., Peichel, J. T., Soares, J. B. P., & Sadrzadeh, M. (2020). Thermally stable thin film composite polymeric membranes for water treatment: A review. Journal of Cleaner Production, 250, 119447. doi:https://doi.org/10.1016/j.jclepro.2019.119447
Kaur, S., Sundarrajan, S., Rana, D., Sridhar, R., Gopal, R., Matsuura, T., & Ramakrishna, S. (2014). Review: The characterization of electrospun nanofibrous liquid filtration membranes. Journal of Materials Science, 49(18), 6143-6159. doi:10.1007/s10853-014-8308-y
Kim, H.-C., Choi, B. G., Noh, J., Song, K. G., Lee, S.-h., & Maeng, S. K. (2014). Electrospun nanofibrous PVDF–PMMA MF membrane in laboratory and pilot-scale study treating wastewater from Seoul Zoo. Desalination, 346, 107-114. doi:https://doi.org/10.1016/j.desal.2014.05.005
Kimura, K., Ogyu, R., Miyoshi, T., & Watanabe, Y. (2015). Transition of major components in irreversible fouling of MBRs treating municipal wastewater. Separation and Purification Technology, 142, 326-331. doi:10.1016/j.seppur.2014.12.030
Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie - International Edition, 50(24), 5438-5466. doi:10.1002/anie.201001273
Ko, K., Kim, M. J., Lee, J. Y., Kim, W., & Chung, H. (2019). Effects of graphene oxides and silver-graphene oxides on aquatic microbial activity. Science of The Total Environment, 651, 1087-1095. doi:10.1016/j.scitotenv.2018.09.124
Kochkodan, V., & Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 356, 187-207. doi:10.1016/j.desal.2014.09.015
Kopp, A., Smeets, R., Gosau, M., Kröger, N., Fuest, S., Köpf, M., . . . Burg, S. (2020). Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens. Bioactive Materials, 5(2), 241-252. doi:https://doi.org/10.1016/j.bioactmat.2020.01.010
Laflamme, O., Sérodes, J.-B., Simard, S., Legay, C., Dorea, C., & Rodriguez, M. J. (2020). Occurrence and fate of ozonation disinfection by-products in two Canadian drinking water systems. Chemosphere, 260, 127660. doi:https://doi.org/10.1016/j.chemosphere.2020.127660
Lawal, A. T. (2019). Graphene-based nano composites and their applications. A review. Biosensors and Bioelectronics, 141, 111384. doi:https://doi.org/10.1016/j.bios.2019.111384
Li, H., & Wang, M. (2021). 18 - Electrospinning and nanofibrous structures for biomedical applications. In A. Osaka & R. Narayan (Eds.), Bioceramics (pp. 401-436): Elsevier.
Li, J. H., Zhang, H., Zhang, W., & Liu, W. (2019). Nanofiber membrane of graphene oxide/polyacrylonitrile with highly efficient antibacterial activity. Journal of Biomaterials Science, Polymer Edition, 30(17), 1620-1635. doi:10.1080/09205063.2019.1652793
Li, L., Hashaikeh, R., & Arafat, H. A. (2013). Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). Journal of Membrane Science, 436, 57-67. doi:https://doi.org/10.1016/j.memsci.2013.02.037
Li, N., & Yang, H. (2021). Construction of natural polymeric imprinted materials and their applications in water treatment: A review. Journal of Hazardous Materials, 403, 123643. doi:https://doi.org/10.1016/j.jhazmat.2020.123643
Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 42(18), 4591-4602. doi:10.1016/j.watres.2008.08.015
Li, S., Kong, L., & Ziegler, G. R. (2020). Electrospinning of octenylsuccinylated starch-pullulan nanofibers from aqueous dispersions. Carbohydrate Polymers, 116933. doi:https://doi.org/10.1016/j.carbpol.2020.116933
Li, X., Cai, M., Wang, L., Niu, F., Yang, D., & Zhang, G. (2019). Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Science of The Total Environment, 659, 1415-1427. doi:https://doi.org/10.1016/j.scitotenv.2018.12.344
Liao, Y., Loh, C.-H., Tian, M., Wang, R., & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77, 69-94. doi:https://doi.org/10.1016/j.progpolymsci.2017.10.003
Liu, C., Shen, J., Liao, C. Z., Yeung, K. W. K., & Tjong, S. C. (2018). Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics. Express Polymer Letters, 12(4), 365-382. doi:10.3144/expresspolymlett.2018.31
Liu, C., Shen, J., Yeung, K. W. K., & Tjong, S. C. (2017). Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared By Electrospinning. Acs Biomaterials Science & Engineering, 3(3), 471-486. doi:10.1021/acsbiomaterials.6b00766
Liu, H., Liu, X., Zhao, F., Liu, Y., Liu, L., Wang, L., . . . Huang, P. (2020). Preparation of a hydrophilic and antibacterial dual function ultrafiltration membrane with quaternized graphene oxide as a modifier. Journal of Colloid and Interface Science, 562, 182-192. doi:https://doi.org/10.1016/j.jcis.2019.12.017
Liu, Y., Cheng, P., Guo, Q., Liu, N., Wan, Y., Zhong, W., . . . Wang, D. (2020). Ag nanoparticles decorated PVA-co-PE nanofibrous microfiltration membrane with antifouling surface for efficient sterilization. Composites Communications, 21, 100379. doi:https://doi.org/10.1016/j.coco.2020.100379
Liu, Y., Wang, R., Ma, H., Hsiao, B. S., & Chu, B. (2013). High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes. Polymer, 54(2), 548-556. doi:https://doi.org/10.1016/j.polymer.2012.11.064
Liu, Y., Zhu, J., Zheng, J., Gao, X., Tian, M., Wang, X., . . . Van der Bruggen, B. (2020). Porous organic polymer embedded thin-film nanocomposite membranes for enhanced nanofiltration performance. Journal of Membrane Science, 602, 117982. doi:https://doi.org/10.1016/j.memsci.2020.117982
Lopez de Dicastillo, C., Garrido, L., Alvarado, N., Romero, J., Palma, J. L., & Galotto, M. J. (2017). Improvement of polylactide properties through cellulose nanocrystals embedded in poly (vinyl alcohol) electrospun nanofibers. Nanomaterials, 7(5), 106
Lv, H., Cui, S., Yang, Q., Song, X., Wang, D., Hu, J., . . . Liu, Y. (2021). AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. Materials Science and Engineering: C, 118, 111331. doi:https://doi.org/10.1016/j.msec.2020.111331
Lyu, J.-Y., Chen, S., He, W., Zhang, X.-X., Tang, D.-y., Liu, P.-J., & Yan, Q.-L. (2019). Fabrication of high-performance graphene oxide doped PVDF/CuO/Al nanocomposites via electrospinning. Chemical Engineering Journal, 368, 129-137. doi:https://doi.org/10.1016/j.cej.2019.02.170
Mairinger, T., Loos, M., & Hollender, J. (2021). Characterization of water-soluble synthetic polymeric substances in wastewater using LC-HRMS/MS. Water Research, 190, 116745. doi:https://doi.org/10.1016/j.watres.2020.116745
Malwal, D., & Gopinath, P. (2017a). Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation. J Hazard Mater, 321, 611-621. doi:10.1016/j.jhazmat.2016.09.050
Malwal, D., & Gopinath, P. (2017b). Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation. Journal of Hazardous Materials, 321, 611-621. doi:10.1016/j.jhazmat.2016.09.050
Manals-Cutiño, E., Penedo-Medina, M., & Giralt-Ortega, G. (2011). Análisis termogravimetrico y térmico diferencial de diferentes biomasas vegetales. Tecnología química, 31(2), 180-190
Mazhar, M. A., Khan, N. A., Ahmed, S., Khan, A. H., Hussain, A., Rahisuddin, . . . Vambol, V. (2020). Chlorination disinfection by-products in municipal drinking water – A review. Journal of Cleaner Production, 273, 123159. doi:https://doi.org/10.1016/j.jclepro.2020.123159
Melo, S. F., Neves, S. C., Pereira, A. T., Borges, I., Granja, P. L., Magalhães, F. D., & Gonçalves, I. C. (2020). Incorporation of graphene oxide into poly(ɛ-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Materials Science and Engineering: C, 109, 110537. doi:https://doi.org/10.1016/j.msec.2019.110537
Merchante Ortí, R. (2016). Análisis y optimización de parámetros de proceso para la obtención de fibras poliméricas tipo core-shell mediante electrospinning coaxial. Universitat Politècnica de València.
Mincea, M., Negrulescu, A., & Ostafe, V. (2012). Preparation, modification, and applications of chitin nanowhiskers: A review. Reviews on Advanced Materials Science, 30(3), 225-242.
Moslehi, M., & Mahdavi, H. (2019). Controlled pore size nanofibrous microfiltration membrane via multi-step interfacial polymerization: Preparation and characterization. Separation and Purification Technology, 223, 96-106. doi:https://doi.org/10.1016/j.seppur.2019.04.041
Moslehi, M., & Mahdavi, H. (2020). Preparation and Characterization of Electrospun Polyurethane Nanofibrous Microfiltration Membrane. Journal of Polymers and the Environment, 28(10), 2691-2701. doi:10.1007/s10924-020-01801-z
Mu, Y., Zhu, K., Luan, J., Zhang, S., Zhang, C., Na, R., . . . Wang, G. (2019). Fabrication of hybrid ultrafiltration membranes with improved water separation properties by incorporating environmentally friendly taurine modified hydroxyapatite nanotubes. Journal of Membrane Science, 577, 274-284. doi:https://doi.org/10.1016/j.memsci.2019.01.043
Mujmule, R. B., Chung, W.-J., & Kim, H. (2020). Chemical fixation of carbon dioxide catalyzed via hydroxyl and carboxyl-rich glucose carbonaceous material as a heterogeneous catalyst. Chemical Engineering Journal, 395, 125164. doi:https://doi.org/10.1016/j.cej.2020.125164
Muñoz-Shugulí, C., Vidal, C. P., Cantero-López, P., & Lopez-Polo, J. (2021). Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends in Food Science & Technology, 108, 177-186. doi:https://doi.org/10.1016/j.tifs.2020.12.020
Muzzarelli, R. A. A. (2011). Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Marine Drugs, 9(9), 1510-1533. doi:10.3390/md9091510
Nadell, C. D., Drescher, K., & Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology, 14(9), 589-600. doi:10.1038/nrmicro.2016.84
Nahim-Granados, S., Rivas-Ibáñez, G., Antonio Sánchez Pérez, J., Oller, I., Malato, S., & Polo-López, M. I. (2020). Synthetic fresh-cut wastewater disinfection and decontamination by ozonation at pilot scale. Water Research, 170, 115304. doi:https://doi.org/10.1016/j.watres.2019.115304
Nasir, A. M., Awang, N., Jaafar, J., Ismail, A. F., Othman, M. H. D., A. Rahman, M., . . . Mat Yajid, M. A. (2021). Recent progress on fabrication and application of electrospun nanofibrous photocatalytic membranes for wastewater treatment: A review. Journal of Water Process Engineering, 40, 101878. doi:https://doi.org/10.1016/j.jwpe.2020.101878
Nataraj, S. K., Yang, K. S., & Aminabhavi, T. M. (2012). Polyacrylonitrile-based nanofibers—A state-of-the-art review. Progress in Polymer Science, 37(3), 487-513. doi:https://doi.org/10.1016/j.progpolymsci.2011.07.001
Nguyen, S. T., & Roddick, F. A. (2013). Pre-treatments for removing colour from secondary effluent: Effectiveness and influence on membrane fouling in subsequent microfiltration. Separation and Purification Technology, 103, 313-320. doi:10.1016/j.seppur.2012.10.011
Nzima, B., Adegoke, A. A., Ofon, U. A., Al-Dahmoshi, H. O. M., Saki, M., Ndubuisi-Nnaji, U. U., & Inyang, C. U. (2020). Resistotyping and extended-spectrum beta-lactamase genes among Escherichia coli from wastewater treatment plants and recipient surface water for reuse in South Africa. New Microbes and New Infections, 38, 100803. doi:https://doi.org/10.1016/j.nmni.2020.100803
Ogunsona, E. O., Muthuraj, R., Ojogbo, E., Valerio, O., & Mekonnen, T. H. (2020). Engineered nanomaterials for antimicrobial applications: A review. Applied Materials Today, 18, 100473. doi:https://doi.org/10.1016/j.apmt.2019.100473
Oyedeji, A. B., Green, E., Adebiyi, J. A., Ogundele, O. M., Gbashi, S., Adefisoye, M. A., . . . Adebo, O. A. (2021). Metabolomic approaches for the determination of metabolites from pathogenic microorganisms: A review. Food Research International, 140, 110042. doi:https://doi.org/10.1016/j.foodres.2020.110042
Pan, N., Wei, Y., Zuo, M., Li, R., Ren, X., & Huang, T.-S. (2020). Antibacterial poly (ε-caprolactone) fibrous membranes filled with reduced graphene oxide-silver. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, 125186. doi:https://doi.org/10.1016/j.colsurfa.2020.125186
Pant, H. R., Pandeya, D. R., Nam, K. T., Baek, W.-i., Hong, S. T., & Kim, H. Y. (2011). Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. Journal of Hazardous Materials, 189(1), 465-471. doi:https://doi.org/10.1016/j.jhazmat.2011.02.062
Paradela, L. S., & Sánchez-Gálvez, V. (1991). Comportamiento a tracción de cementos reforzados con fibras de vidrio. Informes de la construcción, 43(413), 77-89.
