Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo
Ante la constante demanda de energía eléctrica, diversas tecnologías son estudiadas para así disminuir la dependencia a las energías convencionales que han llevado a un punto de quiebre las condiciones del medio ambiente. De esta forma, dentro de las biotecnologías recientes se encuentran las celdas...
- Autores:
-
Solognier Balcacer, Sallyslain Gisley
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/32130
- Acceso en línea:
- http://hdl.handle.net/11634/32130
- Palabra clave:
- Microcosms
Terrarium
Plant microbial fuel cell
Sustainable energy
Photosyntesis
Biotechnology
Bioquímica
Conversión de energía
Energía biomásica
Agricultura y energía
Microorganismos biotecnológicos
Microcosmos
Terrario
Celdas de combustible microbianas en plantas (CCM-P)
Energía sostenible
Fotosíntesis
Biotecnología
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_7c1c2af3d97f5853dade8b0389cd2d1e |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/32130 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo |
title |
Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo |
spellingShingle |
Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo Microcosms Terrarium Plant microbial fuel cell Sustainable energy Photosyntesis Biotechnology Bioquímica Conversión de energía Energía biomásica Agricultura y energía Microorganismos biotecnológicos Microcosmos Terrario Celdas de combustible microbianas en plantas (CCM-P) Energía sostenible Fotosíntesis Biotecnología |
title_short |
Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo |
title_full |
Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo |
title_fullStr |
Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo |
title_full_unstemmed |
Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo |
title_sort |
Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo |
dc.creator.fl_str_mv |
Solognier Balcacer, Sallyslain Gisley |
dc.contributor.advisor.spa.fl_str_mv |
Cándela Soto, Angélica María |
dc.contributor.author.spa.fl_str_mv |
Solognier Balcacer, Sallyslain Gisley |
dc.subject.keyword.spa.fl_str_mv |
Microcosms Terrarium Plant microbial fuel cell Sustainable energy Photosyntesis Biotechnology |
topic |
Microcosms Terrarium Plant microbial fuel cell Sustainable energy Photosyntesis Biotechnology Bioquímica Conversión de energía Energía biomásica Agricultura y energía Microorganismos biotecnológicos Microcosmos Terrario Celdas de combustible microbianas en plantas (CCM-P) Energía sostenible Fotosíntesis Biotecnología |
dc.subject.lemb.spa.fl_str_mv |
Bioquímica Conversión de energía Energía biomásica Agricultura y energía Microorganismos biotecnológicos |
dc.subject.proposal.spa.fl_str_mv |
Microcosmos Terrario Celdas de combustible microbianas en plantas (CCM-P) Energía sostenible Fotosíntesis Biotecnología |
description |
Ante la constante demanda de energía eléctrica, diversas tecnologías son estudiadas para así disminuir la dependencia a las energías convencionales que han llevado a un punto de quiebre las condiciones del medio ambiente. De esta forma, dentro de las biotecnologías recientes se encuentran las celdas de combustible microbianas aplicadas a plantas, la cual será el pilar de esta investigación. Así mismo, se busca realizar un estudio cienciométrico con la base de datos de Scopus, que permita la comparación de los documentos enfocados en la investigación respecto a la producción de energía eléctrica limpia a partir de celdas de combustible microbianas en plantas (CCM-P) con el fin de analizar los factores que principalmente abarcan el funcionamiento correcto de una CCMP y estudiar la posibilidad de implementar las CCMs en plantas aisladas dentro de un microcosmos cerrado, es decir, un terrario. Esta investigación busca plantear un prototipo ideal basándose en los resultados, previamente comparados, de diversos autores; el análisis prospecta posibles escenarios en la implementación de la biotecnología autosostenible. |
publishDate |
2021 |
dc.date.accessioned.spa.fl_str_mv |
2021-02-15T15:02:41Z |
dc.date.available.spa.fl_str_mv |
2021-02-15T15:02:41Z |
dc.date.issued.spa.fl_str_mv |
2021-02-02 |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Solognier Balcacer, S. G. (2020). Estudio de caso : Energía a partir de plantas vivas Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo. Universidad Santo Tomás. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/32130 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Solognier Balcacer, S. G. (2020). Estudio de caso : Energía a partir de plantas vivas Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo. Universidad Santo Tomás. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/32130 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Arends, J. B. A., Blondeel, E., Tennison, S. R., Boon, N., & Verstraete, W. (2012). Suitability of granular carbon as an anode material for sediment microbial fuel cells. Journal of Soils and Sediments, 12(7), 1197–1206. https://doi.org/10.1007/s11368-012-0537-6 Arends, J. B. A., Speeckaert, J., Blondeel, E., De Vrieze, J., Boeckx, P., Verstraete, W., … Boon, N. (2014). Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Applied Microbiology and Biotechnology, 98(7), 3205–3217. https://doi.org/10.1007/s00253-013-5328-5 Azri, Y. M., Tou, I., Sadi, M., & Benhabyles, L. (2018). Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 15(4), 254–263. https://doi.org/10.1080/15435075.2018.1432487 Bagshaw Ward, N. (1899). Library of The New York Botanical Garden (Second). London. Brinker, A. (2012). Morphogenesis of the Terrarium. The American Biology Teacher, 74(7), 521– 524. https://doi.org/10.1525/abt.2012.74.7.17 Cabezas, A. (2010). Diversity and Function of the Microbial Community on Anodes of Sediment Microbial Fuel Cells fueled by Root Exudates Doctoral. Microbiology, PhD, 184 Cabezas, A., Pommerenke, B., Boon, N., & Friedrich, M. W. (2015). Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate- driven microbial fuel cells in rice field soil. Environmental Microbiology Reports, 7(3), 489– 497. https://doi.org/10.1111/1758-2229.12277 Chicas, S. D., Sivasankar, V., Omine, K., Valladarez, J., & Mylsamy, P. (2018). Plant microbial fuel cell technology: Developments and limitations. En Microbial Fuel Cell Technology for Bioelectricity (pp. 49–65). https://doi.org/10.1007/978-3-319-92904-0_3 China, F. of. (2000). CANNA Linnaeus. Smithsonian, 510650–510650. Clark, M. A., Choi, J., & Douglas, M. (2018). Biology 2e. Houston, Texas. Damen, Damen, T. H. J., van der Burg, W. J., Wiland-Szymańska, J., & Sosef, M. S. M. (2018). Taxonomic novelties in African Dracaena (Dracaenaceae). Blumea: Journal of Plant Taxonomy and Plant Geography, 63(1), 31–53. https://doi.org/10.3767/blumea.2018.63.01.05 Daniels, F. (1972). Photochemical Effects of Sunlight. Biophysical Journal, 12(7), 723–727. https://doi.org/10.1016/S0006-3495(72)86116-2 French, C. S. (1952). Photosynthesis and related processes. Physics Today, 5(3), 20–21. https://doi.org/10.1063/1.3067511 Gómora-Hernández, J. C., Serment-Guerrero, J. H., Carreño-De-león, M. C., & Flores-Alamo, N. (2020). Voltage production in a plant-microbial fuel cell using Agapanthus africanus | Producción de voltaje en una celda de combustible microbiana vegetal utilizando Agapanthus africanus. Revista Mexicana de Ingeniera Quimica, 19(1), 227–237. https://doi.org/10.24275/rmiq/IA542 Gilani, S. R., Yaseen, A., Zaidi, S. R. A., Zahra, M., & Mahmood, Z. (2016). Photocurrent generation through plant microbial fuel cell by varying electrode materials. Journal of the Chemical Society of Pakistan, 38(1), 17–27. Gul, M. M., & Ahmad, K. S. (2019). Biosensors and Bioelectronics Bioelectrochemical systems : Sustainable bio-energy powerhouses. (August). Gulamhussein, M., & Randall, D. G. (2020). Design and operation of plant microbial fuel cells using municipal sludge. Journal of Water Process Engineering, https://doi.org/10.1016/j.jwpe.2020.101653 38. Habibul, N., Hu, Y., Wang, Y. K., Chen, W., Yu, H. Q., & Sheng, G. P. (2016). Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Environmental Science and Technology, 50(7), 3882–3889. https://doi.org/10.1021/acs.est.5b06376 Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101(10), 3541–3547. https://doi.org/10.1016/j.biortech.2009.12.124 Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuijken, R. C. P., & Buisman, C. J. N. (2012). New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresource Technology, 104, 417–423. https://doi.org/10.1016/j.biortech.2011.11.005 Helder, Marjolein. (2012). Design criteria for the Plant-Microbial Fuel Cell Electricity generation with living plants – from lab to application. Recuperado de https://www.plant- e.com/en/informatie/ Helder, Marjolein, Strik, D. P. B. T. B., Timmers, R. A., Raes, S. M. T., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter. Biomass and Bioenergy, 51(0), 1–7. https://doi.org/10.1016/j.biombioe.2012.10.011 Hublikar, L., Ganachari, S. V., & Yaradoddi, J. S. (2019). Green Energy Generation from Microbial Fuel Cells. En L. M. T. Martínez, O. V. Kharissova, & B. I. Kharisov (Eds.), Handbook of Ecomaterials (Vol. 1, pp. 1207–1220). https://doi.org/10.1007/978-3-319- 68255-6_195 Jung, S. P., & Pandit, S. (2018). Important factors influencing microbial fuel cell performance. En Biomass, Biofuels, Biochemicals: Microbial Electrochemical Technology: Sustainable Platform for Fuels, Chemicals and Remediation. https://doi.org/10.1016/B978-0-444-64052- 9.00015-7 Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K., & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, https://doi.org/10.1016/j.rser.2019.05.016 110(September 2018), 402–414 Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology, 79(1), 43–49. https://doi.org/10.1007/s00253-008-1410-9 Klaisongkram, N., & Holasut, K. (2015). Electricity generation of Plant Microbial Fuel Cell (PMFC) using Cyperus Involucratus R. 42(1), 117–124. https://doi.org/10.14456/kkuenj.2015.2 Kothapalli, A. (2013). Sediment Microbial Fuel Cell as Sustainable Power Resource. UM Digital Commons, (December), 1–50. Kumar, S. S., Kumar, V., Kumar, R., Malyan, S. K., & Pugazhendhi, A. (2019). Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel, 255(February), 115682. https://doi.org/10.1016/j.fuel.2019.115682 Kwak, J. Il, & An, Y. J. (2016). The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches. Environmental Research, 151, 368– 382. https://doi.org/10.1016/j.envres.2016.08.005 Liu, B., Ji, M., & Zhai, H. (2018). Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: Effects of anode locations. Chemosphere, 209, 739–747. https://doi.org/10.1016/j.chemosphere.2018.06.122 Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016 Long, S. P. (1999). Environmental Responses. C4 Plant Biology, 215–249. https://doi.org/10.1016/b978-012614440-6/50008-2 Lu, L., Xing, D., & Ren, Z. J. (2015). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology, 195, 115–121. https://doi.org/10.1016/j.biortech.2015.05.098 Md Khudzari, J., Kurian, J., Gariépy, Y., Tartakovsky, B., & Raghavan, G. S. V. (2018). Effects of salinity, growing media, and photoperiod on bioelectricity production in plant microbial fuel cells with weeping alkaligrass. Biomass and Bioenergy, 109(December 2017), 1–9. https://doi.org/10.1016/j.biombioe.2017.12.013 Moqsud, M. A., Gazali, T. A., Omine, K., & Nakata, Y. (2017). Green electricity by water plants in organic soil and marine sediment through microbial fuel cell. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(2), 160–165. https://doi.org/10.1080/15567036.2016.1159263 Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76(March), 81–89. https://doi.org/10.1016/j.rser.2017.03.064 Nurture Nature Center. Terrarium Habitats. Pamintuan, K. R. S., Calma, M. A. L., Feliciano, K. A. D., & Lariba, K. J. P. D. (2020). Potential of Bioelectricity Generation in Plant-Microbial Fuel Cells Growing House Plants. IOP Conference Series: Earth and Environmental Science, 505(1). https://doi.org/10.1088/1755- 1315/505/1/012043 Pamintuan, K. R. S., Clomera, J. A. A., Garcia, K. V., Ravara, G. R., & Salamat, E. J. G. (2018). Stacking of aquatic plant-microbial fuel cells growing water spinach (Ipomoea aquatica) and water lettuce (Pistia stratiotes). IOP Conference Series: Earth and Environmental Science, 191(1). https://doi.org/10.1088/1755-1315/191/1/012054 Regmi, R., Nitisoravut, R., Charoenroongtavee, S., Yimkhaophong, W., & Phanthurat, O. (2018). Earthen Pot-Plant Microbial Fuel Cell Powered by Vetiver for Bioelectricity Production and Wastwater Treatment. 江苏高教, 2(April 2017), 6–11. Salinas, L. F. C., Ochoa, G. V., & Cardenas, Y. E. (2018). A scientometric analysis of the investigation of biomass gasification environmental impacts from 2001 to 2017. International Journal of Energy Economics and Policy, 8(5), 223–229. Sarma, P. J., & Mohanty, K. (2018). Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode. Journal of Bioscience and Bioengineering, 126(3), 404– 410. https://doi.org/10.1016/j.jbiosc.2018.03.009 Sarma, P. J., & Mohanty, K. (2019). An Insight into Plant Microbial Fuel Cells. Bioelectrochemical Interface Engineering, 137–148. https://doi.org/10.1002/9781119611103.ch8 Sivasankar, V., Mylsamy, P., & Omine, K. (2018). Microbial fuel cell technology for bioelectricity. Microbial Fuel Cell Technology for Bioelectricity, 1–311. https://doi.org/10.1007/978-3-319-92904-0 Sophia, A. C., & Sreeja, S. (2017). Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technologies and Assessments, 21, 59–66. https://doi.org/10.1016/j.seta.2017.05.001 Strik, D. P. B. T. B., Hamelers (Bert), H. V. M., Snel, J. F. H., & Buisman, C. J. N. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32(9), 870–876. https://doi.org/10.1002/er.1397 Strik, D. P. B. T. B., Timmers, R. A., Helder, M., Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 29(1), 41–49. https://doi.org/10.1016/j.tibtech.2010.10.001 Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors affecting electric output from rice-paddy microbial fuel cells. Bioscience, Biotechnology and Biochemistry, 74(6), 1271–1273. https://doi.org/10.1271/bbb.90852 Tamura, M. N., Smith, W. W., Hooker, J. D., & Smith, W. W. (2000). 38. CHLOROPHYTUM Ker Gawler, Bot. Mag. 27: t. 1071. 1807. 3–5. Tapia, N. F., Rojas, C., Bonilla, C. A., & Vargas, I. T. (2017). Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecological Engineering, 108(November 2016), 203–210. https://doi.org/10.1016/j.ecoleng.2017.08.017 Timmers, R. A., Strik, D. P. B. T. B., Arampatzoglou, C., Buisman, C. J. N., & Hamelers, H. V. M. (2012). Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC. Bioresource Technology, 108, 60–67. https://doi.org/10.1016/j.biortech.2011.10.088 Timmers, Ruud A., Rothballer, M., Strik, D. P. B. T. B., Engel, M., Schulz, S., Schloter, M., … Buisman, C. (2012). Microbial community structure elucidates performance of glyceria maxima plant microbial fuel cell. Applied Microbiology and Biotechnology, 94(2), 537–548. https://doi.org/10.1007/s00253-012-3894-6 Timmers, Ruud A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2010). Long- term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology, 86(3), 973–981. https://doi.org/10.1007/s00253-010-2440-7 Timmers, Ruud A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Electricity generation by a novel design tubular plant microbial fuel cell. Biomass and Bioenergy, 51, 60–67. https://doi.org/10.1016/j.biombioe.2013.01.002 Tou, I., Azri, Y. M., Sadi, M., Lounici, H., & Kebbouche-Gana, S. (2019). Chlorophytum microbial fuel cell characterization. International Journal of Green Energy, 16(12), 947–959. https://doi.org/10.1080/15435075.2019.1650049 Venkata Mohan, S., Mohanakrishna, G., & Chiranjeevi, P. (2011). Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresource Technology, 102(14), 7036– 7042. https://doi.org/10.1016/j.biortech.2011.04.033 Wang, H., & Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8), 1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001 Wang, Y., Wang, J., Song, X., Abayneh, B., Ding, Y., Yan, D., & Bai, J. (2016). Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresource Technology, 221, 697–702. https://doi.org/10.1016/j.biortech.2016.09.116 Wetser, K., Dieleman, K., Buisman, C., & Strik, D. (2017). Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy, 185, 642–649. https://doi.org/10.1016/j.apenergy.2016.10.122 Wetser, K., Liu, J., Buisman, C., & Strik, D. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543–550. https://doi.org/10.1016/j.biombioe.2015.11.006 Wetser, Koen. (2016). Electricity from wetlands Technology - Technology assessment of the tubular Plant Microbial Fuel Cell with an integrated biocathode. Wetser, Koen, Sudirjo, E., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy, 137, 151–157. https://doi.org/10.1016/j.apenergy.2014.10.006 Widharyanti, I. D., Hendrawan, M. A., & Christwardana, M. (2020). Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production. International Journal of Renewable Energy Development, 10(1), 71–78. https://doi.org/10.14710/ijred.2021.32403 Yasri, N., Roberts, E. P. L., & Gunasekaran, S. (2019). The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 5, 1116–1136. https://doi.org/10.1016/j.egyr.2019.08.007 Yoon, T. H., Song, H. J., Jung, W. Y., Kim, J. E., Kim, K. J., Kim, H. H., … Kim, H. J. (2018). Monitoring Plant Health Using a Plant Microbial Fuel Cell. Bulletin of the Korean Chemical Society, 39(10), 1193–1197. https://doi.org/10.1002/bkcs.11575 Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., & Hu, Y. (2013). Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials. Chemical Engineering Journal, 229, 364–370. https://doi.org/10.1016/j.cej.2013.06.023 |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bucaramanga |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado de Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/32130/10/2021SolognierSallyslain.pdf https://repository.usta.edu.co/bitstream/11634/32130/7/2021SolognierSallyslain1.pdf https://repository.usta.edu.co/bitstream/11634/32130/11/2021SolognierSallyslain2.pdf https://repository.usta.edu.co/bitstream/11634/32130/12/2021SolognierSallyslain3.pdf https://repository.usta.edu.co/bitstream/11634/32130/4/license_rdf https://repository.usta.edu.co/bitstream/11634/32130/13/license.txt https://repository.usta.edu.co/bitstream/11634/32130/14/2021SolognierSallyslain.pdf.jpg https://repository.usta.edu.co/bitstream/11634/32130/15/2021SolognierSallyslain1.pdf.jpg https://repository.usta.edu.co/bitstream/11634/32130/16/2021SolognierSallyslain2.pdf.jpg https://repository.usta.edu.co/bitstream/11634/32130/17/2021SolognierSallyslain3.pdf.jpg |
bitstream.checksum.fl_str_mv |
070c87a0acd54d9c4a854a2c51018178 efc40f68549910f0bbe3b2732832839f 84ac1d0e426e9a97f7a159929eb3495e 32f510bb539c109687b52cefb0fc8fbd 217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 5bffd41babc0c35f9633794dcb0cd18e 8c8d60a8d4ae14b5c4bf4c4e0d75c5ea dbec45737d5960e319ed642b2b75bb0f ba6048fcb7b21ab108518c69a574694f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026264053284864 |
spelling |
Cándela Soto, Angélica MaríaSolognier Balcacer, Sallyslain Gisley2021-02-15T15:02:41Z2021-02-15T15:02:41Z2021-02-02Solognier Balcacer, S. G. (2020). Estudio de caso : Energía a partir de plantas vivas Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo. Universidad Santo Tomás.http://hdl.handle.net/11634/32130reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coAnte la constante demanda de energía eléctrica, diversas tecnologías son estudiadas para así disminuir la dependencia a las energías convencionales que han llevado a un punto de quiebre las condiciones del medio ambiente. De esta forma, dentro de las biotecnologías recientes se encuentran las celdas de combustible microbianas aplicadas a plantas, la cual será el pilar de esta investigación. Así mismo, se busca realizar un estudio cienciométrico con la base de datos de Scopus, que permita la comparación de los documentos enfocados en la investigación respecto a la producción de energía eléctrica limpia a partir de celdas de combustible microbianas en plantas (CCM-P) con el fin de analizar los factores que principalmente abarcan el funcionamiento correcto de una CCMP y estudiar la posibilidad de implementar las CCMs en plantas aisladas dentro de un microcosmos cerrado, es decir, un terrario. Esta investigación busca plantear un prototipo ideal basándose en los resultados, previamente comparados, de diversos autores; el análisis prospecta posibles escenarios en la implementación de la biotecnología autosostenible.In the face of the constant demand for electrical energy, various technologies are studied to reduce dependence on conventional energies, which have led to a breaking point in environmental conditions. Thus, recent biotechnologies include microbial fuel cells applied to plants, which will be the mainstay of this research. Likewise, the aim is to carry out a scientometric study with the Scopus database, which allows the comparison of documents focused on research regarding the production of clean electrical energy from microbial fuel cells in plants (P-MFC) to analyze the factors that mainly encompass the correct functioning of a P-MFC and study the possibility of implementing the MFC in isolated plants within a closed microcosm, in other words, terrarium. This research seeks to propose an ideal prototype based on the previously compared results of various authors; the analysis prospects possible scenarios in the implementation of self-sustaining biotechnology.Ingeniera Ambientalhttp://www.ustabuca.edu.co/ustabmanga/presentacionPregradoapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipoMicrocosmsTerrariumPlant microbial fuel cellSustainable energyPhotosyntesisBiotechnologyBioquímicaConversión de energíaEnergía biomásicaAgricultura y energíaMicroorganismos biotecnológicosMicrocosmosTerrarioCeldas de combustible microbianas en plantas (CCM-P)Energía sostenibleFotosíntesisBiotecnologíaTrabajo de Gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BucaramangaArends, J. B. A., Blondeel, E., Tennison, S. R., Boon, N., & Verstraete, W. (2012). Suitability of granular carbon as an anode material for sediment microbial fuel cells. Journal of Soils and Sediments, 12(7), 1197–1206. https://doi.org/10.1007/s11368-012-0537-6Arends, J. B. A., Speeckaert, J., Blondeel, E., De Vrieze, J., Boeckx, P., Verstraete, W., … Boon, N. (2014). Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Applied Microbiology and Biotechnology, 98(7), 3205–3217. https://doi.org/10.1007/s00253-013-5328-5Azri, Y. M., Tou, I., Sadi, M., & Benhabyles, L. (2018). Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 15(4), 254–263. https://doi.org/10.1080/15435075.2018.1432487Bagshaw Ward, N. (1899). Library of The New York Botanical Garden (Second). London.Brinker, A. (2012). Morphogenesis of the Terrarium. The American Biology Teacher, 74(7), 521– 524. https://doi.org/10.1525/abt.2012.74.7.17Cabezas, A. (2010). Diversity and Function of the Microbial Community on Anodes of Sediment Microbial Fuel Cells fueled by Root Exudates Doctoral. Microbiology, PhD, 184Cabezas, A., Pommerenke, B., Boon, N., & Friedrich, M. W. (2015). Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate- driven microbial fuel cells in rice field soil. Environmental Microbiology Reports, 7(3), 489– 497. https://doi.org/10.1111/1758-2229.12277Chicas, S. D., Sivasankar, V., Omine, K., Valladarez, J., & Mylsamy, P. (2018). Plant microbial fuel cell technology: Developments and limitations. En Microbial Fuel Cell Technology for Bioelectricity (pp. 49–65). https://doi.org/10.1007/978-3-319-92904-0_3China, F. of. (2000). CANNA Linnaeus. Smithsonian, 510650–510650.Clark, M. A., Choi, J., & Douglas, M. (2018). Biology 2e. Houston, Texas. Damen,Damen, T. H. J., van der Burg, W. J., Wiland-Szymańska, J., & Sosef, M. S. M. (2018). Taxonomic novelties in African Dracaena (Dracaenaceae). Blumea: Journal of Plant Taxonomy and Plant Geography, 63(1), 31–53. https://doi.org/10.3767/blumea.2018.63.01.05Daniels, F. (1972). Photochemical Effects of Sunlight. Biophysical Journal, 12(7), 723–727. https://doi.org/10.1016/S0006-3495(72)86116-2French, C. S. (1952). Photosynthesis and related processes. Physics Today, 5(3), 20–21. https://doi.org/10.1063/1.3067511Gómora-Hernández, J. C., Serment-Guerrero, J. H., Carreño-De-león, M. C., & Flores-Alamo, N. (2020). Voltage production in a plant-microbial fuel cell using Agapanthus africanus | Producción de voltaje en una celda de combustible microbiana vegetal utilizando Agapanthus africanus. Revista Mexicana de Ingeniera Quimica, 19(1), 227–237. https://doi.org/10.24275/rmiq/IA542Gilani, S. R., Yaseen, A., Zaidi, S. R. A., Zahra, M., & Mahmood, Z. (2016). Photocurrent generation through plant microbial fuel cell by varying electrode materials. Journal of the Chemical Society of Pakistan, 38(1), 17–27.Gul, M. M., & Ahmad, K. S. (2019). Biosensors and Bioelectronics Bioelectrochemical systems : Sustainable bio-energy powerhouses. (August).Gulamhussein, M., & Randall, D. G. (2020). Design and operation of plant microbial fuel cells using municipal sludge. Journal of Water Process Engineering, https://doi.org/10.1016/j.jwpe.2020.101653 38.Habibul, N., Hu, Y., Wang, Y. K., Chen, W., Yu, H. Q., & Sheng, G. P. (2016). Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Environmental Science and Technology, 50(7), 3882–3889. https://doi.org/10.1021/acs.est.5b06376Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101(10), 3541–3547. https://doi.org/10.1016/j.biortech.2009.12.124Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuijken, R. C. P., & Buisman, C. J. N. (2012). New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresource Technology, 104, 417–423. https://doi.org/10.1016/j.biortech.2011.11.005Helder, Marjolein. (2012). Design criteria for the Plant-Microbial Fuel Cell Electricity generation with living plants – from lab to application. Recuperado de https://www.plant- e.com/en/informatie/Helder, Marjolein, Strik, D. P. B. T. B., Timmers, R. A., Raes, S. M. T., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter. Biomass and Bioenergy, 51(0), 1–7. https://doi.org/10.1016/j.biombioe.2012.10.011Hublikar, L., Ganachari, S. V., & Yaradoddi, J. S. (2019). Green Energy Generation from Microbial Fuel Cells. En L. M. T. Martínez, O. V. Kharissova, & B. I. Kharisov (Eds.), Handbook of Ecomaterials (Vol. 1, pp. 1207–1220). https://doi.org/10.1007/978-3-319- 68255-6_195Jung, S. P., & Pandit, S. (2018). Important factors influencing microbial fuel cell performance. En Biomass, Biofuels, Biochemicals: Microbial Electrochemical Technology: Sustainable Platform for Fuels, Chemicals and Remediation. https://doi.org/10.1016/B978-0-444-64052- 9.00015-7Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K., & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, https://doi.org/10.1016/j.rser.2019.05.016 110(September 2018), 402–414Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology, 79(1), 43–49. https://doi.org/10.1007/s00253-008-1410-9Klaisongkram, N., & Holasut, K. (2015). Electricity generation of Plant Microbial Fuel Cell (PMFC) using Cyperus Involucratus R. 42(1), 117–124. https://doi.org/10.14456/kkuenj.2015.2Kothapalli, A. (2013). Sediment Microbial Fuel Cell as Sustainable Power Resource. UM Digital Commons, (December), 1–50.Kumar, S. S., Kumar, V., Kumar, R., Malyan, S. K., & Pugazhendhi, A. (2019). Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel, 255(February), 115682. https://doi.org/10.1016/j.fuel.2019.115682Kwak, J. Il, & An, Y. J. (2016). The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches. Environmental Research, 151, 368– 382. https://doi.org/10.1016/j.envres.2016.08.005Liu, B., Ji, M., & Zhai, H. (2018). Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: Effects of anode locations. Chemosphere, 209, 739–747. https://doi.org/10.1016/j.chemosphere.2018.06.122Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016Long, S. P. (1999). Environmental Responses. C4 Plant Biology, 215–249. https://doi.org/10.1016/b978-012614440-6/50008-2Lu, L., Xing, D., & Ren, Z. J. (2015). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology, 195, 115–121. https://doi.org/10.1016/j.biortech.2015.05.098Md Khudzari, J., Kurian, J., Gariépy, Y., Tartakovsky, B., & Raghavan, G. S. V. (2018). Effects of salinity, growing media, and photoperiod on bioelectricity production in plant microbial fuel cells with weeping alkaligrass. Biomass and Bioenergy, 109(December 2017), 1–9. https://doi.org/10.1016/j.biombioe.2017.12.013Moqsud, M. A., Gazali, T. A., Omine, K., & Nakata, Y. (2017). Green electricity by water plants in organic soil and marine sediment through microbial fuel cell. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(2), 160–165. https://doi.org/10.1080/15567036.2016.1159263Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76(March), 81–89. https://doi.org/10.1016/j.rser.2017.03.064Nurture Nature Center. Terrarium Habitats.Pamintuan, K. R. S., Calma, M. A. L., Feliciano, K. A. D., & Lariba, K. J. P. D. (2020). Potential of Bioelectricity Generation in Plant-Microbial Fuel Cells Growing House Plants. IOP Conference Series: Earth and Environmental Science, 505(1). https://doi.org/10.1088/1755- 1315/505/1/012043Pamintuan, K. R. S., Clomera, J. A. A., Garcia, K. V., Ravara, G. R., & Salamat, E. J. G. (2018). Stacking of aquatic plant-microbial fuel cells growing water spinach (Ipomoea aquatica) and water lettuce (Pistia stratiotes). IOP Conference Series: Earth and Environmental Science, 191(1). https://doi.org/10.1088/1755-1315/191/1/012054Regmi, R., Nitisoravut, R., Charoenroongtavee, S., Yimkhaophong, W., & Phanthurat, O. (2018). Earthen Pot-Plant Microbial Fuel Cell Powered by Vetiver for Bioelectricity Production and Wastwater Treatment. 江苏高教, 2(April 2017), 6–11.Salinas, L. F. C., Ochoa, G. V., & Cardenas, Y. E. (2018). A scientometric analysis of the investigation of biomass gasification environmental impacts from 2001 to 2017. International Journal of Energy Economics and Policy, 8(5), 223–229.Sarma, P. J., & Mohanty, K. (2018). Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode. Journal of Bioscience and Bioengineering, 126(3), 404– 410. https://doi.org/10.1016/j.jbiosc.2018.03.009Sarma, P. J., & Mohanty, K. (2019). An Insight into Plant Microbial Fuel Cells. Bioelectrochemical Interface Engineering, 137–148. https://doi.org/10.1002/9781119611103.ch8Sivasankar, V., Mylsamy, P., & Omine, K. (2018). Microbial fuel cell technology for bioelectricity. Microbial Fuel Cell Technology for Bioelectricity, 1–311. https://doi.org/10.1007/978-3-319-92904-0Sophia, A. C., & Sreeja, S. (2017). Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technologies and Assessments, 21, 59–66. https://doi.org/10.1016/j.seta.2017.05.001Strik, D. P. B. T. B., Hamelers (Bert), H. V. M., Snel, J. F. H., & Buisman, C. J. N. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32(9), 870–876. https://doi.org/10.1002/er.1397Strik, D. P. B. T. B., Timmers, R. A., Helder, M., Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 29(1), 41–49. https://doi.org/10.1016/j.tibtech.2010.10.001Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors affecting electric output from rice-paddy microbial fuel cells. Bioscience, Biotechnology and Biochemistry, 74(6), 1271–1273. https://doi.org/10.1271/bbb.90852Tamura, M. N., Smith, W. W., Hooker, J. D., & Smith, W. W. (2000). 38. CHLOROPHYTUM Ker Gawler, Bot. Mag. 27: t. 1071. 1807. 3–5.Tapia, N. F., Rojas, C., Bonilla, C. A., & Vargas, I. T. (2017). Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecological Engineering, 108(November 2016), 203–210. https://doi.org/10.1016/j.ecoleng.2017.08.017Timmers, R. A., Strik, D. P. B. T. B., Arampatzoglou, C., Buisman, C. J. N., & Hamelers, H. V. M. (2012). Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC. Bioresource Technology, 108, 60–67. https://doi.org/10.1016/j.biortech.2011.10.088Timmers, Ruud A., Rothballer, M., Strik, D. P. B. T. B., Engel, M., Schulz, S., Schloter, M., … Buisman, C. (2012). Microbial community structure elucidates performance of glyceria maxima plant microbial fuel cell. Applied Microbiology and Biotechnology, 94(2), 537–548. https://doi.org/10.1007/s00253-012-3894-6Timmers, Ruud A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2010). Long- term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology, 86(3), 973–981. https://doi.org/10.1007/s00253-010-2440-7Timmers, Ruud A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Electricity generation by a novel design tubular plant microbial fuel cell. Biomass and Bioenergy, 51, 60–67. https://doi.org/10.1016/j.biombioe.2013.01.002Tou, I., Azri, Y. M., Sadi, M., Lounici, H., & Kebbouche-Gana, S. (2019). Chlorophytum microbial fuel cell characterization. International Journal of Green Energy, 16(12), 947–959. https://doi.org/10.1080/15435075.2019.1650049Venkata Mohan, S., Mohanakrishna, G., & Chiranjeevi, P. (2011). Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresource Technology, 102(14), 7036– 7042. https://doi.org/10.1016/j.biortech.2011.04.033Wang, H., & Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8), 1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001Wang, Y., Wang, J., Song, X., Abayneh, B., Ding, Y., Yan, D., & Bai, J. (2016). Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresource Technology, 221, 697–702. https://doi.org/10.1016/j.biortech.2016.09.116Wetser, K., Dieleman, K., Buisman, C., & Strik, D. (2017). Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy, 185, 642–649. https://doi.org/10.1016/j.apenergy.2016.10.122Wetser, K., Liu, J., Buisman, C., & Strik, D. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543–550. https://doi.org/10.1016/j.biombioe.2015.11.006Wetser, Koen. (2016). Electricity from wetlands Technology - Technology assessment of the tubular Plant Microbial Fuel Cell with an integrated biocathode.Wetser, Koen, Sudirjo, E., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy, 137, 151–157. https://doi.org/10.1016/j.apenergy.2014.10.006Widharyanti, I. D., Hendrawan, M. A., & Christwardana, M. (2020). Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production. International Journal of Renewable Energy Development, 10(1), 71–78. https://doi.org/10.14710/ijred.2021.32403Yasri, N., Roberts, E. P. L., & Gunasekaran, S. (2019). The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 5, 1116–1136. https://doi.org/10.1016/j.egyr.2019.08.007Yoon, T. H., Song, H. J., Jung, W. Y., Kim, J. E., Kim, K. J., Kim, H. H., … Kim, H. J. (2018). Monitoring Plant Health Using a Plant Microbial Fuel Cell. Bulletin of the Korean Chemical Society, 39(10), 1193–1197. https://doi.org/10.1002/bkcs.11575Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., & Hu, Y. (2013). Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials. Chemical Engineering Journal, 229, 364–370. https://doi.org/10.1016/j.cej.2013.06.023ORIGINAL2021SolognierSallyslain.pdf2021SolognierSallyslain.pdfTrabajo de gradoapplication/pdf19946379https://repository.usta.edu.co/bitstream/11634/32130/10/2021SolognierSallyslain.pdf070c87a0acd54d9c4a854a2c51018178MD510open access2021SolognierSallyslain1.pdf2021SolognierSallyslain1.pdfAprobación de facultadapplication/pdf155091https://repository.usta.edu.co/bitstream/11634/32130/7/2021SolognierSallyslain1.pdfefc40f68549910f0bbe3b2732832839fMD57metadata only access2021SolognierSallyslain2.pdf2021SolognierSallyslain2.pdfAutorización de publicaciónapplication/pdf240819https://repository.usta.edu.co/bitstream/11634/32130/11/2021SolognierSallyslain2.pdf84ac1d0e426e9a97f7a159929eb3495eMD511metadata only access2021SolognierSallyslain3.pdf2021SolognierSallyslain3.pdfApéndiceapplication/pdf13553428https://repository.usta.edu.co/bitstream/11634/32130/12/2021SolognierSallyslain3.pdf32f510bb539c109687b52cefb0fc8fbdMD512open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/32130/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/32130/13/license.txtaedeaf396fcd827b537c73d23464fc27MD513open accessTHUMBNAIL2021SolognierSallyslain.pdf.jpg2021SolognierSallyslain.pdf.jpgIM Thumbnailimage/jpeg6220https://repository.usta.edu.co/bitstream/11634/32130/14/2021SolognierSallyslain.pdf.jpg5bffd41babc0c35f9633794dcb0cd18eMD514open access2021SolognierSallyslain1.pdf.jpg2021SolognierSallyslain1.pdf.jpgIM Thumbnailimage/jpeg7996https://repository.usta.edu.co/bitstream/11634/32130/15/2021SolognierSallyslain1.pdf.jpg8c8d60a8d4ae14b5c4bf4c4e0d75c5eaMD515open access2021SolognierSallyslain2.pdf.jpg2021SolognierSallyslain2.pdf.jpgIM Thumbnailimage/jpeg10406https://repository.usta.edu.co/bitstream/11634/32130/16/2021SolognierSallyslain2.pdf.jpgdbec45737d5960e319ed642b2b75bb0fMD516open access2021SolognierSallyslain3.pdf.jpg2021SolognierSallyslain3.pdf.jpgIM Thumbnailimage/jpeg3412https://repository.usta.edu.co/bitstream/11634/32130/17/2021SolognierSallyslain3.pdf.jpgba6048fcb7b21ab108518c69a574694fMD517open access11634/32130oai:repository.usta.edu.co:11634/321302022-11-05 03:06:41.388metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |