Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo

Este proyecto de grado presenta el diseño e implementación de un controlador de posición para un UAV multi-rotor basado en redes neuronales profundas y entrenado mediante aprendizaje supervisado, tomando como referencia un controlador PID. Se detalla el proceso de selección del entorno de simulación...

Full description

Autores:
Cárdenas Bohórquez, Javier Alexis
Carrero Cuadrado, Uriel Eduardo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/45916
Acceso en línea:
http://hdl.handle.net/11634/45916
Palabra clave:
Drone
Neural Network
Supervised Training
Deep Learning
Flight Controller
Aviones no tripulados
Vehículos no tripulados
Aeronáutica
Simuladores de vuelo
Drones
Dron
Red Neuronal
Aprendizaje Supervisado
Aprendizaje Profundo
Controlador de Vuelo
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_7d53bf7d16ac1f6ac0075c59488c8a40
oai_identifier_str oai:repository.usta.edu.co:11634/45916
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo
title Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo
spellingShingle Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo
Drone
Neural Network
Supervised Training
Deep Learning
Flight Controller
Aviones no tripulados
Vehículos no tripulados
Aeronáutica
Simuladores de vuelo
Drones
Dron
Red Neuronal
Aprendizaje Supervisado
Aprendizaje Profundo
Controlador de Vuelo
title_short Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo
title_full Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo
title_fullStr Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo
title_full_unstemmed Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo
title_sort Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo
dc.creator.fl_str_mv Cárdenas Bohórquez, Javier Alexis
Carrero Cuadrado, Uriel Eduardo
dc.contributor.advisor.none.fl_str_mv Camacho Poveda, Edgar Camilo
Calderón Chávez, Juan Manuel
dc.contributor.author.none.fl_str_mv Cárdenas Bohórquez, Javier Alexis
Carrero Cuadrado, Uriel Eduardo
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-6084-2512
https://orcid.org/ 0000-0002-4471-3980
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000380938
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Drone
Neural Network
Supervised Training
Deep Learning
Flight Controller
topic Drone
Neural Network
Supervised Training
Deep Learning
Flight Controller
Aviones no tripulados
Vehículos no tripulados
Aeronáutica
Simuladores de vuelo
Drones
Dron
Red Neuronal
Aprendizaje Supervisado
Aprendizaje Profundo
Controlador de Vuelo
dc.subject.lemb.spa.fl_str_mv Aviones no tripulados
Vehículos no tripulados
Aeronáutica
Simuladores de vuelo
Drones
dc.subject.proposal.spa.fl_str_mv Dron
Red Neuronal
Aprendizaje Supervisado
Aprendizaje Profundo
Controlador de Vuelo
description Este proyecto de grado presenta el diseño e implementación de un controlador de posición para un UAV multi-rotor basado en redes neuronales profundas y entrenado mediante aprendizaje supervisado, tomando como referencia un controlador PID. Se detalla el proceso de selección del entorno de simulación, el controlador y el modelo seleccionado. Así mismo, se realizan evaluaciones de trayectorias de control para la construcción de un conjunto de datos que permita entrenar el modelo. Se entrenan distintas arquitecturas de redes neuronales, mediante el uso del algoritmo Hyperband para determinar los mejores hiperparámetros. Finalmente se evalúa el rendimiento del controlador entrenado con respecto al controlador base mediante la respuesta temporal con diferentes señales de control. Como producto final se presenta: el conjunto de datos del controlador de referencia, un repositorio con los programas realizados para el desarrollo y análisis, y el modelo de la red neuronal.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-18T20:01:43Z
dc.date.available.none.fl_str_mv 2022-07-18T20:01:43Z
dc.date.issued.none.fl_str_mv 2022-06-22
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Cárdenas Bohórquez, J. A. & Carrero Cuadrado, U. E. (2022).Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo [Tesis de Pregrado en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucional
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/45916
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Cárdenas Bohórquez, J. A. & Carrero Cuadrado, U. E. (2022).Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo [Tesis de Pregrado en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucional
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/45916
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv M Tinungki. «The analysis of partial autocorrelation function in predicting maximum wind speed». En: IOP Conference Series: Earth and Environmental Science 235 (feb. de 2019), pág. 012097. DOI: 10.1088/1755-1315/235/1/012097. URL: https://doi.org/ 10.1088/1755-1315/235/1/012097.
Mathworks. Quadcopter Project, MATLAB & Simulink. 2018. URL: https://de.mathworks.com/help/aeroblks/quadcopter-project.html.
Michał Barty´s y Bartłomiej Hryniewicki. «The Trade-Off between the Controller Effort and Control Quality on Example of an Electro-Pneumatic Final Control Element». En: Actuators 8.1 (2019). ISSN: 2076-0825.
Erik Cuevas, Alonso Echavarría y Marte A. Ramírez-Ortegón. «An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation». En: Applied Intelligence 40.2 (mar. de 2014), págs. 256-272. ISSN: 1573-7497. DOI: 10 . 1007 / s10489 - 013 - 0458 - 0. URL: https://doi.org/10.1007/s10489-013-0458-0.
Riccardo Poli, James Kennedy y Tim Blackwell. «Particle swarm optimization». En: Swarm Intelligence 1.1 (jun. de 2007), págs. 33-57. ISSN: 1935-3820. DOI: 10 . 1007 / s11721 - 007 - 0002 - 0. URL: https://doi.org/10.1007/s11721-007-0002-0.
J. Kennedy y R. Eberhart. «Particle swarm optimization». En: Proceedings of ICNN’95 - International Conference on Neural Networks. 1995, 1942-1948 vol.4.
Xue Ying. «An Overview of Overfitting and its Solutions». En: Journal of Physics: Conference Series (feb. de 2019), págs. 256-272. DOI: 10 . 1088 / 1742 - 6596 / 1168 / 2 / 022022. URL: https://www.researchgate.net/publication/331677125_An_Overview_ of_Overfitting_and_its_Solutions.
Lisha Li y col. «Hyperband: A novel bandit-based approach to hyperparameter optimization». En: Journal of Machine Learning Research 18 (2018), págs. 1-52. ISSN: 15337928. arXiv: 1603.06560.
IBM Cloud Educationl. What are Neural Networks? 2020. URL: https : / / www . ibm . com/cloud/learn/neural-networks (visitado 23-06-2021).
Fethi Tekyaygil. Keras Model Wars: Sequential vs Functional. 2020. URL: https://www. datasciencearth.com/keras- model- wars- sequential- vs- functional/ (visitado 23-06-2021).
J. Astrom Karl y Tore Hagglund. PID Controllers, Theory, Design and Tuning. Second Edition. United States Of America, 1988.
«Control System». En: CIRP Encyclopedia of Production Engineering. Ed. por Sami Chatti y col. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, págs. 359-359. ISBN: 978-3- 662-53120-4. DOI: 10.1007/978-3-662-53120-4_300118. URL: https://doi. org/10.1007/978-3-662-53120-4_300118.
Rufus Fraanje. quadcopter_sim. 2017. URL: https://github.com/prfraanje/quadcopter_sim (visitado 19-11-2021).
Jérôme Le Ny Carlos Luis. «Design of a Trajectory Tracking Controller for a Nanoquadcopter». En: (ago. de 2016). URL: https://arxiv.org/abs/1608.05786
Crazyflie 2.0 – Bitcraze Store. URL: https://store.bitcraze.io/products/crazyflie-2-0.
Nathan Michael y col. «The GRASP Multiple Micro-UAV Testbed». En: IEEE Robotics Automation Magazine 17.3 (2010), págs. 56-65. DOI: 10.1109/MRA.2010.937855.
Jacopo Panerati. gym-pybullet-drones. 2022. URL: https://github.com/utiasDSL/ gym-pybullet-drones (visitado 01-02-2022).
Bullet Real-Time Physics Simulation | Home of Bullet and PyBullet: physics simulation for games, visual effects, robotics and reinforcement learning. URL: https://pybullet.org/ wordpress/.
Charles H. Holbrow y col. «Some Physics You Need to Know». En: Modern Introductory Physics (2009), págs. 13-62. DOI: 10.1007/978-0-387-79080-0_2.
William Neeley. «Design and Development of a High-Performance Quadrotor Control Architecture Based on Feedback Linearization». En: Electrical and Computer Engineering ETDs (feb. de 2016). URL: https://digitalrepository.unm.edu/ece_etds/ 190.