Pardhi, D. M., Şen Karaman, D., Timonen, J., Wu, W., Zhang, Q., Satija, S., . . . Rosenholm, J. M. (2020). Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. International Journal of Pharmaceutics, 586, 119531. doi:https://doi.org/10.1016/j.ijpharm.2020.119531
Park, J.-A., Nam, A., Kim, J.-H., Yun, S.-T., Choi, J.-W., & Lee, S.-H. (2018). Blend-electrospun graphene oxide/Poly(vinylidene fluoride) nanofibrous membranes with high flux, tetracycline removal and anti-fouling properties. Chemosphere, 207, 347-356. doi:https://doi.org/10.1016/j.chemosphere.2018.05.096
Park, J. A., Cho, K. Y., Han, C. H., Nam, A., Kim, J. H., Lee, S. H., & Choi, J. W. (2019). Quaternized Amphiphilic Block Copolymers/Graphene Oxide and a Poly(vinyl alcohol) Coating Layer on Graphene Oxide/Poly(vinylidene fluoride) Electrospun Nanofibers for Superhydrophilic and Antibacterial Properties. Scientific Reports, 9. doi:10.1038/s41598-018-36479-w
Park, S. J., Kim, S. B., & Kim, K. W. (2010). Analysis of bacterial cell properties and transport in porous media. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 45(6), 682-691. doi:10.1080/10934521003648867
Penagos, J. I. C. (2013). Caracterización de materiales a través de medidas de microscopía electrónica de barrido (SEM). Elementos, 3(3), 133-146
Pinto, A. M., Gonçalves, I. C., & Magalhães, F. D. (2013). Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces, 111, 188-202. doi:https://doi.org/10.1016/j.colsurfb.2013.05.022
Plutzer, J., & Karanis, P. (2016). Neglected waterborne parasitic protozoa and their detection in water. Water Research, 101, 318-332. doi:https://doi.org/10.1016/j.watres.2016.05.085
Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443, 143-164. doi:https://doi.org/10.1016/j.desal.2018.04.007
Qayum, A., Wei, J., Li, Q. N., Chen, D. R., Jiao, X. L., & Xia, Y. G. (2019). Efficient decontamination of multi-component wastewater by hydrophilic electrospun PAN/AgBr/Ag fibrous membrane. Chemical Engineering Journal, 361, 1255-1263. doi:10.1016/j.cej.2018.12.161
Razakandrainibe, R., Kubina, S., Costa, D., Robinson, G., La Carbona, S., Aubert, D., . . . Chalmers, R. M. (2020). Evaluation of a modified method for the detection of Cryptosporidium oocysts on spinach leaves. Food and Waterborne Parasitology, 21, e00097. doi:https://doi.org/10.1016/j.fawpar.2020.e00097
Razavizadeh, B. M., & Niazmand, R. (2020). Characterization of polyamide-6/ propolis blended electrospun fibers. Heliyon, 6(8), e04784. doi:https://doi.org/10.1016/j.heliyon.2020.e04784
Ryu, S.-Y., Chung, J. W., & Kwak, S.-Y. (2015). Dependence of photocatalytic and antimicrobial activity of electrospun polymeric nanofiber composites on the positioning of Ag–TiO2 nanoparticles. Composites Science and Technology, 117, 9-17. doi:https://doi.org/10.1016/j.compscitech.2015.05.014
Saleh, T. A., Parthasarathy, P., & Irfan, M. (2019). Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends in Environmental Analytical Chemistry, 24, e00067. doi:https://doi.org/10.1016/j.teac.2019.e00067
Salman, K. D., & Razlan, Z. M. (2018). Polyamide Nanofibers Reinforced Titanium Nanoparticles Composites for hydrophobic surfaces. Paper presented at the IOP Conference Series: Materials Science and Engineering.
Samadian, H., Maleki, H., Allahyari, Z., & Jaymand, M. (2020). Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coordination Chemistry Reviews, 420, 213432. doi:https://doi.org/10.1016/j.ccr.2020.213432
Sánchez, L. D., Rodriguez, L., & López, M. (2013). Electrospinning: la era de las nanofibras. Revista Iberoamericana de polímeros, 14(1), 10-27.
Sbahi, S., Ouazzani, N., Latrach, L., Hejjaj, A., & Mandi, L. (2020). Predicting the concentration of total coliforms in treated rural domestic wastewater by multi-soil-layering (MSL) technology using artificial neural networks. Ecotoxicology and Environmental Safety, 204, 111118. doi:https://doi.org/10.1016/j.ecoenv.2020.111118
Schiffman, J. D., Blackford, A. C., Wegst, U. G. K., & Schauer, C. L. (2011). Carbon black immobilized in electrospun chitosan membranes. Carbohydrate Polymers, 84(4), 1252-1257. doi:10.1016/j.carbpol.2011.01.013
Schijven, J., Teunis, P., Suylen, T., Ketelaars, H., Hornstra, L., & Rutjes, S. (2019). QMRA of adenovirus in drinking water at a drinking water treatment plant using UV and chlorine dioxide disinfection. Water Research, 158, 34-45. doi:https://doi.org/10.1016/j.watres.2019.03.090
Seong, D. B., Son, Y.-R., & Park, S.-J. (2018). A study of reduced graphene oxide/leaf-shaped TiO2 nanofibers for enhanced photocatalytic performance via electrospinning. Journal of Solid State Chemistry, 266, 196-204. doi:https://doi.org/10.1016/j.jssc.2018.06.003
Shalaby, T., Hamad, H., Ibrahim, E., Mahmoud, O., & Al-Oufy, A. (2018). Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity. Ecotoxicology and Environmental Safety, 162, 354-364. doi:https://doi.org/10.1016/j.ecoenv.2018.07.016
Sheikh, M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C., & Cortina, J.-L. (2020). Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chemical Engineering Journal, 391, 123475. doi:https://doi.org/10.1016/j.cej.2019.123475
Shende, P., & Gupta, H. (2020). Formulation and comparative characterization of nanoparticles of curcumin using natural, synthetic and semi-synthetic polymers for wound healing. Life Sciences, 253, 117588. doi:https://doi.org/10.1016/j.lfs.2020.117588
Shi, L., Chen, J., Teng, L., Wang, L., Zhu, G., Liu, S., . . . Ren, L. (2016). The Antibacterial Applications of Graphene and Its Derivatives. Small, 12(31), 4165-4184. doi:https://doi.org/10.1002/smll.201601841
Shi, Q., Chen, Z., Liu, H., Lu, Y., Li, K., Shi, Y., . . . Hu, H.-Y. (2021). Efficient synergistic disinfection by ozone, ultraviolet irradiation and chlorine in secondary effluents. Science of The Total Environment, 758, 143641. doi:https://doi.org/10.1016/j.scitotenv.2020.143641
Shi, Q., Zhou, C., Yue, Y., Guo, W., Wu, Y., & Wu, Q. (2012). Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydrate Polymers, 90(1), 301-308. doi:10.1016/j.carbpol.2012.05.042
Śmiałek, M., Kowalczyk, J., & Koncicki, A. (2020). Influence of vaccination of broiler chickens against Escherichia coli with live attenuated vaccine on general properties of E. coli population, IBV vaccination efficiency, and production parameters—a field experiment. Poultry Science, 99(11), 5452-5460. doi:https://doi.org/10.1016/j.psj.2020.08.039
Soares, R. M. D., Siqueira, N. M., Prabhakaram, M. P., & Ramakrishna, S. (2018). Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering: C, 92, 969-982. doi:https://doi.org/10.1016/j.msec.2018.08.004
Sousi, M., Liu, G., Salinas-Rodriguez, S. G., Chen, L., Dusseldorp, J., Wessels, P., . . . van der Meer, W. (2020). Multi-parametric assessment of biological stability of drinking water produced from groundwater: Reverse osmosis vs. conventional treatment. Water Research, 186, 116317. doi:https://doi.org/10.1016/j.watres.2020.116317
Sun, B., Long, Y. Z., Zhang, H. D., Li, M. M., Duvail, J. L., Jiang, X. Y., & Yin, H. L. (2014). Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 39(5), 862-890. doi:https://doi.org/10.1016/j.progpolymsci.2013.06.002
Sun, L., Hu, S. J., & Freiheit, T. (2021). Feature-based quality classification for ultrasonic welding of carbon fiber reinforced polymer through Bayesian regularized neural network. Journal of Manufacturing Systems, 58, 335-347. doi:https://doi.org/10.1016/j.jmsy.2020.12.016
Sun, M., & Li, J. (2018). Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today, 20, 121-137. doi:https://doi.org/10.1016/j.nantod.2018.04.007
Sundaran, S. P., Reshmi, C. R., Sagitha, P., Manaf, O., & Sujith, A. (2019). Multifunctional graphene oxide loaded nanofibrous membrane for removal of dyes and coliform from water. Journal of Environmental Management, 240, 494-503. doi:https://doi.org/10.1016/j.jenvman.2019.03.105
Szewczyk, P. K., & Stachewicz, U. (2020). The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 286, 102315. doi:https://doi.org/10.1016/j.cis.2020.102315
Tachaboonyakiat, W., Sukpaiboon, E., & Pinyakong, O. (2014). Development of an antibacterial chitin betainate wound dressing. Polymer Journal, 46(8), 505-510. doi:10.1038/pj.2014.47
Taghizadeh, A., Taghizadeh, M., Jouyandeh, M., Yazdi, M. K., Zarrintaj, P., Saeb, M. R., . . . Gupta, V. K. (2020). Conductive polymers in water treatment: A review. Journal of Molecular Liquids, 312, 113447. doi:https://doi.org/10.1016/j.molliq.2020.113447
Thakur, R., Rane, A. V., Harris, G., & Thakur, S. (2020). Chapter 14 - Government initiatives and policies for water conservation and wastewater treatment in South Africa and indigenous knowledge. In P. Singh, Y. Milshina, K. Tian, D. Gusain, & J. P. Bassin (Eds.), Water Conservation and Wastewater Treatment in BRICS Nations (pp. 285-293): Elsevier.
Tiwari, S. K., & Venkatraman, S. S. (2012). Importance of viscosity parameters in electrospinning: Of monolithic and core-shell fibers. Materials Science and Engineering C, 32(5), 1037-1042. doi:10.1016/j.msec.2012.02.019
Tran, C., & Kalra, V. (2013). Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. Journal of Power Sources, 235, 289-296. doi:https://doi.org/10.1016/j.jpowsour.2013.01.080
Tu, Y., Lv, M., Xiu, P., Huynh, T., Zhang, M., Castelli, M., . . . Zhou, R. (2013). Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 8(8), 594-601. doi:10.1038/nnano.2013.125
Tucker, N., Stanger, J. J., Staiger, M. P., Razzaq, H., & Hofman, K. (2012). The History of the Science and Technology of Electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics, 7, 63-73.
Upadhyaya, L., Oliveira, B., Pereira, V. J., Barreto Crespo, M. T., Crespo, J. G., Quemener, D., & Semsarilar, M. (2020). Nanocomposite membranes from nano-particles prepared by polymerization induced self-assembly and their biocidal activity. Separation and Purification Technology, 251, 117375. doi:https://doi.org/10.1016/j.seppur.2020.117375
Van der Bruggen, B. (2018). Chapter 2 - Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis. In P. Luis (Ed.), Fundamental Modelling of Membrane Systems (pp. 25-70): Elsevier.
