Production of bio-oil from waste cooking oil by pyrolysis
El aceite de cocina usado (OMA) es una materia prima importante para la producción de biocombustible debido a su bajo costo y amplia disponibilidad, empleando principalmente la transesterificación. Una aproximación más reciente para aprovechar esta materia prima es a través de la pirólisis. En este...
- Autores:
-
Londoño Feria, Jose Mario
Malagon Romero, Dionisio Humberto
Nausa Galeano, Gloria Astrid
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/33537
- Acceso en línea:
- http://hdl.handle.net/11634/33537
- Palabra clave:
- Biofuel production
Waste cooking oil
Pyrolysis
Raw Materials
Chemical decomposition of organic matter
Chemical solvents for industry
Thermal degradation of substances
Materias primas
Aceite de cocina usado
Descomposición química de materia orgánica
Solventes químicos para la industria
Degradación térmica de sustancias
Producción de biocombustibles
Pirólisis
Aceite usado de cocina
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
SANTTOMAS2_7a963bd84986affc23bbe4a64e75661d |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/33537 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Production of bio-oil from waste cooking oil by pyrolysis |
title |
Production of bio-oil from waste cooking oil by pyrolysis |
spellingShingle |
Production of bio-oil from waste cooking oil by pyrolysis Biofuel production Waste cooking oil Pyrolysis Raw Materials Chemical decomposition of organic matter Chemical solvents for industry Thermal degradation of substances Materias primas Aceite de cocina usado Descomposición química de materia orgánica Solventes químicos para la industria Degradación térmica de sustancias Producción de biocombustibles Pirólisis Aceite usado de cocina |
title_short |
Production of bio-oil from waste cooking oil by pyrolysis |
title_full |
Production of bio-oil from waste cooking oil by pyrolysis |
title_fullStr |
Production of bio-oil from waste cooking oil by pyrolysis |
title_full_unstemmed |
Production of bio-oil from waste cooking oil by pyrolysis |
title_sort |
Production of bio-oil from waste cooking oil by pyrolysis |
dc.creator.fl_str_mv |
Londoño Feria, Jose Mario Malagon Romero, Dionisio Humberto Nausa Galeano, Gloria Astrid |
dc.contributor.advisor.none.fl_str_mv |
Malagon Romero, Dionisio Humberto |
dc.contributor.author.none.fl_str_mv |
Londoño Feria, Jose Mario Malagon Romero, Dionisio Humberto Nausa Galeano, Gloria Astrid |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0003-2890-2180 |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=es |
dc.contributor.cvlac.spa.fl_str_mv |
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061 |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Santo Tomás |
dc.subject.keyword.spa.fl_str_mv |
Biofuel production Waste cooking oil Pyrolysis Raw Materials Chemical decomposition of organic matter Chemical solvents for industry Thermal degradation of substances |
topic |
Biofuel production Waste cooking oil Pyrolysis Raw Materials Chemical decomposition of organic matter Chemical solvents for industry Thermal degradation of substances Materias primas Aceite de cocina usado Descomposición química de materia orgánica Solventes químicos para la industria Degradación térmica de sustancias Producción de biocombustibles Pirólisis Aceite usado de cocina |
dc.subject.lemb.spa.fl_str_mv |
Materias primas Aceite de cocina usado Descomposición química de materia orgánica Solventes químicos para la industria Degradación térmica de sustancias |
dc.subject.proposal.spa.fl_str_mv |
Producción de biocombustibles Pirólisis Aceite usado de cocina |
description |