Julian Förster, Bachelor Thesis y Michael D Hamer Raffaello. «System Identification of the Crazyflie 2.0 Nano Quadrocopter». En: (2015). DOI: 10.3929/ETHZ-B-000214143.
Jacopo Panerati y col. Learning to Fly – a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control. 2021. arXiv: 2103 . 02142 [cs.RO].
Guanya Shi y col. «Neural Lander: Stable Drone Landing Control Using Learned Dynamics». En: 2019 International Conference on Robotics and Automation (ICRA) (mayo de 2019). DOI: 10 . 1109 / icra . 2019 . 8794351. URL: http://dx.doi.org/10.1109/ICRA.2019.8794351.
Shashi Poddar, Rahul Kottath y Vinod Karar. «Evolution of Visual Odometry Techniques». En: CoRR abs/1804.11142 (2018). arXiv: 1804 . 11142. URL: http://arxiv.org/abs/1804.11142
Tommaso Bresciani. «Modelling, Identification and Control of a Quadrotor Helicopter». Lund University, ago. de 2008, págs. 1-184. URL: http : //www.control.lth.se/publications/%20http://lup.lub.lu.se/luur/ download?func=downloadFile&recordOId=8847641&fileOId=8859343.
The Physics of How Drones Fly | WIRED. 2021. URL: https://www.wired.com/2017/ 05/the-physics-of-drones/.
Moti Ben-Ari. A Tutorial on Euler Angles and Quaternions. Wiezmann Institute of Science, 2014, págs. 1-22. URL: http : / / www . weizmann . ac . il / sci - tea / benari / %20https : / / www . weizmann . ac . il / sci - tea / benari / sites / sci - tea . benari / files / uploads / softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf.
Francesco Sabatino. «Quadrotor control: modeling, nonlinearcontrol design, and simulation». Tesis de mtría. KTH, Automatic Control, 2015, pág. 61
Drones: Reporting for Work. URL: https://www.goldmansachs.com/insights/ technology-driving-innovation/drones/ (visitado 09-09-2020)
Unidad Administrativa Especial de Aeronáutica Civil. Resolución número 04201 de 2018. Dic. de 2018. URL: https://diario-oficial.vlex.com.co/vid/resolucion numero-04201-2018-763853657 (visitado 31-08-2020).
Juan Manuel Garzón y Federico Luqe. «Implementación de drones para incrementar la productividad en el agro colombiano». Colegio de Estudios Superiores de Administración - CESA, 2018, pág. 71. URL: http://hdl.handle.net/10726/2302.
David Mayorga Perdomo. «Un dron para desminar el país». En: Perquisa 34 (nov. de 2015), págs. 6-7. URL: https://www.javeriana.edu.co/pesquisa/un-dron para-desminar-el-pais/
Luz Vallejo Mejía y Sandra Milena Agudelo - Londoño. «El glifosato alza el vuelo. Análisis retórico del discurso en la prensa nacional de Colombia (2018-2019)». En: Signo y Pensamiento 38.75 (nov. de 2019), págs. 1-16. ISSN: 2027-2731. DOI: 10.11144/Javeriana.syp38-75.gava. URL: https://revistas.javeriana. edu.co/index.php/signoypensamiento/article/view/27958
Redacción ImpactoTIC. Las tecnologías ’vuelan’ en el posconflicto: drones, radares y contenidos. Jun. de 2018. URL: https : / / impactotic . co / tecnologia - posconflicto - en - colombia/ (visitado 15-09-2020)
María Jesús Guerrero Lebrón. La regulación transitoria de los operadores de aeronaves civiles pilotadas por control remoto. Inf. téc. Sep. de 2014, págs. 12-29. URL: https://dialnet. unirioja.es/servlet/revista?codigo=21839
Markus Christen y col. Zivile Drohnen - Herausforderungen und Perspektiven. 1.a ed. Vol. 66. Zürcher Hochschule für Angewandte Wissenschaften, 2018, pág. 252. ISBN: 9783728138934. DOI: 10 . 3218 / 3894 - 1. URL: https://digitalcollection.zhaw.ch/handle/11475/10584?locale=de.
AISBL y SPARC. Robotics 2020 Multi-Annual Roadmap MAR ICT-24 ii for Robotics in Europe, Call 1 ICT23–Horizon 2020. 01. Feb. de 2014, pág. 308. URL: https : / / www . eu - robotics . net / cms / upload / downloads / ppp - documents/Multi-Annual_Roadmap2020_ICT-24_Rev_B_full.pdf.
SPARC. What is SPARC? The Partnership for Robotics in Europe. URL: https://www.eu robotics.net/sparc/about/index.html (visitado 05-09-2020
William Koch y col. «Reinforcement Learning for UAV Attitude Control». En: CoRR abs/1804.04154 (2018). arXiv: 1804 . 04154. URL: http://arxiv.org/abs/1804.04154
Victoria J. Hodge, Richard Hawkins y Rob Alexander. «Deep reinforcement learning for drone navigation using sensor data». En: Neural Computing and Applications 0123456789 (2020). ISSN: 14333058. DOI: 10.1007/s00521-020-05097-x. URL: https://doi. org/10.1007/s00521-020-05097-x.
Guangcun Shan y col. «Control of Quadrotor Drone with Partial State Observation via Reinforcement Learning». En: Proceedings - 2019 Chinese Automation Congress, CAC 2019. Institute of Electrical y Electronics Engineers Inc., nov. de 2019, págs. 1965-1968. ISBN: 9781728140940. DOI: 10.1109/CAC48633.2019.8996394
Sang Yun Shin, Yong Won Kang y Yong Guk Kim. «Automatic drone navigation in realistic 3d landscapes using deep reinforcement learning». En: 2019 6th International Conference on Control, Decision and Information Technologies, CoDIT 2019. Institute of Electrical y Electronics Engineers Inc., abr. de 2019, págs. 1072-1077. ISBN: 9781728105215. DOI: 10.1109/CoDIT.2019.8820322.
Ariel Matías y col. «Desplazamiento de un hexápodo utilizando técnicas de aprendizaje por refuerzo». En: nov. de 2014, págs. 1-4.
Volodymyr Mnih y col. «Human-level control through deep reinforcement learning». En: Nature 518.7540 (2015), págs. 529-533. ISSN: 14764687. DOI: 10.1038/nature14236.
Yanhua Huang. «Deep Q-networks». En: Deep Reinforcement Learning: Fundamentals, Research and Applications (2020), págs. 135-160. DOI: 10.1007/978-981-15-4095-0_4.
Nomi Ringach y Megumi Sano. «Prioritized Experience Replay via Learnability Approximation». En: (2018), págs. 1-7.
Tom Schaul y col. «Prioritized experience replay». En: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings(2016), págs. 1-21. arXiv: 1511.05952.
Eduardo F. Morales y Julio H. Zaragoza. «An introduction to reinforcement learning». En: Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions (2011), págs. 63-80. DOI: 10.4018/978-1-60960-165-2.ch004.
Covid Tesau y Gerald Tesau. «Temporal Difference Learning and TD-Gammon». En: Communications of the ACM 38.3 (1995), págs. 58-68. ISSN: 15577317. DOI: 10 . 1145 / 203330.203343.
Volodymyr Mnih y col. «Asynchronous methods for deep reinforcement learning». En: 33rd International Conference on Machine Learning, ICML 2016 4 (2016), págs. 2850-2869. arXiv: 1602.01783.
Kai Arulkumaran y col. «Deep reinforcement learning: A brief survey». En: IEEE Signal Processing Magazine 34.6 (2017), págs. 26-38. ISSN: 10535888. DOI: 10.1109/MSP.2017. 2743240. arXiv: arXiv:1708.05866v2.
Yuanda Wang y col. «Compensator for Robust Quadrotor Control». En: IEEE Transactions on Systems, Man, and Cybernetics: Systems (2019), págs. 1-13. DOI: 10.1109/TSMC.2018.2884725
Claudio Rosales y col. «Neural control of a Quadrotor: A state-observer based approach». En: 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018. Institute of Electrical y Electronics Engineers Inc., ago. de 2018, págs. 647-653. ISBN: 9781538613535. DOI: 10.1109/ICUAS.2018.8453303.