Wang, G., Yu, D., Kelkar, A. D., & Zhang, L. (2017). Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Progress in Polymer Science, 75, 73-107. doi:https://doi.org/10.1016/j.progpolymsci.2017.08.002
Wang, K., Wu, J., Zhu, M., Zheng, Y.-Z., & Tao, X. (2020). Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal–organic framework composites. Journal of Solid State Chemistry, 284, 121200. doi:https://doi.org/10.1016/j.jssc.2020.121200
Wang, L., Ali, J., Zhang, C., Mailhot, G., & Pan, G. (2020). Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. Journal of Environmental Chemical Engineering, 8(1), 102104. doi:https://doi.org/10.1016/j.jece.2017.12.057
Wang, Q. Q., Du, Y. Z., Feng, Q., Huang, F. L., Lu, K. Y., Liu, J. Y., & Wei, Q. F. (2013). Nanostructures and Surface Nanomechanical Properties of Polyacrylonitrile/Graphene Oxide Composite Nanofibers by Electrospinning. Journal of Applied Polymer Science, 128(2), 1152-1157. doi:10.1002/app.38273
Wang, R., Liu, Y., Li, B., Hsiao, B. S., & Chu, B. (2012). Electrospun nanofibrous membranes for high flux microfiltration. Journal of Membrane Science, 392-393, 167-174. doi:https://doi.org/10.1016/j.memsci.2011.12.019
Wang, X.-X., Yu, G.-F., Zhang, J., Yu, M., Ramakrishna, S., & Long, Y.-Z. (2021). Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science, 115, 100704. doi:https://doi.org/10.1016/j.pmatsci.2020.100704
Wang, X., & Nakane, K. (2021). Formation and morphological variation of electrospun cellulose acetate nanofibers via dual-bath immersion electrospinning. Materials Letters, 284, 128968. doi:https://doi.org/10.1016/j.matlet.2020.128968
Wang, X., Zhang, K., Zhu, M., Hsiao, B. S., & Chu, B. (2008). Enhanced mechanical performance of self-bundled electrospun fiber yarns via post-treatments. Macromolecular Rapid Communications, 29(10), 826-831. doi:10.1002/marc.200700873
Wang, X. H., Han, Q. S., Yu, N., Wang, T., Wang, C., & Yang, R. (2018). GO-AgCl/Ag nanocomposites with enhanced visible light-driven catalytic properties for antibacterial and biofilm-disrupting applications. Colloids and Surfaces B-Biointerfaces, 162, 296-305. doi:10.1016/j.colsurfb.2017.11.060
Wang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276-307. doi:https://doi.org/10.1016/j.memsci.2014.05.060
Wang, Z., Zou, W., Liu, L., Wang, M., Li, F., & Shen, W. (2021). Characterization and bacteriostatic effects of β-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning. Food Chemistry, 338, 127980. doi:https://doi.org/10.1016/j.foodchem.2020.127980
Warsinger, D. M., Chakraborty, S., Tow, E. W., Plumlee, M. H., Bellona, C., Loutatidou, S., . . . Lienhard, J. H. (2018). A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 81, 209-237. doi:https://doi.org/10.1016/j.progpolymsci.2018.01.004
Wei, R., Ge, F., Huang, S., Chen, M., & Wang, R. (2011). Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82(10), 1408-1414. doi:10.1016/j.chemosphere.2010.11.067
Wen, Y., Kok, M. D. R., Tafoya, J. P. V., Sobrido, A. B. J., Bell, E., Gostick, J. T., . . . Jervis, R. (2021). Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. Journal of Energy Chemistry, 59, 492-529. doi:https://doi.org/10.1016/j.jechem.2020.11.014
Weschenfelder, S. E., Fonseca, M. J. C., & Borges, C. P. (2021). Treatment of produced water from polymer flooding in oil production by ceramic membranes. Journal of Petroleum Science and Engineering, 196, 108021. doi:https://doi.org/10.1016/j.petrol.2020.108021
Wu, S., & Soucek, M. D. (1998). Kinetic modelling of crosslinking reactions for cycloaliphatic epoxides with hydroxyl- and carboxyl-functionalized acrylic copolymers: 1. pH and temperature effects. Polymer, 39(23), 5747-5759. doi:https://doi.org/10.1016/S0032-3861(98)00077-9
Wu, Y., He, G., Wu, X., Yuan, Q., Gong, X., Zhen, D., & Sun, B. (2019). Confinement of functionalized graphene oxide in sulfonated poly (ether ether ketone) nanofibers by coaxial electrospinning for polymer electrolyte membranes. International Journal of Hydrogen Energy, 44(14), 7494-7504. doi:https://doi.org/10.1016/j.ijhydene.2019.01.281
Wu, Y., Li, C., Meng, M., Lv, P., Liu, X., & Yan, Y. (2019). Fabrication and evaluation of GO/TiO2-based molecularly imprinted nanocomposite membranes by developing a reformative filtering strategy: Application to selective adsorption and separation membrane. Separation and Purification Technology, 212, 245-254. doi:https://doi.org/10.1016/j.seppur.2018.11.042
Xie, L., Shu, Y., Hu, Y., Cheng, J., & Chen, Y. (2020). SWNTs-PAN/TPU/PANI composite electrospun nanofiber membrane for point-of-use efficient electrochemical disinfection: New strategy of CNT disinfection. Chemosphere, 251, 126286. doi:https://doi.org/10.1016/j.chemosphere.2020.126286
Xu, J. (2019). Reverse microbial etiology: A research field for predicting and preventing emerging infectious diseases caused by an unknown microorganism. Journal of Biosafety and Biosecurity, 1(1), 19-21. doi:https://doi.org/10.1016/j.jobb.2018.12.005
Yang, S., Deng, W., Liu, S., Yu, X., Mustafa, G. R., Chen, S., . . . Zou, L. (2020). Presence of heavy metal resistance genes in Escherichia coli and Salmonella isolates and analysis of resistance gene structure in E. coli E308. Journal of Global Antimicrobial Resistance, 21, 420-426. doi:https://doi.org/10.1016/j.jgar.2020.01.009
Yang, Y., Zhang, Z., He, Y., Wang, Z., Zhao, Y., & Sun, L. (2018). Fabrication of Ag@TiO2 electrospinning nanofibrous felts as SERS substrate for direct and sensitive bacterial detection. Sensors and Actuators B: Chemical, 273, 600-609. doi:https://doi.org/10.1016/j.snb.2018.05.129
Yu, F., Ma, J., & Han, S. (2014). Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents. Scientific Reports, 4. doi:10.1038/srep05326
Yu, X., & Manthiram, A. (2021). A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 34, 282-300. doi:https://doi.org/10.1016/j.ensm.2020.10.006
Zahedi, A., Ryan, U., Rawlings, V., Greay, T., Hancock, S., Bruce, M., & Jacobson, C. (2020). Cryptosporidium and Giardia in dam water on sheep farms – An important source of transmission? Veterinary Parasitology, 288, 109281. doi:https://doi.org/10.1016/j.vetpar.2020.109281
Zapata, D., Pujol, R., & Coda, F. (2012). Polímeros biodegradables: una alternativa de futuro a la sostenibilidad de medio ambiente. Técnica industrial, 297, 76-80.
Zeng, Z., Yu, D., He, Z., Liu, J., Xiao, F. X., Zhang, Y., . . . Tan, T. T. Y. (2016). Graphene Oxide Quantum Dots Covalently Functionalized PVDF Membrane with Significantly-Enhanced Bactericidal and Antibiofouling Performances. Scientific Reports, 6. doi:10.1038/srep20142
Zhang, M., Nguyen, Q. T., & Ping, Z. (2009). Hydrophilic modification of poly (vinylidene fluoride) microporous membrane. Journal of Membrane Science, 327(1), 78-86. doi:https://doi.org/10.1016/j.memsci.2008.11.020
Zhang, P., Fang, C., Rajabzadeh, S., Liu, W., Jia, Y., Shen, Q., . . . Matsuyama, H. (2020). Effect of polymer molecular weight on structure and performance of PVDF hollow fiber membranes prepared via TIPS process with co-extrusion of solvent using triple orifice spinneret. Journal of Membrane Science, 118854. doi:https://doi.org/10.1016/j.memsci.2020.118854
Zhang, S., Tang, X., Zheng, H., Wang, D., Xie, Z., Ding, W., & Zheng, X. (2021). Combination of bacitracin-based flocculant and surface enhanced Raman scattering labels for flocculation, identification and sterilization of multiple bacteria in water treatment. Journal of Hazardous Materials, 407, 124389. doi:https://doi.org/10.1016/j.jhazmat.2020.124389
Zhang, W., He, Z., Han, Y., Jiang, Q., Zhan, C., Zhang, K., . . . Zhang, R. (2020). Structural design and environmental applications of electrospun nanofibers. Composites Part A: Applied Science and Manufacturing, 137, 106009. doi:https://doi.org/10.1016/j.compositesa.2020.106009
Zhang, Y., Wang, H., Li, Y., Wang, B., Huang, J., Deng, S., . . . Wang, Y. (2020). Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment. Water Research, 183, 116115. doi:https://doi.org/10.1016/j.watres.2020.116115
Zhao, X., Su, Y., Chen, W., Peng, J., & Jiang, Z. (2012). Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. Journal of Membrane Science, 415-416, 824-834. doi:10.1016/j.memsci.2012.05.075
Zhou, C., Chu, R., Wu, R., & Wu, Q. (2011). Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules, 12(7), 2617-2625. doi:10.1021/bm200401p
Zhu, J., Hou, J., Zhang, Y., Tian, M., He, T., Liu, J., & Chen, V. (2018). Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. Journal of Membrane Science, 550, 173-197. doi:https://doi.org/10.1016/j.memsci.2017.12.071
Zhu, S., & Nie, L. (2020). Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. Journal of Industrial and Engineering Chemistry. doi:https://doi.org/10.1016/j.jiec.2020.09.016
dc.rights.*.fl_str_mv CC0 1.0 Universal
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Tunja
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado de Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/33354/3/license_rdf
https://repository.usta.edu.co/bitstream/11634/33354/4/license.txt
https://repository.usta.edu.co/bitstream/11634/33354/5/2021danielatorresjohanasandoval.pdf
https://repository.usta.edu.co/bitstream/11634/33354/6/Carta%20Derechos%20de%20autor.pdf
https://repository.usta.edu.co/bitstream/11634/33354/7/Carta%20autorizaci%c3%b3n%20de%20la%20facultad.pdf
https://repository.usta.edu.co/bitstream/11634/33354/8/2021danielatorresjohanasandoval.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/33354/9/Carta%20Derechos%20de%20autor.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/33354/10/Carta%20autorizaci%c3%b3n%20de%20la%20facultad.pdf.jpg
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
aedeaf396fcd827b537c73d23464fc27
25a8e295094608f1d368aa939a880c83
1050dfcb9b12a7168632fe5f39ca479f
2da4deb6f141d2d21552f9bab36317fb
091dc1cd430a143b79545e722a6d359f
81c78e2cc55a0736d95483397dfa446e
403cd08b60987057789324331830fc37
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv noreply@usta.edu.co
_version_ 1782026095448555520
spelling Sánchez Cepeda, Ángela PatriciaSáchica Castillo, Ever HumbertoMontes Malagón, Luz AmandaSegura Peña, SullyTorres Becerra, Daniela AstridSandoval Acuña, Leydi Johana2021-04-09T21:30:49Z2021-04-09T21:30:49Z2021-04-07Torres, D. Sandoval, L. (2021). Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática. Tesis de pregrado, Universidad Santo Tomás, Tunja.http://hdl.handle.net/11634/33354reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn los últimos años, ha tenido gran relevancia el uso de nuevos materiales como las nanopartículas (NPs) de óxido de grafeno (GO) en la fabricación de fibras poliméricas compuestas obtenidas por la técnica de electrospinning a escala micro y nanométricas para aplicaciones en la eliminación de microorganismos presentes en el agua. En este estudio, se realizó una metodología de revisión sistemática con el uso del Software Parsifal, mediante 4 fases: planificación, búsqueda de documentos en las bases de datos, extracción de datos y análisis de datos extraídos. La investigación llevo a un total de 906 artículos donde 169 eran duplicados, quedando 737 artículos a los cuales se realizó un filtro de clasificación por exclusión e inclusión: total artículos seleccionados, aceptados, rechazados y duplicados. De acuerdo al formulario e extracción de datos se utilizaron 222 artículos dando respuesta a las preguntas de investigación que se plantearon en esta revisión sistemática. El desarrollo de esta investigación condujo a la identificación de las propiedades de NPs de GO como agentes biocidas de dos casos de estudio de membranas poliméricas desnudas o puras, (matriz polimérica), las cuales fueron modificadas de la siguiente forma: caso 1, membranas de microfiltración (MF) de poliacrilonitrilo (PAN) modificadas con NPs de plata/oxido de grafeno (Ag/GO) vs membranas de Poli (ácido láctico)/poliacrilonitrilo (PLA/PAN) modificadas con nanocristales de celulosa (NCC) y nanocristales de quitina (NCQ). Para el estudio del caso 2, las membranas de MF de Poli (fluoruro de vinilideno) (PVDF) modificadas con NPs de GO vs membranas de Policaprolactama también llamada (poliamida 6) (PA-6) modificadas con NPs de dióxido de titanio (TiO2). Como resultado a estos dos casos de estudio , para el caso 1 , las NPs de Ag/GO vs NCC y NCQ tuvieron una excelente actividad antibacteriana y antiincrustante con una efectividad en la eliminación de microorganismos con las NPs de Ag/GO y una tasa de reducción del 100% para la E. coli y un 87.6 % para el S. aureus, en comparación con los NCQ y NCC, la efectividad en la eliminación bacteriana con los dos nanocristales fue de un 85% para la E. coli por exclusión de tamaño y un 95% con el uso de NCQ. Para el estudio del caso 2, las membranas de MF de (PVDF) modificadas con NPs de GO vs membranas de PA-6 modificadas con NPs de (TiO2), la respuesta fue una tasa de reducción de bacterias con el uso de las NPs de GO en un 100% para la E. coli y un 99% para el S. aureus y con las NPs de TiO2 fue de un 99.99% para el S. aureus después de 6 h de exposición a rayos UV.In recent years, the use of new materials such as graphene oxide (GO) nanoparticles (NPs) has been of great relevance in the manufacture of composite polymeric fibers obtained by the electrospinning technique on a micro and nanometric scale for applications in removal of microorganisms present in the water. In this study, a systematic review methodology was carried out with the use of Parsifal Software, through 4 phases: planning, search for documents in databases, data extraction and analysis of extracted data. The research led to a total of 906 articles where 169 were duplicates, leaving 737 articles to which a classification filter by exclusion and inclusion was performed: total articles selected, accepted, rejected and duplicated. According to the data extraction form, 222 articles were used responding to the research questions posed in this systematic review. The development of this research led to the identification of the properties of GO NPs as biocidal agents of two case studies of bare or pure polymeric membranes (polymeric matrix), which were modified as follows: case 1, membranes of microfiltration (MF) of polyacrylonitrile (PAN) modified with silver NPs / graphene oxide (Ag / GO) vs Poly (lactic acid) / polyacrylonitrile (PLA / PAN) membranes modified with cellulose nanocrystals (NCC) and chitin nanocrystals (NCQ). For the study of case 2, Poly (vinylidene fluoride) (PVDF) MF membranes modified with GO NPs vs polycaprolactam membranes also called (polyamide 6) (PA-6) modified with titanium dioxide NPs (TiO2) As a result of these two study cases, for case 1, the Ag / GO NPs vs NCC and NCQ had excellent antibacterial and antifouling activity with an effectiveness in the elimination of microorganisms with the Ag / GO NPs and a rate of reduction of 100% for E. coli and 87.6% for S. aureus, compared to NCQ and NCC, the effectiveness in bacterial elimination with the two nanocrystals was 85% for E. coli by exclusion of size and 95% with the use of NCQ. For the case study 2, the MF membranes of (PVDF) modified with GO NPs vs PA-6 membranes modified with NPs of (TiO2), the response was a reduction rate of bacteria with the use of the NPs of GO 100% for E. coli and 99% for S. aureus and with the TiO2 NPs it was 99.99% for S. aureus after 6 h of UV exposure.Ingeniero AmbientalPregradoapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemáticabachelor thesisTesis de pregradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisGraphene oxideElectrospinningNanofibersMicroorganismsPolymersComposite materialsóxido de grafenoElectrospinningNanofibrasMicroorganismosPolímerosMateriales compuestosCRAI-USTA TunjaAcosta Castellanos Pedro Mauricio, C. C. (2015). Análisis de interferencia de parámetros físicos del agua, en desinfección por radiación UV. Revista de Tecnología, 105-112.Alejo, J. C. (2011). EVALUACIÓN DE RIESGOS DE STAPHYLOCOCCUS AUREUS ENTEROTOXIGÉNICO EN ALIMENTOS PREPARADOS NO. BOGOTA: Instituto Nacional de Salud.Araque, I. D. (2018). Diagnóstico y propuesta de fitorremediación para el tratamiento de aguas residuales, sector tierra negra. L'esprit Ingénieux, 132-140.Cornellio, V. C. (2016). Astaxantina integrada en Nanowhiskas de Quitina: estudio de la degradacion termica. Morelia Mochoacán: privada.Becerra, D. A., & Acuña, L. J. (2021). Montaje Electroespinning. Tunja: Propia.Dr. D. García, F. (2017). Mapping sistemáticos de literatura. Caso práctico de planificación usando Parsifal. Mexico: Instituto de ciencias basicas.Lina Patricia Vega and Gustavo A. Peñuela, P. (2018). High Frequency Sonochemical Degradation of Benzophenone-3 in Water. Journal of Environmental Engineering.Abd Halim, N. S., Wirzal, M. D. H., Hizam, S. M., Bilad, M. R., Nordin, N. A. H. M., Sambudi, N. S., . . . Yusoff, A. R. M. (2020). Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. Journal of Environmental Chemical Engineering, 104613. doi:https://doi.org/10.1016/j.jece.2020.104613Abdulla, N. K., Siddiqui, S. I., Fatima, B., Sultana, R., Tara, N., Hashmi, A. A., . . . Chaudhry, S. A. (2021). Silver based hybrid nanocomposite: A novel antibacterial material for water cleansing. Journal of Cleaner Production, 284. doi: 10.1016/j.jclepro.2020.124746Acosta, H. A., Villada, H. S., & Prieto, P. A. (2006). Envejecimiento de almidones termoplásticos agrios de yuca y nativos de papa por microscopía de fuerza atómica. Información tecnológica, 17(3), 71-78.Ademola Bode-Aluko, C., Pereao, O., Kyaw, H. H., Al-Naamani, L., Al-Abri, M. Z., Tay Zar Myint, M., . . . Dobretsov, S. (2021). Photocatalytic and antifouling properties of electrospun TiO2 polyacrylonitrile composite nanofibers under visible light. Materials Science and Engineering: B, 264, 114913. doi:https://doi.org/10.1016/j.mseb.2020.114913Aghapour Aktij, S., Taghipour, A., Rahimpour, A., Mollahosseini, A., & Tiraferri, A. (2020). A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics, 108, 106228. doi:https://doi.org/10.1016/j.ultras.2020.106228Ahire, J. J., Neveling, D. P., & Dicks, L. M. T. (2018). Polyacrylonitrile (PAN) nanofibres spun with copper nanoparticles: an anti-Escherichia coli membrane for water treatment. Applied Microbiology and Biotechnology, 102(16), 7171-7181. doi:10.1007/s00253-018-9051-0Ahmad, A., qureshi, A. S., Li, L., Bao, J., Jia, X., Xu, Y., & Guo, X. (2016). Antibacterial activity of graphene supported FeAg bimetallic nanocomposites. Colloids and Surfaces B: Biointerfaces, 143, 490-498. doi:https://doi.org/10.1016/j.colsurfb.2016.03.065Aijuka, M., Santiago, A. E., Girón, J. A., Nataro, J. P., & Buys, E. M. (2018). Enteroaggregative Escherichia coli is the predominant diarrheagenic E. coli pathotype among irrigation water and food sources in South Africa. International Journal of Food Microbiology, 278, 44-51. doi:https://doi.org/10.1016/j.ijfoodmicro.2018.04.018Akhavan, O., & Ghaderi, E. (2010). Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. Acs Nano, 4(10), 5731-5736. doi:10.1021/nn101390xAl Aani, S., Mustafa, T. N., & Hilal, N. (2020). Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. Journal of Water Process Engineering, 35, 101241. doi:https://doi.org/10.1016/j.jwpe.2020.101241ALDANA, A. S., SANDOVAL, E. R., & QUINTERO, A. F. (2005). Aplicación del análisis por calorimetría diferencial de barrido (DSC) para la caracterización de las modificaciones del almidón. Dyna, 72(146), 45-53.Alejo, J., Cortes, M, Correa, D, Cebeiro, K Herrera, J. (2011). EVALUACIÓN DE RIESGOS DE STAPHYLOCOCCUS AUREUS ENTEROTOXIGÉNICO EN ALIMENTOS PREPARADOS NO. BOGOTA: Instituto Nacional de Salud.Amiri, S., Asghari, A., Vatanpour, V., & Rajabi, M. (2020). Fabrication and characterization of a novel polyvinyl alcohol-graphene oxide-sodium alginate nanocomposite hydrogel blended PES nanofiltration membrane for improved water purification. Separation and Purification Technology, 250, 117216. doi:https://doi.org/10.1016/j.seppur.2020.117216Angel, N., Guo, L., Yan, F., Wang, H., & Kong, L. (2020). Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology. Journal of Agriculture and Food Research, 2, 100015. doi:https://doi.org/10.1016/j.jafr.2019.100015Anis, S. F., Hashaikeh, R., & Hilal, N. (2019). Microfiltration membrane processes: A review of research trends over the past decade. Journal of Water Process Engineering, 32, 100941. doi:https://doi.org/10.1016/j.jwpe.2019.100941Arenas, G. N., & Cañas, L. A. (2007). Procedimiento para medir ángulos de contacto en sólidos particulados finos. Scientia et technica, 1(36).Ashfaq, M. Y., Al-Ghouti, M. A., & Zouari, N. (2020). Functionalization of reverse osmosis membrane with graphene oxide to reduce both membrane scaling and biofouling. Carbon, 166, 374-387. doi:https://doi.org/10.1016/j.carbon.2020.05.017Azizi-Lalabadi, M., Hashemi, H., Feng, J., & Jafari, S. M. (2020). Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Advances in Colloid and Interface Science, 284, 102250. doi:https://doi.org/10.1016/j.cis.2020.102250Bao, Q., Zhang, D., & Qi, P. (2011). Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Journal of Colloid and Interface Science, 360(2), 463-470. doi:10.1016/j.jcis.2011.05.009Bao, Q., Zhang, D., & Qi, P. (2011). Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Journal of Colloid and Interface Science, 360(2), 463-470. doi:10.1016/j.jcis.2011.05.009Barani, M., Bazgir, S., Keyvan Hosseini, M., & Keyvan Hosseini, P. (2021). Eco-facile application of electrospun nanofibers to the oil-water emulsion separation via coalescing filtration in pilot- scale and beyond. Process Safety and Environmental Protection, 148, 342-357. doi:https://doi.org/10.1016/j.psep.2020.10.015Barco-Bonilla, N., Romero-González, R., Plaza-Bolaños, P., Garrido Frenich, A., & Martínez Vidal, J. L. (2010). Analysis and study of the distribution of polar and non-polar pesticides in wastewater effluents from modern and conventional treatments. Journal of Chromatography A, 1217(50), 7817-7825. doi:https://doi.org/10.1016/j.chroma.2010.10.011Barua, B., & Saha, M. C. (2015). Investigation on jet stability, fiber diameter, and tensile properties of electrospun polyacrylonitrile nanofibrous yarns. Journal of Applied Polymer Science, 132(18). doi:10.1002/app.41918Bassyouni, M., Abdel-Aziz, M. H., Zoromba, M. S., Abdel-Hamid, S. M. S., & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification. Journal of Industrial and Engineering Chemistry, 73, 19-46. doi:https://doi.org/10.1016/j.jiec.2019.01.045Becerra, D. A. T., & Acuña, L. J. S. (2021). Montaje Electroespinning. Retrieved from Tunja:Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A., & Mameri, N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29(1), 48-56. doi:10.1016/j.foodhyd.2012.02.013Bhoj, Y., Tharmavaram, M., & Rawtani, D. (2020). A comprehensive approach to antifouling strategies in desalination, marine environment, and wastewater treatment. Chemical Physics Impact, 100008. doi:https://doi.org/10.1016/j.chphi.2020.100008Bjorge, D., Daels, N., De Vrieze, S., Dejans, P., Van Camp, T., Audenaert, W., . . . Van Hulle, S. W. H. (2009). Performance assessment of electrospun nanofibers for filter applications. Desalination, 249(3), 942-948. doi:https://doi.org/10.1016/j.desal.2009.06.064Buruga, K., Song, H., Shang, J., Bolan, N., Jagannathan, T. K., & Kim, K.-H. (2019). A review on functional polymer-clay based nanocomposite membranes for treatment of water. Journal of Hazardous Materials, 379, 120584. doi:https://doi.org/10.1016/j.jhazmat.2019.04.067Cassano, A., & Basile, A. (2013). 7 - Integrating different membrane operations and combining membranes with conventional separation techniques in industrial processes. In A. Basile (Ed.), Handbook of Membrane Reactors (Vol. 2, pp. 296-343): Woodhead Publishing.Cornellio, V. C. (2016). Astaxantina integrada en Nanowhiskas de Quitina: estudio de la degradacion termica. Morelia Mochoacán: privada.Chae, H. R., Lee, J., Lee, C. H., Kim, I. C., & Park, P. K. (2015). Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. Journal of Membrane Science, 483, 128-135. doi:10.1016/j.memsci.2015.02.045Chakraborty, S., & Biswas, M. C. (2020). 3D printing technology of polymer-fiber composites in textile and fashion industry: A potential roadmap of concept to consumer. Composite Structures, 248, 112562. doi:https://doi.org/10.1016/j.compstruct.2020.112562Chakraborty, S., & Biswas, M. C. (2020). 3D printing technology of polymer-fiber composites in textile and fashion industry: A potential roadmap of concept to consumer. Composite Structures, 248, 112562. doi:https://doi.org/10.1016/j.compstruct.2020.112562Chen, H., Huang, M., Liu, Y., Meng, L., & Ma, M. (2020). Functionalized electrospun nanofiber membranes for water treatment: A review. Science of The Total Environment, 739, 139944. doi:https://doi.org/10.1016/j.scitotenv.2020.139944Chen, H., Huang, M., Wang, Z., Gao, P., Cai, T., Song, J., . . . Meng, L. (2020). Enhancing rejection performance of tetracycline resistance genes by a TiO2/AgNPs-modified nanofiber forward osmosis membrane. Chemical Engineering Journal, 382, 123052. doi:https://doi.org/10.1016/j.cej.2019.123052Chen, H., Ni, J., Chen, J., Xue, W., Wang, J., Na, H., & Zhu, J. (2015). Activation of corn cellulose with alcohols to improve its dissolvability in fabricating ultrafine fibers via electrospinning. Carbohydrate Polymers, 123, 174-179. doi:https://doi.org/10.1016/j.carbpol.2015.01.023Chen, H. Q., Gao, D., Wang, B., Zhao, R. F., Guan, M., Zheng, L. N., . . . Feng, W. Y. (2014). Graphene oxide as an anaerobic membrane scaffold for the enhancement of B. adolescentis proliferation and antagonistic effects against pathogens E-coli and S-aureus. Nanotechnology, 25(16). doi:10.1088/0957-4484/25/16/165101Chen, J., Peng, H., Wang, X., Shao, F., Yuan, Z., & Han, H. (2014). Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 6(3), 1879-1889. doi:10.1039/c3nr04941hDaels, N., De Vrieze, S., Sampers, I., Decostere, B., Westbroek, P., Dumoulin, A., . . . Van Hulle, S. W. H. (2011). Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter. Desalination, 275(1-3), 285-290. doi:10.1016/j.desal.2011.03.012Daels, N., Radoicic, M., Radetic, M., De Clerck, K., & Van Hulle, S. W. H. (2015). Electrospun nanofibre membranes functionalised with TiO<inf>2</inf> nanoparticles: Evaluation of humic acid and bacterial removal from polluted water. Separation and Purification Technology, 149, 488-494. doi:10.1016/j.seppur.2015.06.016Daels, N., Radoicic, M., Radetic, M., Van Hulle, S. W. H., & De Clerck, K. (2014). Functionalisation of electrospun polymer nanofibre membranes with TiO <inf>2</inf> nanoparticles in view of dissolved organic matter photodegradation. Separation and Purification Technology, 133, 282-290. doi:10.1016/j.seppur.2014.06.040Daghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: a review. Environmental Chemistry Letters, 11(3), 209-227. doi:10.1007/s10311-013-0404-8Dasari, A., Quirós, J., Herrero, B., Boltes, K., García-Calvo, E., & Rosal, R. (2012). Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. Journal of Membrane Science, 405-406, 134-140. doi:https://doi.org/10.1016/j.memsci.2012.02.060Deng, D., Aouad, W., Braff, W. A., Schlumpberger, S., Suss, M. E., & Bazant, M. Z. (2015). Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection. Desalination, 357, 77-83. doi:https://doi.org/10.1016/j.desal.2014.11.011Dhanawade, A., Bhosle, R., Jagtap, R., & Sorate, K. A. (2020). Comparative study of lead zirconate titanate ceramic and carbon fiber reinforced polymer composite surfaces machined by abrasive water jet. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2020.10.918Ding, W., Jin, W., Cao, S., Zhou, X., Wang, C., Jiang, Q., . . . Wang, Q. (2019). Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Research, 160, 339-349. doi:https://doi.org/10.1016/j.watres.2019.05.014Cui, J., Li, F., Wang, Y., Zhang, Q., Ma, W., & Huang, C. (2020). Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology, 250, 117116. doi:https://doi.org/10.1016/j.seppur.2020.117116Dong, F., Lin, Q., Li, C., Wang, L., & García, A. (2021). UV/chlorination process of algal-laden water: Algal inactivation and disinfection byproducts attenuation. Separation and Purification Technology, 257, 117896. doi:https://doi.org/10.1016/j.seppur.2020.117896Dr. D. García, F. (2017). Mapping sistemáticos de literatura. Caso práctico de planificación usando Parsifal. Mexico: Instituto de ciencias basicasDu, J., Li, N., Tian, Y., Zhang, J., & Zuo, W. (2020). Preparation of PVDF membrane blended with graphene oxide-zinc sulfide (GO-ZnS) nanocomposite for improving the anti-fouling property. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112694. doi:https://doi.org/10.1016/j.jphotochem.2020.112694Dubey, S. P., Thakur, V. K., Krishnaswamy, S., Abhyankar, H. A., Marchante, V., & Brighton, J. L. (2017). Progress in environmental-friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum, 146, 655-663. doi:10.1016/j.vacuum.2017.07.009Dwivedi, M., & Shaw, A. (2021). Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie, 182, 85-98. doi:https://doi.org/10.1016/j.biochi.2021.01.004Esfahani, M. R., Aktij, S. A., Dabaghian, Z., Firouzjaei, M. D., Rahimpour, A., Eke, J., . . . Koutahzadeh, N. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 213, 465-499. doi:https://doi.org/10.1016/j.seppur.2018.12.050Fahimirad, S., Fahimirad, Z., & Sillanpää, M. (2021). Efficient removal of water bacteria and viruses using electrospun nanofibers. Science of The Total Environment, 751, 141673. doi:https://doi.org/10.1016/j.scitotenv.2020.141673Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. doi:10.1016/j.addr.2016.06.012Feng, W., Zhang, Y.-s., Shao, Y.-w., Huang, T., Zhang, N., Yang, J.-h., . . . Wang, Y. (2021). Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles. European Polymer Journal, 145, 110245. doi:https://doi.org/10.1016/j.eurpolymj.2020.110245Firouzjaei, M. D., Seyedpour, S. F., Aktij, S. A., Giagnorio, M., Bazrafshan, N., Mollahosseini, A., . . . Rahimpour, A. (2020). Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. Journal of Membrane Science, 596, 117604. doi:https://doi.org/10.1016/j.memsci.2019.117604Gallego-Urrea, J. A., Hammes, J., Cornelis, G., & Hassellöv, M. (2016). Coagulation and sedimentation of gold nanoparticles and illite in model natural waters: Influence of initial particle concentration. NanoImpact, 3-4, 67-74. doi:https://doi.org/10.1016/j.impact.2016.10.004García Guirado, C. (2020). Aplicaciones biomédicas del óxido de grafeno.Ghosal, K., Agatemor, C., Špitálsky, Z., Thomas, S., & Kny, E. (2019). Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chemical Engineering Journal, 358, 1262-1278. doi:https://doi.org/10.1016/j.cej.2018.10.117Goetz, L. A., Jalvo, B., Rosal, R., & Mathew, A. P. (2016). Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. Journal of Membrane Science, 510, 238-248. doi:https://doi.org/10.1016/j.memsci.2016.02.069Greiner, A., & Wendorff, J. H. (2007). Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angewandte Chemie-International Edition, 46(30), 5670-5703. doi:10.1002/anie.20060464Grylewicz, A., & Mozia, S. (2021). Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Separation and Purification Technology, 256, 117827. doi:https://doi.org/10.1016/j.seppur.2020.117827Guerra, C., Ringuedé, A., Azocar, M. I., Walter, M., Galarce, C., Bedioui, F., . . . Sancy, M. (2021). Corrosion Analysis of AISI 430 Stainless Steel in the presence of Escherichia coli and Staphylococcus aureus. Corrosion Science, 109204. doi:https://doi.org/10.1016/j.corsci.2020.109204Gwenzi, W., Musiyiwa, K., & Mangori, L. (2020). Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: A hotspot reservoir. Journal of Environmental Chemical Engineering, 8(1). doi:10.1016/j.jece.2018.02.028Halley, P. J., & Dorgan, J. R. (2011). Next-generation biopolymers: Advanced functionality and improved sustainability. MRS Bulletin, 36(9), 687-691. doi:10.1557/mrs.2011.180Hamdy Makhlouf, A. S., Perez, A., & Guerrero, E. (2020). Chapter 13 - Recent trends in smart polymeric coatings in biomedicine and drug delivery applications. In A. S. H. Makhlouf & N. Y. Abu-Thabit (Eds.), Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications (pp. 359-381): Elsevier.Han, N., Wang, W., Lv, X., Zhang, W., Yang, C., Wang, M., . . . Zhang, X. (2019a). Highly Efficient Purification of Multicomponent Wastewater by Electrospinning Kidney-Bean-Skin-like Porous H-PPAN/rGO- g-PAO@Ag+/Ag Composite Nanofibrous Membranes. ACS Applied Materials and Interfaces, 11(50), 46920-46929. doi:10.1021/acsami.9b16889Han, N., Wang, W. J., Lv, X. S., Zhang, W. X., Yang, C., Wang, M. L., . . . Zhang, X. X. (2019b). Highly Efficient Purification of Multicomponent Wastewater by Electrospinning Kidney-Bean-Skin-like Porous H-PPAN/rGO-g-PAO@Ag+/Ag Composite Nanofibrous Membranes. Acs Applied Materials & Interfaces, 11(50), 46920-46929. doi:10.1021/acsami.9b16889Havlíček, K., Svobodová, L., Bakalova, T., & Lederer, T. (2020). Influence of electrospinning methods on characteristics of polyvinyl butyral and polyurethane nanofibres essential for biological applications. Materials & Design, 194, 108898. doi:https://doi.org/10.1016/j.matdes.2020.108898Holloway, R. W., Miller-Robbie, L., Patel, M., Stokes, J. R., Munakata-Marr, J., Dadakis, J., & Cath, T. Y. (2016). Life-cycle assessment of two potable water reuse technologies: MF/RO/UV–AOP treatment and hybrid osmotic membrane bioreactors. Journal of Membrane Science, 507, 165-178. doi:https://doi.org/10.1016/j.memsci.2016.01.045Hossain, F., Perales-Perez, O. J., Hwang, S., & Román, F. (2014). Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Science of The Total Environment, 466-467, 1047-1059. doi:10.1016/j.scitotenv.2013.08.009Hottle, T. A., Bilec, M. M., & Landis, A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9), 1898-1907. doi:https://doi.org/10.1016/j.polymdegradstab.2013.06.016Hu, M., Zheng, S. X., & Mi, B. X. (2016). Organic Fouling of Graphene Oxide Membranes and Its Implications for Membrane Fouling Control in Engineered Osmosis. Environmental Science & Technology, 50(2), 685-693. doi:10.1021/acs.est.5b03916Hu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., . . . Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200-204. doi:https://doi.org/10.1016/j.memsci.2014.11.043Huang, M.-Y., Chen, Y., Yan, X., Guo, X.-J., Dong, L., & Lang, W.-Z. (2020). Two-dimensional Montmorillonite membranes with efficient water filtration. Journal of Membrane Science, 614, 118540. doi:https://doi.org/10.1016/j.memsci.2020.118540Ibrahim, H. M., & Klingner, A. (2020). A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 90, 106647. doi:https://doi.org/10.1016/j.polymertesting.2020.106647Iqbal, A. K. M. A., Sakib, N., Iqbal, A. K. M. P., & Nuruzzaman, D. M. (2020). Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia, 12, 100815. doi:https://doi.org/10.1016/j.mtla.2020.100815Jalvo, B., Mathew, A. P., & Rosal, R. (2017). Coaxial poly(lactic acid) electrospun composite membranes incorporating cellulose and chitin nanocrystals. Journal of Membrane Science, 544, 261-271. doi:https://doi.org/10.1016/j.memsci.2017.09.033Jang, W., Yun, J., Jeon, K., & Byun, H. (2015). PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications. Rsc Advances, 5(58), 46711-46717. doi:10.1039/c5ra04439aJang, W., Yun, J., Park, Y., Park, I. K., Byun, H., & Lee, C. H. (2020a). Polyacrylonitrile Nanofiber Membrane Modified with Ag/GO Composite for Water Purification System. Polymers, 12(11). doi:10.3390/polym12112441Jang, W., Yun, J., Park, Y., Park, I. K., Byun, H., & Lee, C. H. (2020b). Polyacrylonitrile nanofiber membrane modified with ag/go composite for water purification system. Polymers, 12(11), 1-12. doi:10.3390/polym12112441Ji, H., Sun, H., & Qu, X. (2016). Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Advanced Drug Delivery Reviews, 105, 176-189. doi:https://doi.org/10.1016/j.addr.2016.04.009Juncos Bombin, A. D., Dunne, N. J., & McCarthy, H. O. (2020). Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Materials Science and Engineering: C, 114, 110994. doi:https://doi.org/10.1016/j.msec.2020.110994Karagoz, S., Kiremitler, N. B., Sakir, M., Salem, S., Onses, M. S., Sahmetlioglu, E., . . . Yilmaz, E. (2020). Synthesis of Ag and TiO2 modified polycaprolactone electrospun nanofibers (PCL/TiO2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications. Ecotoxicology and Environmental Safety, 188, 109856. doi:https://doi.org/10.1016/j.ecoenv.2019.109856Karami, P., Khorshidi, B., McGregor, M., Peichel, J. T., Soares, J. B. P., & Sadrzadeh, M. (2020). Thermally stable thin film composite polymeric membranes for water treatment: A review. Journal of Cleaner Production, 250, 119447. doi:https://doi.org/10.1016/j.jclepro.2019.119447Kaur, S., Sundarrajan, S., Rana, D., Sridhar, R., Gopal, R., Matsuura, T., & Ramakrishna, S. (2014). Review: The characterization of electrospun nanofibrous liquid filtration membranes. Journal of Materials Science, 49(18), 6143-6159. doi:10.1007/s10853-014-8308-yKim, H.-C., Choi, B. G., Noh, J., Song, K. G., Lee, S.-h., & Maeng, S. K. (2014). Electrospun nanofibrous PVDF–PMMA MF membrane in laboratory and pilot-scale study treating wastewater from Seoul Zoo. Desalination, 346, 107-114. doi:https://doi.org/10.1016/j.desal.2014.05.005Kimura, K., Ogyu, R., Miyoshi, T., & Watanabe, Y. (2015). Transition of major components in irreversible fouling of MBRs treating municipal wastewater. Separation and Purification Technology, 142, 326-331. doi:10.1016/j.seppur.2014.12.030Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie - International Edition, 50(24), 5438-5466. doi:10.1002/anie.201001273Ko, K., Kim, M. J., Lee, J. Y., Kim, W., & Chung, H. (2019). Effects of graphene oxides and silver-graphene oxides on aquatic microbial activity. Science of The Total Environment, 651, 1087-1095. doi:10.1016/j.scitotenv.2018.09.124Kochkodan, V., & Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 356, 187-207. doi:10.1016/j.desal.2014.09.015Kopp, A., Smeets, R., Gosau, M., Kröger, N., Fuest, S., Köpf, M., . . . Burg, S. (2020). Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens. Bioactive Materials, 5(2), 241-252. doi:https://doi.org/10.1016/j.bioactmat.2020.01.010Laflamme, O., Sérodes, J.-B., Simard, S., Legay, C., Dorea, C., & Rodriguez, M. J. (2020). Occurrence and fate of ozonation disinfection by-products in two Canadian drinking water systems. Chemosphere, 260, 127660. doi:https://doi.org/10.1016/j.chemosphere.2020.127660Lawal, A. T. (2019). Graphene-based nano composites and their applications. A review. Biosensors and Bioelectronics, 141, 111384. doi:https://doi.org/10.1016/j.bios.2019.111384Li, H., & Wang, M. (2021). 18 - Electrospinning and nanofibrous structures for biomedical applications. In A. Osaka & R. Narayan (Eds.), Bioceramics (pp. 401-436): Elsevier.Li, J. H., Zhang, H., Zhang, W., & Liu, W. (2019). Nanofiber membrane of graphene oxide/polyacrylonitrile with highly efficient antibacterial activity. Journal of Biomaterials Science, Polymer Edition, 30(17), 1620-1635. doi:10.1080/09205063.2019.1652793Li, L., Hashaikeh, R., & Arafat, H. A. (2013). Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). Journal of Membrane Science, 436, 57-67. doi:https://doi.org/10.1016/j.memsci.2013.02.037Li, N., & Yang, H. (2021). Construction of natural polymeric imprinted materials and their applications in water treatment: A review. Journal of Hazardous Materials, 403, 123643. doi:https://doi.org/10.1016/j.jhazmat.2020.123643Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 42(18), 4591-4602. doi:10.1016/j.watres.2008.08.015Li, S., Kong, L., & Ziegler, G. R. (2020). Electrospinning of octenylsuccinylated starch-pullulan nanofibers from aqueous dispersions. Carbohydrate Polymers, 116933. doi:https://doi.org/10.1016/j.carbpol.2020.116933Li, X., Cai, M., Wang, L., Niu, F., Yang, D., & Zhang, G. (2019). Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Science of The Total Environment, 659, 1415-1427. doi:https://doi.org/10.1016/j.scitotenv.2018.12.344Liao, Y., Loh, C.-H., Tian, M., Wang, R., & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77, 69-94. doi:https://doi.org/10.1016/j.progpolymsci.2017.10.003Liu, C., Shen, J., Liao, C. Z., Yeung, K. W. K., & Tjong, S. C. (2018). Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics. Express Polymer Letters, 12(4), 365-382. doi:10.3144/expresspolymlett.2018.31Liu, C., Shen, J., Yeung, K. W. K., & Tjong, S. C. (2017). Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared By Electrospinning. Acs Biomaterials Science & Engineering, 3(3), 471-486. doi:10.1021/acsbiomaterials.6b00766Liu, H., Liu, X., Zhao, F., Liu, Y., Liu, L., Wang, L., . . . Huang, P. (2020). Preparation of a hydrophilic and antibacterial dual function ultrafiltration membrane with quaternized graphene oxide as a modifier. Journal of Colloid and Interface Science, 562, 182-192. doi:https://doi.org/10.1016/j.jcis.2019.12.017Liu, Y., Cheng, P., Guo, Q., Liu, N., Wan, Y., Zhong, W., . . . Wang, D. (2020). Ag nanoparticles decorated PVA-co-PE nanofibrous microfiltration membrane with antifouling surface for efficient sterilization. Composites Communications, 21, 100379. doi:https://doi.org/10.1016/j.coco.2020.100379Liu, Y., Wang, R., Ma, H., Hsiao, B. S., & Chu, B. (2013). High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes. Polymer, 54(2), 548-556. doi:https://doi.org/10.1016/j.polymer.2012.11.064Liu, Y., Zhu, J., Zheng, J., Gao, X., Tian, M., Wang, X., . . . Van der Bruggen, B. (2020). Porous organic polymer embedded thin-film nanocomposite membranes for enhanced nanofiltration performance. Journal of Membrane Science, 602, 117982. doi:https://doi.org/10.1016/j.memsci.2020.117982Lopez de Dicastillo, C., Garrido, L., Alvarado, N., Romero, J., Palma, J. L., & Galotto, M. J. (2017). Improvement of polylactide properties through cellulose nanocrystals embedded in poly (vinyl alcohol) electrospun nanofibers. Nanomaterials, 7(5), 106Lv, H., Cui, S., Yang, Q., Song, X., Wang, D., Hu, J., . . . Liu, Y. (2021). AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. Materials Science and Engineering: C, 118, 111331. doi:https://doi.org/10.1016/j.msec.2020.111331Lyu, J.-Y., Chen, S., He, W., Zhang, X.-X., Tang, D.-y., Liu, P.-J., & Yan, Q.-L. (2019). Fabrication of high-performance graphene oxide doped PVDF/CuO/Al nanocomposites via electrospinning. Chemical Engineering Journal, 368, 129-137. doi:https://doi.org/10.1016/j.cej.2019.02.170Mairinger, T., Loos, M., & Hollender, J. (2021). Characterization of water-soluble synthetic polymeric substances in wastewater using LC-HRMS/MS. Water Research, 190, 116745. doi:https://doi.org/10.1016/j.watres.2020.116745Malwal, D., & Gopinath, P. (2017a). Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation. J Hazard Mater, 321, 611-621. doi:10.1016/j.jhazmat.2016.09.050Malwal, D., & Gopinath, P. (2017b). Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation. Journal of Hazardous Materials, 321, 611-621. doi:10.1016/j.jhazmat.2016.09.050Manals-Cutiño, E., Penedo-Medina, M., & Giralt-Ortega, G. (2011). Análisis termogravimetrico y térmico diferencial de diferentes biomasas vegetales. Tecnología química, 31(2), 180-190Mazhar, M. A., Khan, N. A., Ahmed, S., Khan, A. H., Hussain, A., Rahisuddin, . . . Vambol, V. (2020). Chlorination disinfection by-products in municipal drinking water – A review. Journal of Cleaner Production, 273, 123159. doi:https://doi.org/10.1016/j.jclepro.2020.123159Melo, S. F., Neves, S. C., Pereira, A. T., Borges, I., Granja, P. L., Magalhães, F. D., & Gonçalves, I. C. (2020). Incorporation of graphene oxide into poly(ɛ-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Materials Science and Engineering: C, 109, 110537. doi:https://doi.org/10.1016/j.msec.2019.110537Merchante Ortí, R. (2016). Análisis y optimización de parámetros de proceso para la obtención de fibras poliméricas tipo core-shell mediante electrospinning coaxial. Universitat Politècnica de València.Mincea, M., Negrulescu, A., & Ostafe, V. (2012). Preparation, modification, and applications of chitin nanowhiskers: A review. Reviews on Advanced Materials Science, 30(3), 225-242.Moslehi, M., & Mahdavi, H. (2019). Controlled pore size nanofibrous microfiltration membrane via multi-step interfacial polymerization: Preparation and characterization. Separation and Purification Technology, 223, 96-106. doi:https://doi.org/10.1016/j.seppur.2019.04.041Moslehi, M., & Mahdavi, H. (2020). Preparation and Characterization of Electrospun Polyurethane Nanofibrous Microfiltration Membrane. Journal of Polymers and the Environment, 28(10), 2691-2701. doi:10.1007/s10924-020-01801-zMu, Y., Zhu, K., Luan, J., Zhang, S., Zhang, C., Na, R., . . . Wang, G. (2019). Fabrication of hybrid ultrafiltration membranes with improved water separation properties by incorporating environmentally friendly taurine modified hydroxyapatite nanotubes. Journal of Membrane Science, 577, 274-284. doi:https://doi.org/10.1016/j.memsci.2019.01.043Mujmule, R. B., Chung, W.-J., & Kim, H. (2020). Chemical fixation of carbon dioxide catalyzed via hydroxyl and carboxyl-rich glucose carbonaceous material as a heterogeneous catalyst. Chemical Engineering Journal, 395, 125164. doi:https://doi.org/10.1016/j.cej.2020.125164Muñoz-Shugulí, C., Vidal, C. P., Cantero-López, P., & Lopez-Polo, J. (2021). Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends in Food Science & Technology, 108, 177-186. doi:https://doi.org/10.1016/j.tifs.2020.12.020Muzzarelli, R. A. A. (2011). Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Marine Drugs, 9(9), 1510-1533. doi:10.3390/md9091510Nadell, C. D., Drescher, K., & Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology, 14(9), 589-600. doi:10.1038/nrmicro.2016.84Nahim-Granados, S., Rivas-Ibáñez, G., Antonio Sánchez Pérez, J., Oller, I., Malato, S., & Polo-López, M. I. (2020). Synthetic fresh-cut wastewater disinfection and decontamination by ozonation at pilot scale. Water Research, 170, 115304. doi:https://doi.org/10.1016/j.watres.2019.115304Nasir, A. M., Awang, N., Jaafar, J., Ismail, A. F., Othman, M. H. D., A. Rahman, M., . . . Mat Yajid, M. A. (2021). Recent progress on fabrication and application of electrospun nanofibrous photocatalytic membranes for wastewater treatment: A review. Journal of Water Process Engineering, 40, 101878. doi:https://doi.org/10.1016/j.jwpe.2020.101878Nataraj, S. K., Yang, K. S., & Aminabhavi, T. M. (2012). Polyacrylonitrile-based nanofibers—A state-of-the-art review. Progress in Polymer Science, 37(3), 487-513. doi:https://doi.org/10.1016/j.progpolymsci.2011.07.001Nguyen, S. T., & Roddick, F. A. (2013). Pre-treatments for removing colour from secondary effluent: Effectiveness and influence on membrane fouling in subsequent microfiltration. Separation and Purification Technology, 103, 313-320. doi:10.1016/j.seppur.2012.10.011Nzima, B., Adegoke, A. A., Ofon, U. A., Al-Dahmoshi, H. O. M., Saki, M., Ndubuisi-Nnaji, U. U., & Inyang, C. U. (2020). Resistotyping and extended-spectrum beta-lactamase genes among Escherichia coli from wastewater treatment plants and recipient surface water for reuse in South Africa. New Microbes and New Infections, 38, 100803. doi:https://doi.org/10.1016/j.nmni.2020.100803Ogunsona, E. O., Muthuraj, R., Ojogbo, E., Valerio, O., & Mekonnen, T. H. (2020). Engineered nanomaterials for antimicrobial applications: A review. Applied Materials Today, 18, 100473. doi:https://doi.org/10.1016/j.apmt.2019.100473Oyedeji, A. B., Green, E., Adebiyi, J. A., Ogundele, O. M., Gbashi, S., Adefisoye, M. A., . . . Adebo, O. A. (2021). Metabolomic approaches for the determination of metabolites from pathogenic microorganisms: A review. Food Research International, 140, 110042. doi:https://doi.org/10.1016/j.foodres.2020.110042Pan, N., Wei, Y., Zuo, M., Li, R., Ren, X., & Huang, T.-S. (2020). Antibacterial poly (ε-caprolactone) fibrous membranes filled with reduced graphene oxide-silver. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, 125186. doi:https://doi.org/10.1016/j.colsurfa.2020.125186Pant, H. R., Pandeya, D. R., Nam, K. T., Baek, W.-i., Hong, S. T., & Kim, H. Y. (2011). Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. Journal of Hazardous Materials, 189(1), 465-471. doi:https://doi.org/10.1016/j.jhazmat.2011.02.062Paradela, L. S., & Sánchez-Gálvez, V. (1991). Comportamiento a tracción de cementos reforzados con fibras de vidrio. Informes de la construcción, 43(413), 77-89.Pardhi, D. M., Şen Karaman, D., Timonen, J., Wu, W., Zhang, Q., Satija, S., . . . Rosenholm, J. M. (2020). Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. International Journal of Pharmaceutics, 586, 119531. doi:https://doi.org/10.1016/j.ijpharm.2020.119531Park, J.-A., Nam, A., Kim, J.-H., Yun, S.-T., Choi, J.-W., & Lee, S.-H. (2018). Blend-electrospun graphene oxide/Poly(vinylidene fluoride) nanofibrous membranes with high flux, tetracycline removal and anti-fouling properties. Chemosphere, 207, 347-356. doi:https://doi.org/10.1016/j.chemosphere.2018.05.096Park, J. A., Cho, K. Y., Han, C. H., Nam, A., Kim, J. H., Lee, S. H., & Choi, J. W. (2019). Quaternized Amphiphilic Block Copolymers/Graphene Oxide and a Poly(vinyl alcohol) Coating Layer on Graphene Oxide/Poly(vinylidene fluoride) Electrospun Nanofibers for Superhydrophilic and Antibacterial Properties. Scientific Reports, 9. doi:10.1038/s41598-018-36479-wPark, S. J., Kim, S. B., & Kim, K. W. (2010). Analysis of bacterial cell properties and transport in porous media. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 45(6), 682-691. doi:10.1080/10934521003648867Penagos, J. I. C. (2013). Caracterización de materiales a través de medidas de microscopía electrónica de barrido (SEM). Elementos, 3(3), 133-146Pinto, A. M., Gonçalves, I. C., & Magalhães, F. D. (2013). Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces, 111, 188-202. doi:https://doi.org/10.1016/j.colsurfb.2013.05.022Plutzer, J., & Karanis, P. (2016). Neglected waterborne parasitic protozoa and their detection in water. Water Research, 101, 318-332. doi:https://doi.org/10.1016/j.watres.2016.05.085Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443, 143-164. doi:https://doi.org/10.1016/j.desal.2018.04.007Qayum, A., Wei, J., Li, Q. N., Chen, D. R., Jiao, X. L., & Xia, Y. G. (2019). Efficient decontamination of multi-component wastewater by hydrophilic electrospun PAN/AgBr/Ag fibrous membrane. Chemical Engineering Journal, 361, 1255-1263. doi:10.1016/j.cej.2018.12.161Razakandrainibe, R., Kubina, S., Costa, D., Robinson, G., La Carbona, S., Aubert, D., . . . Chalmers, R. M. (2020). Evaluation of a modified method for the detection of Cryptosporidium oocysts on spinach leaves. Food and Waterborne Parasitology, 21, e00097. doi:https://doi.org/10.1016/j.fawpar.2020.e00097Razavizadeh, B. M., & Niazmand, R. (2020). Characterization of polyamide-6/ propolis blended electrospun fibers. Heliyon, 6(8), e04784. doi:https://doi.org/10.1016/j.heliyon.2020.e04784Ryu, S.-Y., Chung, J. W., & Kwak, S.-Y. (2015). Dependence of photocatalytic and antimicrobial activity of electrospun polymeric nanofiber composites on the positioning of Ag–TiO2 nanoparticles. Composites Science and Technology, 117, 9-17. doi:https://doi.org/10.1016/j.compscitech.2015.05.014Saleh, T. A., Parthasarathy, P., & Irfan, M. (2019). Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends in Environmental Analytical Chemistry, 24, e00067. doi:https://doi.org/10.1016/j.teac.2019.e00067Salman, K. D., & Razlan, Z. M. (2018). Polyamide Nanofibers Reinforced Titanium Nanoparticles Composites for hydrophobic surfaces. Paper presented at the IOP Conference Series: Materials Science and Engineering.Samadian, H., Maleki, H., Allahyari, Z., & Jaymand, M. (2020). Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coordination Chemistry Reviews, 420, 213432. doi:https://doi.org/10.1016/j.ccr.2020.213432Sánchez, L. D., Rodriguez, L., & López, M. (2013). Electrospinning: la era de las nanofibras. Revista Iberoamericana de polímeros, 14(1), 10-27.Sbahi, S., Ouazzani, N., Latrach, L., Hejjaj, A., & Mandi, L. (2020). Predicting the concentration of total coliforms in treated rural domestic wastewater by multi-soil-layering (MSL) technology using artificial neural networks. Ecotoxicology and Environmental Safety, 204, 111118. doi:https://doi.org/10.1016/j.ecoenv.2020.111118Schiffman, J. D., Blackford, A. C., Wegst, U. G. K., & Schauer, C. L. (2011). Carbon black immobilized in electrospun chitosan membranes. Carbohydrate Polymers, 84(4), 1252-1257. doi:10.1016/j.carbpol.2011.01.013Schijven, J., Teunis, P., Suylen, T., Ketelaars, H., Hornstra, L., & Rutjes, S. (2019). QMRA of adenovirus in drinking water at a drinking water treatment plant using UV and chlorine dioxide disinfection. Water Research, 158, 34-45. doi:https://doi.org/10.1016/j.watres.2019.03.090Seong, D. B., Son, Y.-R., & Park, S.-J. (2018). A study of reduced graphene oxide/leaf-shaped TiO2 nanofibers for enhanced photocatalytic performance via electrospinning. Journal of Solid State Chemistry, 266, 196-204. doi:https://doi.org/10.1016/j.jssc.2018.06.003Shalaby, T., Hamad, H., Ibrahim, E., Mahmoud, O., & Al-Oufy, A. (2018). Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity. Ecotoxicology and Environmental Safety, 162, 354-364. doi:https://doi.org/10.1016/j.ecoenv.2018.07.016Sheikh, M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C., & Cortina, J.-L. (2020). Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chemical Engineering Journal, 391, 123475. doi:https://doi.org/10.1016/j.cej.2019.123475Shende, P., & Gupta, H. (2020). Formulation and comparative characterization of nanoparticles of curcumin using natural, synthetic and semi-synthetic polymers for wound healing. Life Sciences, 253, 117588. doi:https://doi.org/10.1016/j.lfs.2020.117588Shi, L., Chen, J., Teng, L., Wang, L., Zhu, G., Liu, S., . . . Ren, L. (2016). The Antibacterial Applications of Graphene and Its Derivatives. Small, 12(31), 4165-4184. doi:https://doi.org/10.1002/smll.201601841Shi, Q., Chen, Z., Liu, H., Lu, Y., Li, K., Shi, Y., . . . Hu, H.-Y. (2021). Efficient synergistic disinfection by ozone, ultraviolet irradiation and chlorine in secondary effluents. Science of The Total Environment, 758, 143641. doi:https://doi.org/10.1016/j.scitotenv.2020.143641Shi, Q., Zhou, C., Yue, Y., Guo, W., Wu, Y., & Wu, Q. (2012). Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydrate Polymers, 90(1), 301-308. doi:10.1016/j.carbpol.2012.05.042Śmiałek, M., Kowalczyk, J., & Koncicki, A. (2020). Influence of vaccination of broiler chickens against Escherichia coli with live attenuated vaccine on general properties of E. coli population, IBV vaccination efficiency, and production parameters—a field experiment. Poultry Science, 99(11), 5452-5460. doi:https://doi.org/10.1016/j.psj.2020.08.039Soares, R. M. D., Siqueira, N. M., Prabhakaram, M. P., & Ramakrishna, S. (2018). Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering: C, 92, 969-982. doi:https://doi.org/10.1016/j.msec.2018.08.004Sousi, M., Liu, G., Salinas-Rodriguez, S. G., Chen, L., Dusseldorp, J., Wessels, P., . . . van der Meer, W. (2020). Multi-parametric assessment of biological stability of drinking water produced from groundwater: Reverse osmosis vs. conventional treatment. Water Research, 186, 116317. doi:https://doi.org/10.1016/j.watres.2020.116317Sun, B., Long, Y. Z., Zhang, H. D., Li, M. M., Duvail, J. L., Jiang, X. Y., & Yin, H. L. (2014). Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 39(5), 862-890. doi:https://doi.org/10.1016/j.progpolymsci.2013.06.002Sun, L., Hu, S. J., & Freiheit, T. (2021). Feature-based quality classification for ultrasonic welding of carbon fiber reinforced polymer through Bayesian regularized neural network. Journal of Manufacturing Systems, 58, 335-347. doi:https://doi.org/10.1016/j.jmsy.2020.12.016Sun, M., & Li, J. (2018). Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today, 20, 121-137. doi:https://doi.org/10.1016/j.nantod.2018.04.007Sundaran, S. P., Reshmi, C. R., Sagitha, P., Manaf, O., & Sujith, A. (2019). Multifunctional graphene oxide loaded nanofibrous membrane for removal of dyes and coliform from water. Journal of Environmental Management, 240, 494-503. doi:https://doi.org/10.1016/j.jenvman.2019.03.105Szewczyk, P. K., & Stachewicz, U. (2020). The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 286, 102315. doi:https://doi.org/10.1016/j.cis.2020.102315Tachaboonyakiat, W., Sukpaiboon, E., & Pinyakong, O. (2014). Development of an antibacterial chitin betainate wound dressing. Polymer Journal, 46(8), 505-510. doi:10.1038/pj.2014.47Taghizadeh, A., Taghizadeh, M., Jouyandeh, M., Yazdi, M. K., Zarrintaj, P., Saeb, M. R., . . . Gupta, V. K. (2020). Conductive polymers in water treatment: A review. Journal of Molecular Liquids, 312, 113447. doi:https://doi.org/10.1016/j.molliq.2020.113447Thakur, R., Rane, A. V., Harris, G., & Thakur, S. (2020). Chapter 14 - Government initiatives and policies for water conservation and wastewater treatment in South Africa and indigenous knowledge. In P. Singh, Y. Milshina, K. Tian, D. Gusain, & J. P. Bassin (Eds.), Water Conservation and Wastewater Treatment in BRICS Nations (pp. 285-293): Elsevier.Tiwari, S. K., & Venkatraman, S. S. (2012). Importance of viscosity parameters in electrospinning: Of monolithic and core-shell fibers. Materials Science and Engineering C, 32(5), 1037-1042. doi:10.1016/j.msec.2012.02.019Tran, C., & Kalra, V. (2013). Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. Journal of Power Sources, 235, 289-296. doi:https://doi.org/10.1016/j.jpowsour.2013.01.080Tu, Y., Lv, M., Xiu, P., Huynh, T., Zhang, M., Castelli, M., . . . Zhou, R. (2013). Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 8(8), 594-601. doi:10.1038/nnano.2013.125Tucker, N., Stanger, J. J., Staiger, M. P., Razzaq, H., & Hofman, K. (2012). The History of the Science and Technology of Electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics, 7, 63-73.Upadhyaya, L., Oliveira, B., Pereira, V. J., Barreto Crespo, M. T., Crespo, J. G., Quemener, D., & Semsarilar, M. (2020). Nanocomposite membranes from nano-particles prepared by polymerization induced self-assembly and their biocidal activity. Separation and Purification Technology, 251, 117375. doi:https://doi.org/10.1016/j.seppur.2020.117375Van der Bruggen, B. (2018). Chapter 2 - Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis. In P. Luis (Ed.), Fundamental Modelling of Membrane Systems (pp. 25-70): Elsevier.Wang, G., Yu, D., Kelkar, A. D., & Zhang, L. (2017). Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Progress in Polymer Science, 75, 73-107. doi:https://doi.org/10.1016/j.progpolymsci.2017.08.002Wang, K., Wu, J., Zhu, M., Zheng, Y.-Z., & Tao, X. (2020). Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal–organic framework composites. Journal of Solid State Chemistry, 284, 121200. doi:https://doi.org/10.1016/j.jssc.2020.121200Wang, L., Ali, J., Zhang, C., Mailhot, G., & Pan, G. (2020). Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. Journal of Environmental Chemical Engineering, 8(1), 102104. doi:https://doi.org/10.1016/j.jece.2017.12.057Wang, Q. Q., Du, Y. Z., Feng, Q., Huang, F. L., Lu, K. Y., Liu, J. Y., & Wei, Q. F. (2013). Nanostructures and Surface Nanomechanical Properties of Polyacrylonitrile/Graphene Oxide Composite Nanofibers by Electrospinning. Journal of Applied Polymer Science, 128(2), 1152-1157. doi:10.1002/app.38273Wang, R., Liu, Y., Li, B., Hsiao, B. S., & Chu, B. (2012). Electrospun nanofibrous membranes for high flux microfiltration. Journal of Membrane Science, 392-393, 167-174. doi:https://doi.org/10.1016/j.memsci.2011.12.019Wang, X.-X., Yu, G.-F., Zhang, J., Yu, M., Ramakrishna, S., & Long, Y.-Z. (2021). Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science, 115, 100704. doi:https://doi.org/10.1016/j.pmatsci.2020.100704Wang, X., & Nakane, K. (2021). Formation and morphological variation of electrospun cellulose acetate nanofibers via dual-bath immersion electrospinning. Materials Letters, 284, 128968. doi:https://doi.org/10.1016/j.matlet.2020.128968Wang, X., Zhang, K., Zhu, M., Hsiao, B. S., & Chu, B. (2008). Enhanced mechanical performance of self-bundled electrospun fiber yarns via post-treatments. Macromolecular Rapid Communications, 29(10), 826-831. doi:10.1002/marc.200700873Wang, X. H., Han, Q. S., Yu, N., Wang, T., Wang, C., & Yang, R. (2018). GO-AgCl/Ag nanocomposites with enhanced visible light-driven catalytic properties for antibacterial and biofilm-disrupting applications. Colloids and Surfaces B-Biointerfaces, 162, 296-305. doi:10.1016/j.colsurfb.2017.11.060Wang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276-307. doi:https://doi.org/10.1016/j.memsci.2014.05.060Wang, Z., Zou, W., Liu, L., Wang, M., Li, F., & Shen, W. (2021). Characterization and bacteriostatic effects of β-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning. Food Chemistry, 338, 127980. doi:https://doi.org/10.1016/j.foodchem.2020.127980Warsinger, D. M., Chakraborty, S., Tow, E. W., Plumlee, M. H., Bellona, C., Loutatidou, S., . . . Lienhard, J. H. (2018). A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 81, 209-237. doi:https://doi.org/10.1016/j.progpolymsci.2018.01.004Wei, R., Ge, F., Huang, S., Chen, M., & Wang, R. (2011). Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82(10), 1408-1414. doi:10.1016/j.chemosphere.2010.11.067Wen, Y., Kok, M. D. R., Tafoya, J. P. V., Sobrido, A. B. J., Bell, E., Gostick, J. T., . . . Jervis, R. (2021). Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. Journal of Energy Chemistry, 59, 492-529. doi:https://doi.org/10.1016/j.jechem.2020.11.014Weschenfelder, S. E., Fonseca, M. J. C., & Borges, C. P. (2021). Treatment of produced water from polymer flooding in oil production by ceramic membranes. Journal of Petroleum Science and Engineering, 196, 108021. doi:https://doi.org/10.1016/j.petrol.2020.108021Wu, S., & Soucek, M. D. (1998). Kinetic modelling of crosslinking reactions for cycloaliphatic epoxides with hydroxyl- and carboxyl-functionalized acrylic copolymers: 1. pH and temperature effects. Polymer, 39(23), 5747-5759. doi:https://doi.org/10.1016/S0032-3861(98)00077-9Wu, Y., He, G., Wu, X., Yuan, Q., Gong, X., Zhen, D., & Sun, B. (2019). Confinement of functionalized graphene oxide in sulfonated poly (ether ether ketone) nanofibers by coaxial electrospinning for polymer electrolyte membranes. International Journal of Hydrogen Energy, 44(14), 7494-7504. doi:https://doi.org/10.1016/j.ijhydene.2019.01.281Wu, Y., Li, C., Meng, M., Lv, P., Liu, X., & Yan, Y. (2019). Fabrication and evaluation of GO/TiO2-based molecularly imprinted nanocomposite membranes by developing a reformative filtering strategy: Application to selective adsorption and separation membrane. Separation and Purification Technology, 212, 245-254. doi:https://doi.org/10.1016/j.seppur.2018.11.042Xie, L., Shu, Y., Hu, Y., Cheng, J., & Chen, Y. (2020). SWNTs-PAN/TPU/PANI composite electrospun nanofiber membrane for point-of-use efficient electrochemical disinfection: New strategy of CNT disinfection. Chemosphere, 251, 126286. doi:https://doi.org/10.1016/j.chemosphere.2020.126286Xu, J. (2019). Reverse microbial etiology: A research field for predicting and preventing emerging infectious diseases caused by an unknown microorganism. Journal of Biosafety and Biosecurity, 1(1), 19-21. doi:https://doi.org/10.1016/j.jobb.2018.12.005Yang, S., Deng, W., Liu, S., Yu, X., Mustafa, G. R., Chen, S., . . . Zou, L. (2020). Presence of heavy metal resistance genes in Escherichia coli and Salmonella isolates and analysis of resistance gene structure in E. coli E308. Journal of Global Antimicrobial Resistance, 21, 420-426. doi:https://doi.org/10.1016/j.jgar.2020.01.009Yang, Y., Zhang, Z., He, Y., Wang, Z., Zhao, Y., & Sun, L. (2018). Fabrication of Ag@TiO2 electrospinning nanofibrous felts as SERS substrate for direct and sensitive bacterial detection. Sensors and Actuators B: Chemical, 273, 600-609. doi:https://doi.org/10.1016/j.snb.2018.05.129Yu, F., Ma, J., & Han, S. (2014). Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents. Scientific Reports, 4. doi:10.1038/srep05326Yu, X., & Manthiram, A. (2021). A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 34, 282-300. doi:https://doi.org/10.1016/j.ensm.2020.10.006Zahedi, A., Ryan, U., Rawlings, V., Greay, T., Hancock, S., Bruce, M., & Jacobson, C. (2020). Cryptosporidium and Giardia in dam water on sheep farms – An important source of transmission? Veterinary Parasitology, 288, 109281. doi:https://doi.org/10.1016/j.vetpar.2020.109281Zapata, D., Pujol, R., & Coda, F. (2012). Polímeros biodegradables: una alternativa de futuro a la sostenibilidad de medio ambiente. Técnica industrial, 297, 76-80.Zeng, Z., Yu, D., He, Z., Liu, J., Xiao, F. X., Zhang, Y., . . . Tan, T. T. Y. (2016). Graphene Oxide Quantum Dots Covalently Functionalized PVDF Membrane with Significantly-Enhanced Bactericidal and Antibiofouling Performances. Scientific Reports, 6. doi:10.1038/srep20142Zhang, M., Nguyen, Q. T., & Ping, Z. (2009). Hydrophilic modification of poly (vinylidene fluoride) microporous membrane. Journal of Membrane Science, 327(1), 78-86. doi:https://doi.org/10.1016/j.memsci.2008.11.020Zhang, P., Fang, C., Rajabzadeh, S., Liu, W., Jia, Y., Shen, Q., . . . Matsuyama, H. (2020). Effect of polymer molecular weight on structure and performance of PVDF hollow fiber membranes prepared via TIPS process with co-extrusion of solvent using triple orifice spinneret. Journal of Membrane Science, 118854. doi:https://doi.org/10.1016/j.memsci.2020.118854Zhang, S., Tang, X., Zheng, H., Wang, D., Xie, Z., Ding, W., & Zheng, X. (2021). Combination of bacitracin-based flocculant and surface enhanced Raman scattering labels for flocculation, identification and sterilization of multiple bacteria in water treatment. Journal of Hazardous Materials, 407, 124389. doi:https://doi.org/10.1016/j.jhazmat.2020.124389Zhang, W., He, Z., Han, Y., Jiang, Q., Zhan, C., Zhang, K., . . . Zhang, R. (2020). Structural design and environmental applications of electrospun nanofibers. Composites Part A: Applied Science and Manufacturing, 137, 106009. doi:https://doi.org/10.1016/j.compositesa.2020.106009Zhang, Y., Wang, H., Li, Y., Wang, B., Huang, J., Deng, S., . . . Wang, Y. (2020). Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment. Water Research, 183, 116115. doi:https://doi.org/10.1016/j.watres.2020.116115Zhao, X., Su, Y., Chen, W., Peng, J., & Jiang, Z. (2012). Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. Journal of Membrane Science, 415-416, 824-834. doi:10.1016/j.memsci.2012.05.075Zhou, C., Chu, R., Wu, R., & Wu, Q. (2011). Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules, 12(7), 2617-2625. doi:10.1021/bm200401pZhu, J., Hou, J., Zhang, Y., Tian, M., He, T., Liu, J., & Chen, V. (2018). Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. Journal of Membrane Science, 550, 173-197. doi:https://doi.org/10.1016/j.memsci.2017.12.071Zhu, S., & Nie, L. (2020). Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. Journal of Industrial and Engineering Chemistry. doi:https://doi.org/10.1016/j.jiec.2020.09.016CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repository.usta.edu.co/bitstream/11634/33354/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/33354/4/license.txtaedeaf396fcd827b537c73d23464fc27MD54open accessORIGINAL2021danielatorresjohanasandoval.pdf2021danielatorresjohanasandoval.pdfDocumento Principalapplication/pdf1709601https://repository.usta.edu.co/bitstream/11634/33354/5/2021danielatorresjohanasandoval.pdf25a8e295094608f1d368aa939a880c83MD55open accessCarta Derechos de autor.pdfCarta Derechos de autor.pdfCarta derechos de autorapplication/pdf175690https://repository.usta.edu.co/bitstream/11634/33354/6/Carta%20Derechos%20de%20autor.pdf1050dfcb9b12a7168632fe5f39ca479fMD56metadata only accessCarta autorización de la facultad.pdfCarta autorización de la facultad.pdfCarta autorización Facultadapplication/pdf172773https://repository.usta.edu.co/bitstream/11634/33354/7/Carta%20autorizaci%c3%b3n%20de%20la%20facultad.pdf2da4deb6f141d2d21552f9bab36317fbMD57metadata only accessTHUMBNAIL2021danielatorresjohanasandoval.pdf.jpg2021danielatorresjohanasandoval.pdf.jpgIM Thumbnailimage/jpeg6851https://repository.usta.edu.co/bitstream/11634/33354/8/2021danielatorresjohanasandoval.pdf.jpg091dc1cd430a143b79545e722a6d359fMD58open accessCarta Derechos de autor.pdf.jpgCarta Derechos de autor.pdf.jpgIM Thumbnailimage/jpeg8999https://repository.usta.edu.co/bitstream/11634/33354/9/Carta%20Derechos%20de%20autor.pdf.jpg81c78e2cc55a0736d95483397dfa446eMD59open accessCarta autorización de la facultad.pdf.jpgCarta autorización de la facultad.pdf.jpgIM Thumbnailimage/jpeg10287https://repository.usta.edu.co/bitstream/11634/33354/10/Carta%20autorizaci%c3%b3n%20de%20la%20facultad.pdf.jpg403cd08b60987057789324331830fc37MD510open access11634/33354oai:repository.usta.edu.co:11634/333542023-07-19 20:14:48.929open accessRepositorio Universidad Santo Tomásnoreply@usta.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K