El aceite de cocina usado (OMA) es una materia prima importante para la producción de biocombustible debido a su bajo costo y amplia disponibilidad, empleando principalmente la transesterificación. Una aproximación más reciente para aprovechar esta materia prima es a través de la pirólisis. En este trabajo, se recogió WCO de un restaurante de comida rápida y luego se pirolizó, empleando dos velocidades de calentamiento diferentes y cuatro temperaturas, en un tiempo de residencia fijo. La composición de los productos se determinó mediante GC-MS. El mejor rendimiento de bioaceite fue de 77,59%, obtenido a 700 ° C y 10 ° C / min. Los mayores contenidos de octano, nonano y década se alcanzaron a 400 ° C y 15 ° C / min. Por lo tanto, el aceite de cocina usado resulta ser un recurso importante para la obtención de biocombustibles o solventes químicos para la industria. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-04-16T14:58:02Z |
dc.date.available.none.fl_str_mv |
2021-04-16T14:58:02Z |
dc.date.issued.none.fl_str_mv |
2021-04-15 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Londoño Feria, J. M., Nausa Galeano, G. A., & Malagon Romero, D. H. (2021). Production of bio-oil from waste cooking oil by pyrolysis.. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/33537 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Londoño Feria, J. M., Nausa Galeano, G. A., & Malagon Romero, D. H. (2021). Production of bio-oil from waste cooking oil by pyrolysis.. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/33537 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alarcón, R., Malagón-Romero, D., & Ladino, A. (2017). Biodiesel production from waste frying oil and palm oil mixtures. Chemical Engineering Transactions, 57, 571–576. https://doi.org/10.3303/CET1757096 Ben Hassen-Trabelsi, A., Kraiem, T., Naoui, S., & Belayouni, H. (2014). Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Waste Management, 34(1), 210–218. https://doi.org/10.1016/j.wasman.2013.09.019 Ben Hassen Trabelsi, A., Zaafouri, K., Baghdadi, W., Naoui, S., & Ouerghi, A. (2018). Second generation biofuels production from waste cooking oil via pyrolysis process. Renewable Energy, 126, 888–896. https://doi.org/10.1016/j.renene.2018.04.002 Bridgwater, A. V., & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73. https://doi.org/10.1016/S1364-0321(99)00007-6 Chang, J.-S., Cheng, J.-C., Ling, T.-R., Chern, J.-M., Wang, G.-B., Chou, T.-C., & Kuo, C.-T. (2016). Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. Journal of the Taiwan Institute of Chemical Engineers, 73, 1–11. https://doi.org/10.1016/j.jtice.2016.04.014 Chen, D., Yin, L., Wang, H., & He, P. (2015). Reprint of: Pyrolysis technologies for municipal solid waste: A review. Waste Management, 37, 116–136. https://doi.org/10.1016/j.wasman.2015.01.022 Chen, G., Liu, C., Ma, W., Zhang, X., Li, Y., Yan, B., & Zhou, W. (2014). Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresource Technology, 166, 500–507. https://doi.org/10.1016/j.biortech.2014.05.090 Chhetri, A., Watts, K., & Islam, M. (2008). Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies, 1(1), 3–18. https://doi.org/10.3390/en1010003 Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387–394. https://doi.org/10.1016/j.egypro.2017.07.275 De Almeida, V. F., García-Moreno, P. J., Guadix, A., & Guadix, E. M. (2015). Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Processing Technology, 133, 152–160. https://doi.org/10.1016/j.fuproc.2015.01.041 Gashaw, A., & Teshita, A. (2014). Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International Journal of Renewable and Sustainable Energy, 3(5), 92–98. https://doi.org/10.11648/j.ijrse.20140305.12 Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, 129(July 2017), 134–149. https://doi.org/10.1016/j.jaap.2017.11.019 Inguanzo, M., Domínguez, A., Menéndez, J. A., Blanco, C. G., & Pis, J. J. (2002). On the pyrolysis of sewage sludge: The influence of pyrolysis conditions on solid, liquid and gas fractions. Journal of Analytical and Applied Pyrolysis, 63(1), 209–222. https://doi.org/10.1016/S0165-2370(01)00155-3 International Energy Agency. (2020). Global Energy Review 2019. https://www.iea.org/reports/global-energy-review-2019 Kraiem, T., Hassen-Trabelsi, A. Ben, Naoui, S., Belayouni, H., & Jeguirim, M. (2015). Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Processing Technology, 138, 404–412. https://doi.org/10.1016/j.fuproc.2015.05.007 Kraiem, T., Hassen, A. Ben, Belayouni, H., & Jeguirim, M. (2017). Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environmental Science and Pollution Research, 24(11), 9951–9961. https://doi.org/10.1007/s11356-016-7704-z Lam, S. S., Wan Mahari, W. A., Anuar, T. N. S. T., Chong, C. T., Ma, N. L., Lam, W. H., & Ibrahim, M. D. (2018). Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment. Energy Conversion and Management, 171(April), 1292–1301. https://doi.org/10.1016/j.enconman.2018.06.073 López, L., Bocanegra, J., & Malagón-Romero, D. (2015). Obtención de biodiesel por transesterificación de aceite de cocina usado. Ingenieria y Universidad. https://doi.org/10.11144/Javeriana.iyu19-1.sprq Maddikeri, G. L., Gogate, P. R., & Pandit, A. B. (2014). Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel, 137, 285–292. https://doi.org/10.1016/j.fuel.2014.08.013 Mannu, A., Garroni, S., Ibanez Porras, J., & Mele, A. (2020). Available Technologies and Materials for Waste Cooking Oil Recycling. Processes, 8(3), 366. https://doi.org/10.3390/pr8030366 Moreno, D., Velasco, M., & Malagón-Romero, D. (2020). Production of polyurethanes from used vegetable oil-based polyols. Chemical Engineering Transactions, 79(March), 337–342. https://doi.org/10.3303/CET2079057 Naima, K., & Liazid, A. (2013). Waste oils as alternative fuel for diesel engine : A review. Journal of Petroleum Technology and Alternative Fuels, 4(March), 30–43. https://doi.org/10.5897/JPTAF12.026 NOAA National Centers for Environmental Information. (2019). Global Climate Report - Annual 2019. https://www.ncdc.noaa.gov/sotc/global/201913 Petroleum, B. (2020). Statistical Review of World Energy 2020 | 69th Edition (Vol. 69). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008 Ranzi, E., Costa, M., Casallas, I. D., Carvajal, E., Mahecha, E., Castrillón, C., Gómez, H., López, C., & Malagón-Romero, D. (2018). Pre-treatment of Waste Cooking Oils for Biodiesel Production. CHEMICAL ENGINEERING TRANSACTIONS, 65. Riesco, J., Flores, E., Elizalde, F., MArtinez, S., & Malagon, D. (2017). Evaluación del proceso de obtención de biodiesel a partir de aceites vegetales usados. Memorias Del XXIII Congreso Internacional Anual de La SOMIM, 144–151. http://revistasomim.net/congreso2017/articulos/A4_212.pd77 Rodríguez, D., Riesco, J., & Malagon-Romero, D. (2017). Production of Biodiesel from Waste Cooking Oil and Castor Oil Blends. Chemical Engineering Transactions, 57, 679–684. https://doi.org/10.3303/CET1757114 Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683–710. https://doi.org/10.1016/j.apenergy.2012.11.061 Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122 Wisniewski, A., Wiggers, V. R., Simionatto, E. L., Meier, H. F., Barros, A. A. C., & Madureira, L. A. S. (2010). Biofuels from waste fish oil pyrolysis: Chemical composition. Fuel, 89(3), 563–568. https://doi.org/10.1016/j.fuel.2009.07.017 Xue, Y., Zhou, S., Brown, R. C., Kelkar, A., & Bai, X. (2015). Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel, 156, 40–46. https://doi.org/10.1016/j.fuel.2015.04.033 |