Shingo Kase y Masahiro Oya. «Adaptive tracking controller for hexacopters with a wind disturbance». En: Artificial Life and Robotics 25.2 (mayo de 2020), págs. 322-327. ISSN: 16147456. DOI: 10.1007/s10015-020-00586-7. URL: https://link.springer. com/article/10.1007/s10015-020-00586-7.
V. Madhu Babu, Kaushik Das y Swagat Ku. «Designing of self tuning PID controller for AR drone quadrotor». En: 2017 18th International Conference on Advanced Robotics, ICAR 2017. Institute of Electrical y Electronics Engineers Inc., ago. de 2017, págs. 167-172. ISBN: 9781538631577. DOI: 10.1109/ICAR.2017.8023513.
Colin Greatwood y Arthur G. Richards. «Reinforcement learning and model predictive control for robust embedded quadrotor guidance and control». En: Autonomous Robots 43.7 (oct. de 2019), págs. 1681-1693. ISSN: 15737527. DOI: 10 . 1007 / s10514 - 019 - 09829-4. URL: https://doi.org/10.1007/s10514-019-09829-4.
Siddharth Patel y col. «An Intelligent Hybrid Artificial Neural Network-Based Approach for Control of Aerial Robots». En: Journal of Intelligent and Robotic Systems: Theory and Applications 97.2 (feb. de 2020), págs. 387-398. ISSN: 15730409. DOI: 10.1007/s10846-019-01031-z.
Fendy Santoso y col. «Robust Hybrid Nonlinear Control Systems for the Dynamics of a Quadcopter Drone». En: IEEE Transactions on Systems, Man, and Cybernetics: Systems 50.8 (ago. de 2020), págs. 3059-3071. ISSN: 21682232. DOI: 10.1109/TSMC.2018.2836922.
Yahui Li y col. «Robust and adaptive backstepping control for nonlinear systems using RBF neural networks». En: IEEE Transactions on Neural Networks 15.3 (mayo de 2004), págs. 693-701. ISSN: 10459227. DOI: 10.1109/TNN.2004.826215.
R. Analia, Susanto y K. Song. «Fuzzy+PID attitude control of a co-axial octocopter». En: 2016 IEEE International Conference on Industrial Technology (ICIT). 2016, págs. 1494-1499. DOI: 10.1109/ICIT.2016.7474981.
Teresa Guarda y col. Territorial Intelligence in the Impulse of Economic Development Initiatives for Artisanal Fishing Cooperatives Teresa. Vol. 152. Micrads. Springer Singapore, 2020, págs. 119-132. DOI: 10 . 1007 / 978 - 981 - 13 - 9155 - 2. URL: http://link.springer.com/10.1007/978-981-13-9155-2.
Dongbin Lee y Timothy C. Burg. «Lyapunov-based control of unmanned aerial vehicle designed via stability analysis». En: Control Theory: Perspectives, Applications and Developments. Nova Science Publishers, Inc., abr. de 2015, págs. 277-297. ISBN: 9781634827300. DOI: 10.4155/9781634827300.ch12.
E. Rogers y col. «Lyapunov stability theory for linear repetitive processes - The 1D equation approach». En: European Control Conference, ECC 1999 - Conference Proceedings (2015), págs. 4774-4779. DOI: 10.23919/ecc.1999.7100090.
Oualid Araar y Nabil Aouf. «Full linear control of a quadrotor UAV, LQ vs H∞». En: 2014 UKACC International Conference on Control, CONTROL 2014 - Proceedings. Institute of Electrical y Electronics Engineers Inc., oct. de 2014, págs. 133-138. ISBN: 9781479950119. DOI: 10.1109/CONTROL.2014.6915128.
Nurul Dayana Salim y col. «PID plus LQR attitude control for hexarotor MAV in indoor environments». En: Proceedings of the IEEE International Conference on Industrial Technology (2014), págs. 85-90. DOI: 10.1109/ICIT.2014.6894977.
Zhongqiu Zhang. «Application of PID Simulation Control Mode in Quadrotor Aircraft». En: Proceedings - 2020 International Conference on Computer Engineering and Application, ICCEA 2020. Institute of Electrical y Electronics Engineers Inc., mar. de 2020, págs. 826-829. ISBN: 9781728159041. DOI: 10.1109/ICCEA50009.2020.00181.
Hyunsoo Yang y col. Multi-rotor drone tutorial: systems, mechanics, control and state estimation. Abr. de 2017. DOI: 10.1007/s11370-017-0224-y.
Daniel Torres. «Analisis Dinamico del Fallo de Rotores en un Hexacoptero». En: Journal of Chemical Information and Modeling 53.9 (2019), págs. 1689-1699. ISSN: 1098-6596. URL: http://hdl.handle.net/11349/13866.
Paúl Sebastián y Dávila Aldás. «Diseño, construcción y control de un hexacóptero de monitoreo». Jun. de 2015. URL: http://bibdigital.epn.edu.ec/handle/15000/10924.
Daler Sharipov y col. «Implementation of a mathematical model of a hexacopter control system». En: International Conference on Information Science and Communications Technologies: Applications, Trends and Opportunities, ICISCT 2019. Institute of Electrical y Electronics Engineers Inc., nov. de 2019. ISBN: 9781728125640. DOI: 10.1109/ICISCT47635.2019.9011842
Quan Quan. Introduction to multicopter design and control. Springer Singapore, jun. de 2017, págs. 1-384. ISBN: 9789811033827. DOI: 10.1007/978-981-10-3382-7
Karl Johan Åström. «Process Control—Past, Present, and Future». En: IEEE Control Systems Magazine 5.3 (1985), págs. 3-10. ISSN: 02721708. DOI: 10.1109/MCS.1985.1104958.
L.S. Casey. Curtiss, the Hammondsport Era, 1907-1915. Crown Publishers, 1981, págs. 12-15. ISBN: 9780517543269. URL: https : / / www . amazon . com / Curtiss - Hammondsport-1907-1915-Louis-Casey/dp/0517545659
Chan Chun y col. «Drone Noise Reduction using Deep Convolutional Autoencoder for UAV Acoustic Sensor Networks». En: Proceedings - 2019 IEEE 16th International Conference on Mobile Ad Hoc and S03t Systems Workshops, MASSW 2019. Institute of Electrical y Electronics Engineers Inc., nov. de 2019, págs. 168-169. ISBN: 9781728141213. DOI: 10.1109/MASSW.2019.00043
Nikolaos Passalis y Anastasios Tefas. «Deep reinforcement learning for controlling frontal person close-up shooting». En: Neurocomputing 335 (mar. de 2019), págs. 37-47. ISSN: 18728286. DOI: 10.1016/j.neucom.2019.01.046.
Pablo Guimon. EE UU mata al poderoso general iraní Soleimani en un ataque con drones en el aeropuerto de Bagdad. Washington, ene. de 2020. URL: https : / / elpais . com / internacional / 2020 / 01 / 03 / actualidad / 1578010671 _ 559662 . html (visitado 29-09-2020)
Victor Delgado Hernando. Historia de los drones - El Drone. 2016. URL: http://eldrone.es/historia-de-los-drones/ (visitado 31-08-2020)
J.D. Blom. Occasional Paper 37 Unmanned Aerial Systems: A Historical Perspective. BiblioBazaar, 2012, pág. 153. ISBN: 9781249426707. URL: https://books.google.com.co/books?id=v-i5NAEACAAJ.
Garrett Dale Mckinnon. The Birth of a Drone Nation: American Unmanned Aerial Vehicles Since 1917. Inf. téc. 2014. URL: https://digitalcommons.lsu.edu/gradschool_ theses/403
Lei Tai, Giuseppe Paolo y Ming Liu. «Virtual-to-real Deep Reinforcement Learning: Continuous control of mobile robots for mapless navigation». En: arXiv (2017), págs. 1-6.
Olov Andersson, Mariusz Wzorek y Patrick Doherty. «Deep learning quadcopter control via risk-aware active learning». En: 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (2017), págs. 3812-3818.
Ruiz D. y Bravo M. «Navegación autónoma y evasión de obstáculos en UAV usando aprendizaje por refuerzo». En: Universidad Santo Tomas, Bogotá (2019), págs. 1-95. URL: http://hdl.handle.net/11634/19029.
Vemema Kangunde, Rodrigo S. Jamisola y Emmanuel K. Theophilus. «A review on drones controlled in real-time». En: International Journal of Dynamics and Control 9.4 (dic. de 2021), págs. 1832-1846. ISSN: 2195-2698
T. Lee, M. Leok y N. H. McClamroch. «Geometric tracking control of a quadrotor UAV on SE(3)». En: 49th IEEE Conference on Decision and Control (CDC). 2010, págs. 5420-5425
Amine Abadi y col. «Sliding mode control of quadrotor based on differential flatness». En: 2018 International Conference on Control, Automation and Diagnosis, ICCAD 2018. Institute of Electrical y Electronics Engineers Inc., mar. de 2018. ISBN: 9781538654071. DOI: 10.1109/CADIAG.2018.8751334.
S. Norouzi Ghazbi y col. «Quadrotors unmanned aerial vehicles: A review». En: International Journal on Smart Sensing and Intelligent Systems 9.1 (mar. de 2016), págs. 309-333. ISSN: 11785608. DOI: 10.21307/ijssis-2017-872.
Gabriel M. Hoffmann y col. «Quadrotor helicopter flight dynamics and control: Theory and experiment». En: Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2007. Vol. 2. 2007, págs. 1670-1689. ISBN: 1563479044. DOI: 10.2514/6.2007-6461.
Hugo Manuel Romero Pineda y Daniel Felipe Torres Cardozo. «Análisis Dinámico del Fallo de Rotores en un Hexacóptero». Tesis doct. Bogotá D.C.: Universidad Distrital Francisco José de Caldas, jun. de 2018, pág. 83. URL: http : / / hdl . handle . net / 11349/13866
P. Castillo, R. Lozano y A. Dzul. «Stabilization of a mini rotorcraft with four rotors». En: IEEE Control Systems Magazine 25.6 (2005), págs. 45-55.
Hugo Manuel Romero Pineda y Daniel Felipe Torres Cardozo. «Análisis Dinámico del Fallo de Rotores en un Hexacóptero». Tesis doct. Bogotá D.C.: Universidad Distrital Francisco José de Caldas, jun. de 2018, pág. 83. URL: http : / / hdl . handle . net / 11349/13866.
Madhu Babu Vankadari y col. «A Reinforcement Learning Approach for Autonomous Control and Landing of a Quadrotor». En: 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018. Institute of Electrical y Electronics Engineers Inc., ago. de 2018, págs. 676-683. ISBN: 9781538613535. DOI: 10.1109/ICUAS.2018.8453468
By Hyon Lim y col. «Open-Source Projects on Unmanned Aerial Vehicles». En: IEEE Robotics and Automation Magazine SEPTEMBER 2012 (2012), págs. 33-45. DOI: 10.1109/ MRA.2012.2205629.
Bello Guisado Ángel. «Diseño de controladores de vuelo para un dron modelo PARROT Mambo Minidrone». Feb. de 2019. URL: http://hdl.handle.net/10251/117441.
Francesco Rodella. El desafío de hacer volar drones sin ayuda humana | Tecnología | EL PAÍS. Oct. de 2018. URL: https : / / elpais . com / tecnologia / 2018 / 10 / 18 / actualidad/1539884534_864286.html (visitado 29-09-2020).
Wissenschaft und Forschung. URL: https : / / www . microdrones . com / de / anwendungen / wissenschaft - und - forschung/ (visitado 10-09-2020).
Juan Lastra. «Diseño de un dron programable de bajo costo». En: Repositorio Universidad de Cantabria (ago. de 2017), págs. 1-132. URL: http://hdl.handle.net/10902/ 12091.
Flying High: Drone Use in Fisheries Research - FISHBIO Fisheries Research, Monitoring, and Conservation. URL: https://fishbio.com/field-notes/the-fish-report/ flying-high-drone-use-fisheries-research (visitado 10-09-2020).
Ashvin Nair y col. AWAC: Accelerating Online Reinforcement Learning with Offline Datasets. 2021. arXiv: 2006.09359 [cs.LG].
Gang Shi y Shuxing Yang. «Intelligent control of UAV with neuron-fuzzy approach under hierarchical architecture». En: 2008 7th World Congress on Intelligent Control and Automation. 2008, págs. 5238-5243. DOI: 10.1109/WCICA.2008.4594539.
Jianhai Zhang y col. «Approximation Capability of a Novel Neural Network Model for Dynamic Systems». En: 2009 Second International Conference on Intelligent Computation Technology and Automation. Vol. 1. 2009, págs. 59-62. DOI: 10.1109/ICICTA.2009.23
M. A. Boon, A. P. Drijfhout y S. Tesfamichael. «Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: A case study». En: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42 (2W6 ago. de 2017), págs. 47-54. ISSN: 16821750. DOI: 10.5194/ISPRS-ARCHIVES-XLII-2-W6-47-2017
Kavita Gupta, Sandhya Bansal y Rajiv Goel. «Uses of Drones In Fighting COVID-19 Pandemic». En: 2021 10th International Conference on System Modeling Advancement in Research Trends (SMART). 2021, págs. 651-655
Daniel A Rincón-Riveros y col. «Automation System Based on NLP for Legal Clinic Assistance». En: IFAC-PapersOnLine 54.13 (2021), págs. 283-288.
Laura J Padilla Reyes y col. «Adaptable Recommendation System for Outfit Selection with Deep Learning Approach». En: IFAC-PapersOnLine 54.13 (2021), págs. 605-610.
Nicolás Gómez y col. «Leader-follower Behavior in Multi-agent Systems for Search and Rescue Based on PSO Approach». En: SoutheastCon 2022. IEEE. 2022, págs. 413-420.
GA Cardona y col. «Autonomous navigation for exploration of unknown environments and collision avoidance in mobile robots using reinforcement learning». En: 2019 SoutheastCon. IEEE. 2019, págs. 1-7
Edgar C Camacho, Jose Guillermo Guarnizo, Juan M Calderon y col. «Design and Construction of a Cost-Oriented Mobile Robot for Domestic Assistance». En: IFAC-PapersOnLine 54.13 (2021), págs. 293-298.
Edgar C Camacho, Nestor I Ospina y Juan M Calderón. «COVID-Bot: UV-C Based Autonomous Sanitizing Robotic Platform for COVID-19». En: Ifac-papersonline 54.13 (2021), págs. 317-322.
Nestor I Ospina y col. «Argrohbots: An affordable and replicable ground homogeneous robot swarm testbed». En: IFAC-PapersOnLine 54.13 (2021), págs. 256-261.
Gustavo A Cardona y col. «Adaptive Multi-Quadrotor Control for Cooperative Transportation of a Cable-Suspended Load». En: 2021 European Control Conference (ECC). IEEE. 2021, págs. 696-701.
Gustavo A Cardona y col. «Robust adaptive synchronization of interconnected heterogeneous quadrotors transporting a cable-suspended load». En: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021, págs. 31-37.
Juan D Pabon y col. «Event-Triggered Control for Weight-Unbalanced Directed Robot Networks». En: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021, págs. 5831-5836.
Wilson O Quesada y col. «Leader-follower formation for uav robot swarm based on fuzzy logic theory». En: International Conference on Artificial Intelligence and Soft Computing. Springer. 2018, págs. 740-751.
Gustavo A Cardona y Juan M Calderon. «Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations». En: Applied Sciences 9.8 (2019), pág. 1702.
Saith Rodríguez y col. «STOx’s 2016 Team description paper». En: (2013).
Saith Rodríguez y col. «Fast path planning algorithm for the robocup small size league». En: Robot Soccer World Cup. Springer. 2014, págs. 407-418
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/45916/1/2022JavierCardenasUrielCarrero.pdf
https://repository.usta.edu.co/bitstream/11634/45916/2/Carta_aprobacion_Biblioteca.%20CARDENAS%20Y%20CARRERO.pdf
https://repository.usta.edu.co/bitstream/11634/45916/3/Carta_autorizacion_autoarchivo_autor_2022.pdf
https://repository.usta.edu.co/bitstream/11634/45916/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/45916/5/license.txt
https://repository.usta.edu.co/bitstream/11634/45916/6/2022JavierCardenasUrielCarrero.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/45916/7/Carta_aprobacion_Biblioteca.%20CARDENAS%20Y%20CARRERO.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/45916/8/Carta_autorizacion_autoarchivo_autor_2022.pdf.jpg
bitstream.checksum.fl_str_mv caa1fbe57e2dc61f49e4d9dc9eaec1d7
ba025d8afb3181851da7dd3c3bd0c3c8
93fd772b853e54237cce52eb921fa189
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
718e33194f149c5ff419aa5e4a988857
6f01e6cf5204f4c7cb4aebfe14fa79a8
4788a292399261bfda7a5cbcbaa873cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026371064659968
spelling Camacho Poveda, Edgar CamiloCalderón Chávez, Juan ManuelCárdenas Bohórquez, Javier AlexisCarrero Cuadrado, Uriel Eduardohttps://orcid.org/0000-0002-6084-2512https://orcid.org/ 0000-0002-4471-3980https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000380938Universidad Santo Tomás2022-07-18T20:01:43Z2022-07-18T20:01:43Z2022-06-22Cárdenas Bohórquez, J. A. & Carrero Cuadrado, U. E. (2022).Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo [Tesis de Pregrado en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucionalhttp://hdl.handle.net/11634/45916reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEste proyecto de grado presenta el diseño e implementación de un controlador de posición para un UAV multi-rotor basado en redes neuronales profundas y entrenado mediante aprendizaje supervisado, tomando como referencia un controlador PID. Se detalla el proceso de selección del entorno de simulación, el controlador y el modelo seleccionado. Así mismo, se realizan evaluaciones de trayectorias de control para la construcción de un conjunto de datos que permita entrenar el modelo. Se entrenan distintas arquitecturas de redes neuronales, mediante el uso del algoritmo Hyperband para determinar los mejores hiperparámetros. Finalmente se evalúa el rendimiento del controlador entrenado con respecto al controlador base mediante la respuesta temporal con diferentes señales de control. Como producto final se presenta: el conjunto de datos del controlador de referencia, un repositorio con los programas realizados para el desarrollo y análisis, y el modelo de la red neuronal.This degree project presents the design and implementation of a position controller for a multi-rotor UAV based on deep neural networks and trained by for a multi-rotor UAV based on deep neural networks and trained by means of supervised learning supervised learning, taking as reference a PID controller. It details the process of selection of the simulation environment, the controller and the selected model is detailed. Likewise, evaluations of control trajectories control trajectories evaluations for the construction of a data set to train the model. to train the model. Different neural network architectures are trained, using the Hyperband algorithm to determine the best hyperparameters. Finally, the performance of the trained controller is evaluated with respect to the base controller by means of the temporal response with different signals. the base controller by means of the time response with different control signals. As a final product, the following is presented the dataset of the reference controller, a repository with the programs developed for the development and analysis, and development and analysis programs, and the neural network model. Translated with www.DeepL.com/Translator (free version)Ingeniero ElectronicoPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundoDroneNeural NetworkSupervised TrainingDeep LearningFlight ControllerAviones no tripuladosVehículos no tripuladosAeronáuticaSimuladores de vueloDronesDronRed NeuronalAprendizaje SupervisadoAprendizaje ProfundoControlador de VueloTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáM Tinungki. «The analysis of partial autocorrelation function in predicting maximum wind speed». En: IOP Conference Series: Earth and Environmental Science 235 (feb. de 2019), pág. 012097. DOI: 10.1088/1755-1315/235/1/012097. URL: https://doi.org/ 10.1088/1755-1315/235/1/012097.Mathworks. Quadcopter Project, MATLAB & Simulink. 2018. URL: https://de.mathworks.com/help/aeroblks/quadcopter-project.html.Michał Barty´s y Bartłomiej Hryniewicki. «The Trade-Off between the Controller Effort and Control Quality on Example of an Electro-Pneumatic Final Control Element». En: Actuators 8.1 (2019). ISSN: 2076-0825.Erik Cuevas, Alonso Echavarría y Marte A. Ramírez-Ortegón. «An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation». En: Applied Intelligence 40.2 (mar. de 2014), págs. 256-272. ISSN: 1573-7497. DOI: 10 . 1007 / s10489 - 013 - 0458 - 0. URL: https://doi.org/10.1007/s10489-013-0458-0.Riccardo Poli, James Kennedy y Tim Blackwell. «Particle swarm optimization». En: Swarm Intelligence 1.1 (jun. de 2007), págs. 33-57. ISSN: 1935-3820. DOI: 10 . 1007 / s11721 - 007 - 0002 - 0. URL: https://doi.org/10.1007/s11721-007-0002-0.J. Kennedy y R. Eberhart. «Particle swarm optimization». En: Proceedings of ICNN’95 - International Conference on Neural Networks. 1995, 1942-1948 vol.4.Xue Ying. «An Overview of Overfitting and its Solutions». En: Journal of Physics: Conference Series (feb. de 2019), págs. 256-272. DOI: 10 . 1088 / 1742 - 6596 / 1168 / 2 / 022022. URL: https://www.researchgate.net/publication/331677125_An_Overview_ of_Overfitting_and_its_Solutions.Lisha Li y col. «Hyperband: A novel bandit-based approach to hyperparameter optimization». En: Journal of Machine Learning Research 18 (2018), págs. 1-52. ISSN: 15337928. arXiv: 1603.06560.IBM Cloud Educationl. What are Neural Networks? 2020. URL: https : / / www . ibm . com/cloud/learn/neural-networks (visitado 23-06-2021).Fethi Tekyaygil. Keras Model Wars: Sequential vs Functional. 2020. URL: https://www. datasciencearth.com/keras- model- wars- sequential- vs- functional/ (visitado 23-06-2021).J. Astrom Karl y Tore Hagglund. PID Controllers, Theory, Design and Tuning. Second Edition. United States Of America, 1988.«Control System». En: CIRP Encyclopedia of Production Engineering. Ed. por Sami Chatti y col. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, págs. 359-359. ISBN: 978-3- 662-53120-4. DOI: 10.1007/978-3-662-53120-4_300118. URL: https://doi. org/10.1007/978-3-662-53120-4_300118.Rufus Fraanje. quadcopter_sim. 2017. URL: https://github.com/prfraanje/quadcopter_sim (visitado 19-11-2021).Jérôme Le Ny Carlos Luis. «Design of a Trajectory Tracking Controller for a Nanoquadcopter». En: (ago. de 2016). URL: https://arxiv.org/abs/1608.05786Crazyflie 2.0 – Bitcraze Store. URL: https://store.bitcraze.io/products/crazyflie-2-0.Nathan Michael y col. «The GRASP Multiple Micro-UAV Testbed». En: IEEE Robotics Automation Magazine 17.3 (2010), págs. 56-65. DOI: 10.1109/MRA.2010.937855.Jacopo Panerati. gym-pybullet-drones. 2022. URL: https://github.com/utiasDSL/ gym-pybullet-drones (visitado 01-02-2022).Bullet Real-Time Physics Simulation | Home of Bullet and PyBullet: physics simulation for games, visual effects, robotics and reinforcement learning. URL: https://pybullet.org/ wordpress/.Charles H. Holbrow y col. «Some Physics You Need to Know». En: Modern Introductory Physics (2009), págs. 13-62. DOI: 10.1007/978-0-387-79080-0_2.William Neeley. «Design and Development of a High-Performance Quadrotor Control Architecture Based on Feedback Linearization». En: Electrical and Computer Engineering ETDs (feb. de 2016). URL: https://digitalrepository.unm.edu/ece_etds/ 190.Julian Förster, Bachelor Thesis y Michael D Hamer Raffaello. «System Identification of the Crazyflie 2.0 Nano Quadrocopter». En: (2015). DOI: 10.3929/ETHZ-B-000214143.Jacopo Panerati y col. Learning to Fly – a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control. 2021. arXiv: 2103 . 02142 [cs.RO].Guanya Shi y col. «Neural Lander: Stable Drone Landing Control Using Learned Dynamics». En: 2019 International Conference on Robotics and Automation (ICRA) (mayo de 2019). DOI: 10 . 1109 / icra . 2019 . 8794351. URL: http://dx.doi.org/10.1109/ICRA.2019.8794351.Shashi Poddar, Rahul Kottath y Vinod Karar. «Evolution of Visual Odometry Techniques». En: CoRR abs/1804.11142 (2018). arXiv: 1804 . 11142. URL: http://arxiv.org/abs/1804.11142Tommaso Bresciani. «Modelling, Identification and Control of a Quadrotor Helicopter». Lund University, ago. de 2008, págs. 1-184. URL: http : //www.control.lth.se/publications/%20http://lup.lub.lu.se/luur/ download?func=downloadFile&recordOId=8847641&fileOId=8859343.The Physics of How Drones Fly | WIRED. 2021. URL: https://www.wired.com/2017/ 05/the-physics-of-drones/.Moti Ben-Ari. A Tutorial on Euler Angles and Quaternions. Wiezmann Institute of Science, 2014, págs. 1-22. URL: http : / / www . weizmann . ac . il / sci - tea / benari / %20https : / / www . weizmann . ac . il / sci - tea / benari / sites / sci - tea . benari / files / uploads / softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf.Francesco Sabatino. «Quadrotor control: modeling, nonlinearcontrol design, and simulation». Tesis de mtría. KTH, Automatic Control, 2015, pág. 61Drones: Reporting for Work. URL: https://www.goldmansachs.com/insights/ technology-driving-innovation/drones/ (visitado 09-09-2020)Unidad Administrativa Especial de Aeronáutica Civil. Resolución número 04201 de 2018. Dic. de 2018. URL: https://diario-oficial.vlex.com.co/vid/resolucion numero-04201-2018-763853657 (visitado 31-08-2020).Juan Manuel Garzón y Federico Luqe. «Implementación de drones para incrementar la productividad en el agro colombiano». Colegio de Estudios Superiores de Administración - CESA, 2018, pág. 71. URL: http://hdl.handle.net/10726/2302.David Mayorga Perdomo. «Un dron para desminar el país». En: Perquisa 34 (nov. de 2015), págs. 6-7. URL: https://www.javeriana.edu.co/pesquisa/un-dron para-desminar-el-pais/Luz Vallejo Mejía y Sandra Milena Agudelo - Londoño. «El glifosato alza el vuelo. Análisis retórico del discurso en la prensa nacional de Colombia (2018-2019)». En: Signo y Pensamiento 38.75 (nov. de 2019), págs. 1-16. ISSN: 2027-2731. DOI: 10.11144/Javeriana.syp38-75.gava. URL: https://revistas.javeriana. edu.co/index.php/signoypensamiento/article/view/27958Redacción ImpactoTIC. Las tecnologías ’vuelan’ en el posconflicto: drones, radares y contenidos. Jun. de 2018. URL: https : / / impactotic . co / tecnologia - posconflicto - en - colombia/ (visitado 15-09-2020)María Jesús Guerrero Lebrón. La regulación transitoria de los operadores de aeronaves civiles pilotadas por control remoto. Inf. téc. Sep. de 2014, págs. 12-29. URL: https://dialnet. unirioja.es/servlet/revista?codigo=21839Markus Christen y col. Zivile Drohnen - Herausforderungen und Perspektiven. 1.a ed. Vol. 66. Zürcher Hochschule für Angewandte Wissenschaften, 2018, pág. 252. ISBN: 9783728138934. DOI: 10 . 3218 / 3894 - 1. URL: https://digitalcollection.zhaw.ch/handle/11475/10584?locale=de.AISBL y SPARC. Robotics 2020 Multi-Annual Roadmap MAR ICT-24 ii for Robotics in Europe, Call 1 ICT23–Horizon 2020. 01. Feb. de 2014, pág. 308. URL: https : / / www . eu - robotics . net / cms / upload / downloads / ppp - documents/Multi-Annual_Roadmap2020_ICT-24_Rev_B_full.pdf.SPARC. What is SPARC? The Partnership for Robotics in Europe. URL: https://www.eu robotics.net/sparc/about/index.html (visitado 05-09-2020William Koch y col. «Reinforcement Learning for UAV Attitude Control». En: CoRR abs/1804.04154 (2018). arXiv: 1804 . 04154. URL: http://arxiv.org/abs/1804.04154Victoria J. Hodge, Richard Hawkins y Rob Alexander. «Deep reinforcement learning for drone navigation using sensor data». En: Neural Computing and Applications 0123456789 (2020). ISSN: 14333058. DOI: 10.1007/s00521-020-05097-x. URL: https://doi. org/10.1007/s00521-020-05097-x.Guangcun Shan y col. «Control of Quadrotor Drone with Partial State Observation via Reinforcement Learning». En: Proceedings - 2019 Chinese Automation Congress, CAC 2019. Institute of Electrical y Electronics Engineers Inc., nov. de 2019, págs. 1965-1968. ISBN: 9781728140940. DOI: 10.1109/CAC48633.2019.8996394Sang Yun Shin, Yong Won Kang y Yong Guk Kim. «Automatic drone navigation in realistic 3d landscapes using deep reinforcement learning». En: 2019 6th International Conference on Control, Decision and Information Technologies, CoDIT 2019. Institute of Electrical y Electronics Engineers Inc., abr. de 2019, págs. 1072-1077. ISBN: 9781728105215. DOI: 10.1109/CoDIT.2019.8820322.Ariel Matías y col. «Desplazamiento de un hexápodo utilizando técnicas de aprendizaje por refuerzo». En: nov. de 2014, págs. 1-4.Volodymyr Mnih y col. «Human-level control through deep reinforcement learning». En: Nature 518.7540 (2015), págs. 529-533. ISSN: 14764687. DOI: 10.1038/nature14236.Yanhua Huang. «Deep Q-networks». En: Deep Reinforcement Learning: Fundamentals, Research and Applications (2020), págs. 135-160. DOI: 10.1007/978-981-15-4095-0_4.Nomi Ringach y Megumi Sano. «Prioritized Experience Replay via Learnability Approximation». En: (2018), págs. 1-7.Tom Schaul y col. «Prioritized experience replay». En: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings(2016), págs. 1-21. arXiv: 1511.05952.Eduardo F. Morales y Julio H. Zaragoza. «An introduction to reinforcement learning». En: Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions (2011), págs. 63-80. DOI: 10.4018/978-1-60960-165-2.ch004.Covid Tesau y Gerald Tesau. «Temporal Difference Learning and TD-Gammon». En: Communications of the ACM 38.3 (1995), págs. 58-68. ISSN: 15577317. DOI: 10 . 1145 / 203330.203343.Volodymyr Mnih y col. «Asynchronous methods for deep reinforcement learning». En: 33rd International Conference on Machine Learning, ICML 2016 4 (2016), págs. 2850-2869. arXiv: 1602.01783.Kai Arulkumaran y col. «Deep reinforcement learning: A brief survey». En: IEEE Signal Processing Magazine 34.6 (2017), págs. 26-38. ISSN: 10535888. DOI: 10.1109/MSP.2017. 2743240. arXiv: arXiv:1708.05866v2.Yuanda Wang y col. «Compensator for Robust Quadrotor Control». En: IEEE Transactions on Systems, Man, and Cybernetics: Systems (2019), págs. 1-13. DOI: 10.1109/TSMC.2018.2884725Claudio Rosales y col. «Neural control of a Quadrotor: A state-observer based approach». En: 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018. Institute of Electrical y Electronics Engineers Inc., ago. de 2018, págs. 647-653. ISBN: 9781538613535. DOI: 10.1109/ICUAS.2018.8453303.Shingo Kase y Masahiro Oya. «Adaptive tracking controller for hexacopters with a wind disturbance». En: Artificial Life and Robotics 25.2 (mayo de 2020), págs. 322-327. ISSN: 16147456. DOI: 10.1007/s10015-020-00586-7. URL: https://link.springer. com/article/10.1007/s10015-020-00586-7.V. Madhu Babu, Kaushik Das y Swagat Ku. «Designing of self tuning PID controller for AR drone quadrotor». En: 2017 18th International Conference on Advanced Robotics, ICAR 2017. Institute of Electrical y Electronics Engineers Inc., ago. de 2017, págs. 167-172. ISBN: 9781538631577. DOI: 10.1109/ICAR.2017.8023513.Colin Greatwood y Arthur G. Richards. «Reinforcement learning and model predictive control for robust embedded quadrotor guidance and control». En: Autonomous Robots 43.7 (oct. de 2019), págs. 1681-1693. ISSN: 15737527. DOI: 10 . 1007 / s10514 - 019 - 09829-4. URL: https://doi.org/10.1007/s10514-019-09829-4.Siddharth Patel y col. «An Intelligent Hybrid Artificial Neural Network-Based Approach for Control of Aerial Robots». En: Journal of Intelligent and Robotic Systems: Theory and Applications 97.2 (feb. de 2020), págs. 387-398. ISSN: 15730409. DOI: 10.1007/s10846-019-01031-z.Fendy Santoso y col. «Robust Hybrid Nonlinear Control Systems for the Dynamics of a Quadcopter Drone». En: IEEE Transactions on Systems, Man, and Cybernetics: Systems 50.8 (ago. de 2020), págs. 3059-3071. ISSN: 21682232. DOI: 10.1109/TSMC.2018.2836922.Yahui Li y col. «Robust and adaptive backstepping control for nonlinear systems using RBF neural networks». En: IEEE Transactions on Neural Networks 15.3 (mayo de 2004), págs. 693-701. ISSN: 10459227. DOI: 10.1109/TNN.2004.826215.R. Analia, Susanto y K. Song. «Fuzzy+PID attitude control of a co-axial octocopter». En: 2016 IEEE International Conference on Industrial Technology (ICIT). 2016, págs. 1494-1499. DOI: 10.1109/ICIT.2016.7474981.Teresa Guarda y col. Territorial Intelligence in the Impulse of Economic Development Initiatives for Artisanal Fishing Cooperatives Teresa. Vol. 152. Micrads. Springer Singapore, 2020, págs. 119-132. DOI: 10 . 1007 / 978 - 981 - 13 - 9155 - 2. URL: http://link.springer.com/10.1007/978-981-13-9155-2.Dongbin Lee y Timothy C. Burg. «Lyapunov-based control of unmanned aerial vehicle designed via stability analysis». En: Control Theory: Perspectives, Applications and Developments. Nova Science Publishers, Inc., abr. de 2015, págs. 277-297. ISBN: 9781634827300. DOI: 10.4155/9781634827300.ch12.E. Rogers y col. «Lyapunov stability theory for linear repetitive processes - The 1D equation approach». En: European Control Conference, ECC 1999 - Conference Proceedings (2015), págs. 4774-4779. DOI: 10.23919/ecc.1999.7100090.Oualid Araar y Nabil Aouf. «Full linear control of a quadrotor UAV, LQ vs H∞». En: 2014 UKACC International Conference on Control, CONTROL 2014 - Proceedings. Institute of Electrical y Electronics Engineers Inc., oct. de 2014, págs. 133-138. ISBN: 9781479950119. DOI: 10.1109/CONTROL.2014.6915128.Nurul Dayana Salim y col. «PID plus LQR attitude control for hexarotor MAV in indoor environments». En: Proceedings of the IEEE International Conference on Industrial Technology (2014), págs. 85-90. DOI: 10.1109/ICIT.2014.6894977.Zhongqiu Zhang. «Application of PID Simulation Control Mode in Quadrotor Aircraft». En: Proceedings - 2020 International Conference on Computer Engineering and Application, ICCEA 2020. Institute of Electrical y Electronics Engineers Inc., mar. de 2020, págs. 826-829. ISBN: 9781728159041. DOI: 10.1109/ICCEA50009.2020.00181.Hyunsoo Yang y col. Multi-rotor drone tutorial: systems, mechanics, control and state estimation. Abr. de 2017. DOI: 10.1007/s11370-017-0224-y.Daniel Torres. «Analisis Dinamico del Fallo de Rotores en un Hexacoptero». En: Journal of Chemical Information and Modeling 53.9 (2019), págs. 1689-1699. ISSN: 1098-6596. URL: http://hdl.handle.net/11349/13866.Paúl Sebastián y Dávila Aldás. «Diseño, construcción y control de un hexacóptero de monitoreo». Jun. de 2015. URL: http://bibdigital.epn.edu.ec/handle/15000/10924.Daler Sharipov y col. «Implementation of a mathematical model of a hexacopter control system». En: International Conference on Information Science and Communications Technologies: Applications, Trends and Opportunities, ICISCT 2019. Institute of Electrical y Electronics Engineers Inc., nov. de 2019. ISBN: 9781728125640. DOI: 10.1109/ICISCT47635.2019.9011842Quan Quan. Introduction to multicopter design and control. Springer Singapore, jun. de 2017, págs. 1-384. ISBN: 9789811033827. DOI: 10.1007/978-981-10-3382-7Karl Johan Åström. «Process Control—Past, Present, and Future». En: IEEE Control Systems Magazine 5.3 (1985), págs. 3-10. ISSN: 02721708. DOI: 10.1109/MCS.1985.1104958.L.S. Casey. Curtiss, the Hammondsport Era, 1907-1915. Crown Publishers, 1981, págs. 12-15. ISBN: 9780517543269. URL: https : / / www . amazon . com / Curtiss - Hammondsport-1907-1915-Louis-Casey/dp/0517545659Chan Chun y col. «Drone Noise Reduction using Deep Convolutional Autoencoder for UAV Acoustic Sensor Networks». En: Proceedings - 2019 IEEE 16th International Conference on Mobile Ad Hoc and S03t Systems Workshops, MASSW 2019. Institute of Electrical y Electronics Engineers Inc., nov. de 2019, págs. 168-169. ISBN: 9781728141213. DOI: 10.1109/MASSW.2019.00043Nikolaos Passalis y Anastasios Tefas. «Deep reinforcement learning for controlling frontal person close-up shooting». En: Neurocomputing 335 (mar. de 2019), págs. 37-47. ISSN: 18728286. DOI: 10.1016/j.neucom.2019.01.046.Pablo Guimon. EE UU mata al poderoso general iraní Soleimani en un ataque con drones en el aeropuerto de Bagdad. Washington, ene. de 2020. URL: https : / / elpais . com / internacional / 2020 / 01 / 03 / actualidad / 1578010671 _ 559662 . html (visitado 29-09-2020)Victor Delgado Hernando. Historia de los drones - El Drone. 2016. URL: http://eldrone.es/historia-de-los-drones/ (visitado 31-08-2020)J.D. Blom. Occasional Paper 37 Unmanned Aerial Systems: A Historical Perspective. BiblioBazaar, 2012, pág. 153. ISBN: 9781249426707. URL: https://books.google.com.co/books?id=v-i5NAEACAAJ.Garrett Dale Mckinnon. The Birth of a Drone Nation: American Unmanned Aerial Vehicles Since 1917. Inf. téc. 2014. URL: https://digitalcommons.lsu.edu/gradschool_ theses/403Lei Tai, Giuseppe Paolo y Ming Liu. «Virtual-to-real Deep Reinforcement Learning: Continuous control of mobile robots for mapless navigation». En: arXiv (2017), págs. 1-6.Olov Andersson, Mariusz Wzorek y Patrick Doherty. «Deep learning quadcopter control via risk-aware active learning». En: 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (2017), págs. 3812-3818.Ruiz D. y Bravo M. «Navegación autónoma y evasión de obstáculos en UAV usando aprendizaje por refuerzo». En: Universidad Santo Tomas, Bogotá (2019), págs. 1-95. URL: http://hdl.handle.net/11634/19029.Vemema Kangunde, Rodrigo S. Jamisola y Emmanuel K. Theophilus. «A review on drones controlled in real-time». En: International Journal of Dynamics and Control 9.4 (dic. de 2021), págs. 1832-1846. ISSN: 2195-2698T. Lee, M. Leok y N. H. McClamroch. «Geometric tracking control of a quadrotor UAV on SE(3)». En: 49th IEEE Conference on Decision and Control (CDC). 2010, págs. 5420-5425Amine Abadi y col. «Sliding mode control of quadrotor based on differential flatness». En: 2018 International Conference on Control, Automation and Diagnosis, ICCAD 2018. Institute of Electrical y Electronics Engineers Inc., mar. de 2018. ISBN: 9781538654071. DOI: 10.1109/CADIAG.2018.8751334.S. Norouzi Ghazbi y col. «Quadrotors unmanned aerial vehicles: A review». En: International Journal on Smart Sensing and Intelligent Systems 9.1 (mar. de 2016), págs. 309-333. ISSN: 11785608. DOI: 10.21307/ijssis-2017-872.Gabriel M. Hoffmann y col. «Quadrotor helicopter flight dynamics and control: Theory and experiment». En: Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2007. Vol. 2. 2007, págs. 1670-1689. ISBN: 1563479044. DOI: 10.2514/6.2007-6461.Hugo Manuel Romero Pineda y Daniel Felipe Torres Cardozo. «Análisis Dinámico del Fallo de Rotores en un Hexacóptero». Tesis doct. Bogotá D.C.: Universidad Distrital Francisco José de Caldas, jun. de 2018, pág. 83. URL: http : / / hdl . handle . net / 11349/13866P. Castillo, R. Lozano y A. Dzul. «Stabilization of a mini rotorcraft with four rotors». En: IEEE Control Systems Magazine 25.6 (2005), págs. 45-55.Hugo Manuel Romero Pineda y Daniel Felipe Torres Cardozo. «Análisis Dinámico del Fallo de Rotores en un Hexacóptero». Tesis doct. Bogotá D.C.: Universidad Distrital Francisco José de Caldas, jun. de 2018, pág. 83. URL: http : / / hdl . handle . net / 11349/13866.Madhu Babu Vankadari y col. «A Reinforcement Learning Approach for Autonomous Control and Landing of a Quadrotor». En: 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018. Institute of Electrical y Electronics Engineers Inc., ago. de 2018, págs. 676-683. ISBN: 9781538613535. DOI: 10.1109/ICUAS.2018.8453468By Hyon Lim y col. «Open-Source Projects on Unmanned Aerial Vehicles». En: IEEE Robotics and Automation Magazine SEPTEMBER 2012 (2012), págs. 33-45. DOI: 10.1109/ MRA.2012.2205629.Bello Guisado Ángel. «Diseño de controladores de vuelo para un dron modelo PARROT Mambo Minidrone». Feb. de 2019. URL: http://hdl.handle.net/10251/117441.Francesco Rodella. El desafío de hacer volar drones sin ayuda humana | Tecnología | EL PAÍS. Oct. de 2018. URL: https : / / elpais . com / tecnologia / 2018 / 10 / 18 / actualidad/1539884534_864286.html (visitado 29-09-2020).Wissenschaft und Forschung. URL: https : / / www . microdrones . com / de / anwendungen / wissenschaft - und - forschung/ (visitado 10-09-2020).Juan Lastra. «Diseño de un dron programable de bajo costo». En: Repositorio Universidad de Cantabria (ago. de 2017), págs. 1-132. URL: http://hdl.handle.net/10902/ 12091.Flying High: Drone Use in Fisheries Research - FISHBIO Fisheries Research, Monitoring, and Conservation. URL: https://fishbio.com/field-notes/the-fish-report/ flying-high-drone-use-fisheries-research (visitado 10-09-2020).Ashvin Nair y col. AWAC: Accelerating Online Reinforcement Learning with Offline Datasets. 2021. arXiv: 2006.09359 [cs.LG].Gang Shi y Shuxing Yang. «Intelligent control of UAV with neuron-fuzzy approach under hierarchical architecture». En: 2008 7th World Congress on Intelligent Control and Automation. 2008, págs. 5238-5243. DOI: 10.1109/WCICA.2008.4594539.Jianhai Zhang y col. «Approximation Capability of a Novel Neural Network Model for Dynamic Systems». En: 2009 Second International Conference on Intelligent Computation Technology and Automation. Vol. 1. 2009, págs. 59-62. DOI: 10.1109/ICICTA.2009.23M. A. Boon, A. P. Drijfhout y S. Tesfamichael. «Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: A case study». En: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42 (2W6 ago. de 2017), págs. 47-54. ISSN: 16821750. DOI: 10.5194/ISPRS-ARCHIVES-XLII-2-W6-47-2017Kavita Gupta, Sandhya Bansal y Rajiv Goel. «Uses of Drones In Fighting COVID-19 Pandemic». En: 2021 10th International Conference on System Modeling Advancement in Research Trends (SMART). 2021, págs. 651-655Daniel A Rincón-Riveros y col. «Automation System Based on NLP for Legal Clinic Assistance». En: IFAC-PapersOnLine 54.13 (2021), págs. 283-288.Laura J Padilla Reyes y col. «Adaptable Recommendation System for Outfit Selection with Deep Learning Approach». En: IFAC-PapersOnLine 54.13 (2021), págs. 605-610.Nicolás Gómez y col. «Leader-follower Behavior in Multi-agent Systems for Search and Rescue Based on PSO Approach». En: SoutheastCon 2022. IEEE. 2022, págs. 413-420.GA Cardona y col. «Autonomous navigation for exploration of unknown environments and collision avoidance in mobile robots using reinforcement learning». En: 2019 SoutheastCon. IEEE. 2019, págs. 1-7Edgar C Camacho, Jose Guillermo Guarnizo, Juan M Calderon y col. «Design and Construction of a Cost-Oriented Mobile Robot for Domestic Assistance». En: IFAC-PapersOnLine 54.13 (2021), págs. 293-298.Edgar C Camacho, Nestor I Ospina y Juan M Calderón. «COVID-Bot: UV-C Based Autonomous Sanitizing Robotic Platform for COVID-19». En: Ifac-papersonline 54.13 (2021), págs. 317-322.Nestor I Ospina y col. «Argrohbots: An affordable and replicable ground homogeneous robot swarm testbed». En: IFAC-PapersOnLine 54.13 (2021), págs. 256-261.Gustavo A Cardona y col. «Adaptive Multi-Quadrotor Control for Cooperative Transportation of a Cable-Suspended Load». En: 2021 European Control Conference (ECC). IEEE. 2021, págs. 696-701.Gustavo A Cardona y col. «Robust adaptive synchronization of interconnected heterogeneous quadrotors transporting a cable-suspended load». En: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021, págs. 31-37.Juan D Pabon y col. «Event-Triggered Control for Weight-Unbalanced Directed Robot Networks». En: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021, págs. 5831-5836.Wilson O Quesada y col. «Leader-follower formation for uav robot swarm based on fuzzy logic theory». En: International Conference on Artificial Intelligence and Soft Computing. Springer. 2018, págs. 740-751.Gustavo A Cardona y Juan M Calderon. «Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations». En: Applied Sciences 9.8 (2019), pág. 1702.Saith Rodríguez y col. «STOx’s 2016 Team description paper». En: (2013).Saith Rodríguez y col. «Fast path planning algorithm for the robocup small size league». En: Robot Soccer World Cup. Springer. 2014, págs. 407-418ORIGINAL2022JavierCardenasUrielCarrero.pdf2022JavierCardenasUrielCarrero.pdfTrabajo de Gradoapplication/pdf16208910https://repository.usta.edu.co/bitstream/11634/45916/1/2022JavierCardenasUrielCarrero.pdfcaa1fbe57e2dc61f49e4d9dc9eaec1d7MD51open accessCarta_aprobacion_Biblioteca. CARDENAS Y CARRERO.pdfCarta_aprobacion_Biblioteca. CARDENAS Y CARRERO.pdfCarta aprobación facultadapplication/pdf335594https://repository.usta.edu.co/bitstream/11634/45916/2/Carta_aprobacion_Biblioteca.%20CARDENAS%20Y%20CARRERO.pdfba025d8afb3181851da7dd3c3bd0c3c8MD52metadata only accessCarta_autorizacion_autoarchivo_autor_2022.pdfCarta_autorizacion_autoarchivo_autor_2022.pdfCarta autorización autorapplication/pdf354537https://repository.usta.edu.co/bitstream/11634/45916/3/Carta_autorizacion_autoarchivo_autor_2022.pdf93fd772b853e54237cce52eb921fa189MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/45916/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/45916/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2022JavierCardenasUrielCarrero.pdf.jpg2022JavierCardenasUrielCarrero.pdf.jpgIM Thumbnailimage/jpeg7868https://repository.usta.edu.co/bitstream/11634/45916/6/2022JavierCardenasUrielCarrero.pdf.jpg718e33194f149c5ff419aa5e4a988857MD56open accessCarta_aprobacion_Biblioteca. CARDENAS Y CARRERO.pdf.jpgCarta_aprobacion_Biblioteca. CARDENAS Y CARRERO.pdf.jpgIM Thumbnailimage/jpeg6976https://repository.usta.edu.co/bitstream/11634/45916/7/Carta_aprobacion_Biblioteca.%20CARDENAS%20Y%20CARRERO.pdf.jpg6f01e6cf5204f4c7cb4aebfe14fa79a8MD57open accessCarta_autorizacion_autoarchivo_autor_2022.pdf.jpgCarta_autorizacion_autoarchivo_autor_2022.pdf.jpgIM Thumbnailimage/jpeg8232https://repository.usta.edu.co/bitstream/11634/45916/8/Carta_autorizacion_autoarchivo_autor_2022.pdf.jpg4788a292399261bfda7a5cbcbaa873ccMD58open access11634/45916oai:repository.usta.edu.co:11634/459162022-12-23 03:14:55.811open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K