dc.rights.*.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Mecánica |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/33537/1/2021joselondono.pdf https://repository.usta.edu.co/bitstream/11634/33537/4/Carta_derechos_autor_jose_mario.pdf https://repository.usta.edu.co/bitstream/11634/33537/5/Carta%20aprobacion%20trabajo%20de%20grado%20Jos%c3%a9%20Mario%20Londo%c3%b1o.pdf https://repository.usta.edu.co/bitstream/11634/33537/2/license_rdf https://repository.usta.edu.co/bitstream/11634/33537/3/license.txt https://repository.usta.edu.co/bitstream/11634/33537/6/2021joselondono.pdf.jpg https://repository.usta.edu.co/bitstream/11634/33537/7/Carta_derechos_autor_jose_mario.pdf.jpg https://repository.usta.edu.co/bitstream/11634/33537/8/Carta%20aprobacion%20trabajo%20de%20grado%20Jos%c3%a9%20Mario%20Londo%c3%b1o.pdf.jpg |
bitstream.checksum.fl_str_mv |
70c9be3a2c7d1cf71e6508e214380fff 46d8bcd3663f94181d019702a2801b55 07f13fb4cd92b722732b92ea9c6c08f4 42fd4ad1e89814f5e4a476b409eb708c aedeaf396fcd827b537c73d23464fc27 ab12064f2e6f65082247cff5c1f3841a b01902427a86b8dbfc8ec4f19e760519 164098dc83726af17682b60bebc5f74c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026221143457792 |
spelling |
Malagon Romero, Dionisio HumbertoLondoño Feria, Jose MarioMalagon Romero, Dionisio HumbertoNausa Galeano, Gloria Astridhttps://orcid.org/0000-0003-2890-2180https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061Universidad Santo Tomás2021-04-16T14:58:02Z2021-04-16T14:58:02Z2021-04-15Londoño Feria, J. M., Nausa Galeano, G. A., & Malagon Romero, D. H. (2021). Production of bio-oil from waste cooking oil by pyrolysis.. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.http://hdl.handle.net/11634/33537reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl aceite de cocina usado (OMA) es una materia prima importante para la producción de biocombustible debido a su bajo costo y amplia disponibilidad, empleando principalmente la transesterificación. Una aproximación más reciente para aprovechar esta materia prima es a través de la pirólisis. En este trabajo, se recogió WCO de un restaurante de comida rápida y luego se pirolizó, empleando dos velocidades de calentamiento diferentes y cuatro temperaturas, en un tiempo de residencia fijo. La composición de los productos se determinó mediante GC-MS. El mejor rendimiento de bioaceite fue de 77,59%, obtenido a 700 ° C y 10 ° C / min. Los mayores contenidos de octano, nonano y década se alcanzaron a 400 ° C y 15 ° C / min. Por lo tanto, el aceite de cocina usado resulta ser un recurso importante para la obtención de biocombustibles o solventes químicos para la industria.Waste cooking oil (WCO) is an important feedstock for biofuel production due to its low cost and extensive availability, primarily employing transesterification. A more recent approximation to take advantage of this feedstock is through pyrolysis. In this work, WCO was collected from a fast-food restaurant and then pyrolyzed, employing two different heating rates and four temperatures, at a fixed residence time. The composition of the products was determined by GC-MS. The best bio-oil yield was 77.59%, obtained at 700°C and 10°C/min. The highest contents of octane, nonane, and decade were reached at 400°C and 15°C/min. Therefore, waste cooking oil proves to be an important resource for obtaining biofuel or chemical solvents for the industry.Ingeniero Mecánicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería MecánicaFacultad de Ingeniería MecánicaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Production of bio-oil from waste cooking oil by pyrolysisBiofuel productionWaste cooking oilPyrolysisRaw MaterialsChemical decomposition of organic matterChemical solvents for industryThermal degradation of substancesMaterias primasAceite de cocina usadoDescomposición química de materia orgánicaSolventes químicos para la industriaDegradación térmica de sustanciasProducción de biocombustiblesPirólisisAceite usado de cocinaTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáAlarcón, R., Malagón-Romero, D., & Ladino, A. (2017). Biodiesel production from waste frying oil and palm oil mixtures. Chemical Engineering Transactions, 57, 571–576. https://doi.org/10.3303/CET1757096Ben Hassen-Trabelsi, A., Kraiem, T., Naoui, S., & Belayouni, H. (2014). Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Waste Management, 34(1), 210–218. https://doi.org/10.1016/j.wasman.2013.09.019Ben Hassen Trabelsi, A., Zaafouri, K., Baghdadi, W., Naoui, S., & Ouerghi, A. (2018). Second generation biofuels production from waste cooking oil via pyrolysis process. Renewable Energy, 126, 888–896. https://doi.org/10.1016/j.renene.2018.04.002Bridgwater, A. V., & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73. https://doi.org/10.1016/S1364-0321(99)00007-6Chang, J.-S., Cheng, J.-C., Ling, T.-R., Chern, J.-M., Wang, G.-B., Chou, T.-C., & Kuo, C.-T. (2016). Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. Journal of the Taiwan Institute of Chemical Engineers, 73, 1–11. https://doi.org/10.1016/j.jtice.2016.04.014Chen, D., Yin, L., Wang, H., & He, P. (2015). Reprint of: Pyrolysis technologies for municipal solid waste: A review. Waste Management, 37, 116–136. https://doi.org/10.1016/j.wasman.2015.01.022Chen, G., Liu, C., Ma, W., Zhang, X., Li, Y., Yan, B., & Zhou, W. (2014). Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresource Technology, 166, 500–507. https://doi.org/10.1016/j.biortech.2014.05.090Chhetri, A., Watts, K., & Islam, M. (2008). Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies, 1(1), 3–18. https://doi.org/10.3390/en1010003Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387–394. https://doi.org/10.1016/j.egypro.2017.07.275De Almeida, V. F., García-Moreno, P. J., Guadix, A., & Guadix, E. M. (2015). Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Processing Technology, 133, 152–160. https://doi.org/10.1016/j.fuproc.2015.01.041Gashaw, A., & Teshita, A. (2014). Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International Journal of Renewable and Sustainable Energy, 3(5), 92–98. https://doi.org/10.11648/j.ijrse.20140305.12Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, 129(July 2017), 134–149. https://doi.org/10.1016/j.jaap.2017.11.019Inguanzo, M., Domínguez, A., Menéndez, J. A., Blanco, C. G., & Pis, J. J. (2002). On the pyrolysis of sewage sludge: The influence of pyrolysis conditions on solid, liquid and gas fractions. Journal of Analytical and Applied Pyrolysis, 63(1), 209–222. https://doi.org/10.1016/S0165-2370(01)00155-3International Energy Agency. (2020). Global Energy Review 2019. https://www.iea.org/reports/global-energy-review-2019Kraiem, T., Hassen-Trabelsi, A. Ben, Naoui, S., Belayouni, H., & Jeguirim, M. (2015). Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Processing Technology, 138, 404–412. https://doi.org/10.1016/j.fuproc.2015.05.007Kraiem, T., Hassen, A. Ben, Belayouni, H., & Jeguirim, M. (2017). Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environmental Science and Pollution Research, 24(11), 9951–9961. https://doi.org/10.1007/s11356-016-7704-zLam, S. S., Wan Mahari, W. A., Anuar, T. N. S. T., Chong, C. T., Ma, N. L., Lam, W. H., & Ibrahim, M. D. (2018). Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment. Energy Conversion and Management, 171(April), 1292–1301. https://doi.org/10.1016/j.enconman.2018.06.073López, L., Bocanegra, J., & Malagón-Romero, D. (2015). Obtención de biodiesel por transesterificación de aceite de cocina usado. Ingenieria y Universidad. https://doi.org/10.11144/Javeriana.iyu19-1.sprqMaddikeri, G. L., Gogate, P. R., & Pandit, A. B. (2014). Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel, 137, 285–292. https://doi.org/10.1016/j.fuel.2014.08.013Mannu, A., Garroni, S., Ibanez Porras, J., & Mele, A. (2020). Available Technologies and Materials for Waste Cooking Oil Recycling. Processes, 8(3), 366. https://doi.org/10.3390/pr8030366Moreno, D., Velasco, M., & Malagón-Romero, D. (2020). Production of polyurethanes from used vegetable oil-based polyols. Chemical Engineering Transactions, 79(March), 337–342. https://doi.org/10.3303/CET2079057Naima, K., & Liazid, A. (2013). Waste oils as alternative fuel for diesel engine : A review. Journal of Petroleum Technology and Alternative Fuels, 4(March), 30–43. https://doi.org/10.5897/JPTAF12.026NOAA National Centers for Environmental Information. (2019). Global Climate Report - Annual 2019. https://www.ncdc.noaa.gov/sotc/global/201913Petroleum, B. (2020). Statistical Review of World Energy 2020 | 69th Edition (Vol. 69). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdfPhan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008Ranzi, E., Costa, M., Casallas, I. D., Carvajal, E., Mahecha, E., Castrillón, C., Gómez, H., López, C., & Malagón-Romero, D. (2018). Pre-treatment of Waste Cooking Oils for Biodiesel Production. CHEMICAL ENGINEERING TRANSACTIONS, 65.Riesco, J., Flores, E., Elizalde, F., MArtinez, S., & Malagon, D. (2017). Evaluación del proceso de obtención de biodiesel a partir de aceites vegetales usados. Memorias Del XXIII Congreso Internacional Anual de La SOMIM, 144–151. http://revistasomim.net/congreso2017/articulos/A4_212.pd77Rodríguez, D., Riesco, J., & Malagon-Romero, D. (2017). Production of Biodiesel from Waste Cooking Oil and Castor Oil Blends. Chemical Engineering Transactions, 57, 679–684. https://doi.org/10.3303/CET1757114Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683–710. https://doi.org/10.1016/j.apenergy.2012.11.061Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122Wisniewski, A., Wiggers, V. R., Simionatto, E. L., Meier, H. F., Barros, A. A. C., & Madureira, L. A. S. (2010). Biofuels from waste fish oil pyrolysis: Chemical composition. Fuel, 89(3), 563–568. https://doi.org/10.1016/j.fuel.2009.07.017Xue, Y., Zhou, S., Brown, R. C., Kelkar, A., & Bai, X. (2015). Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel, 156, 40–46. https://doi.org/10.1016/j.fuel.2015.04.033ORIGINAL2021joselondono.pdf2021joselondono.pdfapplication/pdf350371https://repository.usta.edu.co/bitstream/11634/33537/1/2021joselondono.pdf70c9be3a2c7d1cf71e6508e214380fffMD51open accessCarta_derechos_autor_jose_mario.pdfCarta_derechos_autor_jose_mario.pdfapplication/pdf470673https://repository.usta.edu.co/bitstream/11634/33537/4/Carta_derechos_autor_jose_mario.pdf46d8bcd3663f94181d019702a2801b55MD54metadata only accessCarta aprobacion trabajo de grado José Mario Londoño.pdfCarta aprobacion trabajo de grado José Mario Londoño.pdfapplication/pdf124516https://repository.usta.edu.co/bitstream/11634/33537/5/Carta%20aprobacion%20trabajo%20de%20grado%20Jos%c3%a9%20Mario%20Londo%c3%b1o.pdf07f13fb4cd92b722732b92ea9c6c08f4MD55metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repository.usta.edu.co/bitstream/11634/33537/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/33537/3/license.txtaedeaf396fcd827b537c73d23464fc27MD53open accessTHUMBNAIL2021joselondono.pdf.jpg2021joselondono.pdf.jpgIM Thumbnailimage/jpeg8795https://repository.usta.edu.co/bitstream/11634/33537/6/2021joselondono.pdf.jpgab12064f2e6f65082247cff5c1f3841aMD56open accessCarta_derechos_autor_jose_mario.pdf.jpgCarta_derechos_autor_jose_mario.pdf.jpgIM Thumbnailimage/jpeg7250https://repository.usta.edu.co/bitstream/11634/33537/7/Carta_derechos_autor_jose_mario.pdf.jpgb01902427a86b8dbfc8ec4f19e760519MD57open accessCarta aprobacion trabajo de grado José Mario Londoño.pdf.jpgCarta aprobacion trabajo de grado José Mario Londoño.pdf.jpgIM Thumbnailimage/jpeg6619https://repository.usta.edu.co/bitstream/11634/33537/8/Carta%20aprobacion%20trabajo%20de%20grado%20Jos%c3%a9%20Mario%20Londo%c3%b1o.pdf.jpg164098dc83726af17682b60bebc5f74cMD58open access11634/33537oai:repository.usta.edu.co:11634/335372022-10-20 03:03:42.806open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |