Production of bio-oil from waste cooking oil by pyrolysis

El aceite de cocina usado (OMA) es una materia prima importante para la producción de biocombustible debido a su bajo costo y amplia disponibilidad, empleando principalmente la transesterificación. Una aproximación más reciente para aprovechar esta materia prima es a través de la pirólisis. En este...

Full description

Autores:
Londoño Feria, Jose Mario
Malagon Romero, Dionisio Humberto
Nausa Galeano, Gloria Astrid
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/33537
Acceso en línea:
http://hdl.handle.net/11634/33537
Palabra clave:
Biofuel production
Waste cooking oil
Pyrolysis
Raw Materials
Chemical decomposition of organic matter
Chemical solvents for industry
Thermal degradation of substances
Materias primas
Aceite de cocina usado
Descomposición química de materia orgánica
Solventes químicos para la industria
Degradación térmica de sustancias
Producción de biocombustibles
Pirólisis
Aceite usado de cocina
Rights
openAccess
License
CC0 1.0 Universal
id SANTTOMAS2_7a963bd84986affc23bbe4a64e75661d
oai_identifier_str oai:repository.usta.edu.co:11634/33537
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Production of bio-oil from waste cooking oil by pyrolysis
title Production of bio-oil from waste cooking oil by pyrolysis
spellingShingle Production of bio-oil from waste cooking oil by pyrolysis
Biofuel production
Waste cooking oil
Pyrolysis
Raw Materials
Chemical decomposition of organic matter
Chemical solvents for industry
Thermal degradation of substances
Materias primas
Aceite de cocina usado
Descomposición química de materia orgánica
Solventes químicos para la industria
Degradación térmica de sustancias
Producción de biocombustibles
Pirólisis
Aceite usado de cocina
title_short Production of bio-oil from waste cooking oil by pyrolysis
title_full Production of bio-oil from waste cooking oil by pyrolysis
title_fullStr Production of bio-oil from waste cooking oil by pyrolysis
title_full_unstemmed Production of bio-oil from waste cooking oil by pyrolysis
title_sort Production of bio-oil from waste cooking oil by pyrolysis
dc.creator.fl_str_mv Londoño Feria, Jose Mario
Malagon Romero, Dionisio Humberto
Nausa Galeano, Gloria Astrid
dc.contributor.advisor.none.fl_str_mv Malagon Romero, Dionisio Humberto
dc.contributor.author.none.fl_str_mv Londoño Feria, Jose Mario
Malagon Romero, Dionisio Humberto
Nausa Galeano, Gloria Astrid
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0003-2890-2180
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=es
dc.contributor.cvlac.spa.fl_str_mv http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Biofuel production
Waste cooking oil
Pyrolysis
Raw Materials
Chemical decomposition of organic matter
Chemical solvents for industry
Thermal degradation of substances
topic Biofuel production
Waste cooking oil
Pyrolysis
Raw Materials
Chemical decomposition of organic matter
Chemical solvents for industry
Thermal degradation of substances
Materias primas
Aceite de cocina usado
Descomposición química de materia orgánica
Solventes químicos para la industria
Degradación térmica de sustancias
Producción de biocombustibles
Pirólisis
Aceite usado de cocina
dc.subject.lemb.spa.fl_str_mv Materias primas
Aceite de cocina usado
Descomposición química de materia orgánica
Solventes químicos para la industria
Degradación térmica de sustancias
dc.subject.proposal.spa.fl_str_mv Producción de biocombustibles
Pirólisis
Aceite usado de cocina
description El aceite de cocina usado (OMA) es una materia prima importante para la producción de biocombustible debido a su bajo costo y amplia disponibilidad, empleando principalmente la transesterificación. Una aproximación más reciente para aprovechar esta materia prima es a través de la pirólisis. En este trabajo, se recogió WCO de un restaurante de comida rápida y luego se pirolizó, empleando dos velocidades de calentamiento diferentes y cuatro temperaturas, en un tiempo de residencia fijo. La composición de los productos se determinó mediante GC-MS. El mejor rendimiento de bioaceite fue de 77,59%, obtenido a 700 ° C y 10 ° C / min. Los mayores contenidos de octano, nonano y década se alcanzaron a 400 ° C y 15 ° C / min. Por lo tanto, el aceite de cocina usado resulta ser un recurso importante para la obtención de biocombustibles o solventes químicos para la industria.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-04-16T14:58:02Z
dc.date.available.none.fl_str_mv 2021-04-16T14:58:02Z
dc.date.issued.none.fl_str_mv 2021-04-15
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Londoño Feria, J. M., Nausa Galeano, G. A., & Malagon Romero, D. H. (2021). Production of bio-oil from waste cooking oil by pyrolysis.. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/33537
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Londoño Feria, J. M., Nausa Galeano, G. A., & Malagon Romero, D. H. (2021). Production of bio-oil from waste cooking oil by pyrolysis.. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/33537
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alarcón, R., Malagón-Romero, D., & Ladino, A. (2017). Biodiesel production from waste frying oil and palm oil mixtures. Chemical Engineering Transactions, 57, 571–576. https://doi.org/10.3303/CET1757096
Ben Hassen-Trabelsi, A., Kraiem, T., Naoui, S., & Belayouni, H. (2014). Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Waste Management, 34(1), 210–218. https://doi.org/10.1016/j.wasman.2013.09.019
Ben Hassen Trabelsi, A., Zaafouri, K., Baghdadi, W., Naoui, S., & Ouerghi, A. (2018). Second generation biofuels production from waste cooking oil via pyrolysis process. Renewable Energy, 126, 888–896. https://doi.org/10.1016/j.renene.2018.04.002
Bridgwater, A. V., & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73. https://doi.org/10.1016/S1364-0321(99)00007-6
Chang, J.-S., Cheng, J.-C., Ling, T.-R., Chern, J.-M., Wang, G.-B., Chou, T.-C., & Kuo, C.-T. (2016). Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. Journal of the Taiwan Institute of Chemical Engineers, 73, 1–11. https://doi.org/10.1016/j.jtice.2016.04.014
Chen, D., Yin, L., Wang, H., & He, P. (2015). Reprint of: Pyrolysis technologies for municipal solid waste: A review. Waste Management, 37, 116–136. https://doi.org/10.1016/j.wasman.2015.01.022
Chen, G., Liu, C., Ma, W., Zhang, X., Li, Y., Yan, B., & Zhou, W. (2014). Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresource Technology, 166, 500–507. https://doi.org/10.1016/j.biortech.2014.05.090
Chhetri, A., Watts, K., & Islam, M. (2008). Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies, 1(1), 3–18. https://doi.org/10.3390/en1010003
Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387–394. https://doi.org/10.1016/j.egypro.2017.07.275
De Almeida, V. F., García-Moreno, P. J., Guadix, A., & Guadix, E. M. (2015). Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Processing Technology, 133, 152–160. https://doi.org/10.1016/j.fuproc.2015.01.041
Gashaw, A., & Teshita, A. (2014). Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International Journal of Renewable and Sustainable Energy, 3(5), 92–98. https://doi.org/10.11648/j.ijrse.20140305.12
Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, 129(July 2017), 134–149. https://doi.org/10.1016/j.jaap.2017.11.019
Inguanzo, M., Domínguez, A., Menéndez, J. A., Blanco, C. G., & Pis, J. J. (2002). On the pyrolysis of sewage sludge: The influence of pyrolysis conditions on solid, liquid and gas fractions. Journal of Analytical and Applied Pyrolysis, 63(1), 209–222. https://doi.org/10.1016/S0165-2370(01)00155-3
International Energy Agency. (2020). Global Energy Review 2019. https://www.iea.org/reports/global-energy-review-2019
Kraiem, T., Hassen-Trabelsi, A. Ben, Naoui, S., Belayouni, H., & Jeguirim, M. (2015). Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Processing Technology, 138, 404–412. https://doi.org/10.1016/j.fuproc.2015.05.007
Kraiem, T., Hassen, A. Ben, Belayouni, H., & Jeguirim, M. (2017). Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environmental Science and Pollution Research, 24(11), 9951–9961. https://doi.org/10.1007/s11356-016-7704-z
Lam, S. S., Wan Mahari, W. A., Anuar, T. N. S. T., Chong, C. T., Ma, N. L., Lam, W. H., & Ibrahim, M. D. (2018). Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment. Energy Conversion and Management, 171(April), 1292–1301. https://doi.org/10.1016/j.enconman.2018.06.073
López, L., Bocanegra, J., & Malagón-Romero, D. (2015). Obtención de biodiesel por transesterificación de aceite de cocina usado. Ingenieria y Universidad. https://doi.org/10.11144/Javeriana.iyu19-1.sprq
Maddikeri, G. L., Gogate, P. R., & Pandit, A. B. (2014). Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel, 137, 285–292. https://doi.org/10.1016/j.fuel.2014.08.013
Mannu, A., Garroni, S., Ibanez Porras, J., & Mele, A. (2020). Available Technologies and Materials for Waste Cooking Oil Recycling. Processes, 8(3), 366. https://doi.org/10.3390/pr8030366
Moreno, D., Velasco, M., & Malagón-Romero, D. (2020). Production of polyurethanes from used vegetable oil-based polyols. Chemical Engineering Transactions, 79(March), 337–342. https://doi.org/10.3303/CET2079057
Naima, K., & Liazid, A. (2013). Waste oils as alternative fuel for diesel engine : A review. Journal of Petroleum Technology and Alternative Fuels, 4(March), 30–43. https://doi.org/10.5897/JPTAF12.026
NOAA National Centers for Environmental Information. (2019). Global Climate Report - Annual 2019. https://www.ncdc.noaa.gov/sotc/global/201913
Petroleum, B. (2020). Statistical Review of World Energy 2020 | 69th Edition (Vol. 69). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf
Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008
Ranzi, E., Costa, M., Casallas, I. D., Carvajal, E., Mahecha, E., Castrillón, C., Gómez, H., López, C., & Malagón-Romero, D. (2018). Pre-treatment of Waste Cooking Oils for Biodiesel Production. CHEMICAL ENGINEERING TRANSACTIONS, 65.
Riesco, J., Flores, E., Elizalde, F., MArtinez, S., & Malagon, D. (2017). Evaluación del proceso de obtención de biodiesel a partir de aceites vegetales usados. Memorias Del XXIII Congreso Internacional Anual de La SOMIM, 144–151. http://revistasomim.net/congreso2017/articulos/A4_212.pd77
Rodríguez, D., Riesco, J., & Malagon-Romero, D. (2017). Production of Biodiesel from Waste Cooking Oil and Castor Oil Blends. Chemical Engineering Transactions, 57, 679–684. https://doi.org/10.3303/CET1757114
Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683–710. https://doi.org/10.1016/j.apenergy.2012.11.061
Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
Wisniewski, A., Wiggers, V. R., Simionatto, E. L., Meier, H. F., Barros, A. A. C., & Madureira, L. A. S. (2010). Biofuels from waste fish oil pyrolysis: Chemical composition. Fuel, 89(3), 563–568. https://doi.org/10.1016/j.fuel.2009.07.017
Xue, Y., Zhou, S., Brown, R. C., Kelkar, A., & Bai, X. (2015). Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel, 156, 40–46. https://doi.org/10.1016/j.fuel.2015.04.033
dc.rights.*.fl_str_mv CC0 1.0 Universal
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/33537/1/2021joselondono.pdf
https://repository.usta.edu.co/bitstream/11634/33537/4/Carta_derechos_autor_jose_mario.pdf
https://repository.usta.edu.co/bitstream/11634/33537/5/Carta%20aprobacion%20trabajo%20de%20grado%20Jos%c3%a9%20Mario%20Londo%c3%b1o.pdf
https://repository.usta.edu.co/bitstream/11634/33537/2/license_rdf
https://repository.usta.edu.co/bitstream/11634/33537/3/license.txt
https://repository.usta.edu.co/bitstream/11634/33537/6/2021joselondono.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/33537/7/Carta_derechos_autor_jose_mario.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/33537/8/Carta%20aprobacion%20trabajo%20de%20grado%20Jos%c3%a9%20Mario%20Londo%c3%b1o.pdf.jpg
bitstream.checksum.fl_str_mv 70c9be3a2c7d1cf71e6508e214380fff
46d8bcd3663f94181d019702a2801b55
07f13fb4cd92b722732b92ea9c6c08f4
42fd4ad1e89814f5e4a476b409eb708c
aedeaf396fcd827b537c73d23464fc27
ab12064f2e6f65082247cff5c1f3841a
b01902427a86b8dbfc8ec4f19e760519
164098dc83726af17682b60bebc5f74c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026221143457792
spelling Malagon Romero, Dionisio HumbertoLondoño Feria, Jose MarioMalagon Romero, Dionisio HumbertoNausa Galeano, Gloria Astridhttps://orcid.org/0000-0003-2890-2180https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061Universidad Santo Tomás2021-04-16T14:58:02Z2021-04-16T14:58:02Z2021-04-15Londoño Feria, J. M., Nausa Galeano, G. A., & Malagon Romero, D. H. (2021). Production of bio-oil from waste cooking oil by pyrolysis.. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.http://hdl.handle.net/11634/33537reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl aceite de cocina usado (OMA) es una materia prima importante para la producción de biocombustible debido a su bajo costo y amplia disponibilidad, empleando principalmente la transesterificación. Una aproximación más reciente para aprovechar esta materia prima es a través de la pirólisis. En este trabajo, se recogió WCO de un restaurante de comida rápida y luego se pirolizó, empleando dos velocidades de calentamiento diferentes y cuatro temperaturas, en un tiempo de residencia fijo. La composición de los productos se determinó mediante GC-MS. El mejor rendimiento de bioaceite fue de 77,59%, obtenido a 700 ° C y 10 ° C / min. Los mayores contenidos de octano, nonano y década se alcanzaron a 400 ° C y 15 ° C / min. Por lo tanto, el aceite de cocina usado resulta ser un recurso importante para la obtención de biocombustibles o solventes químicos para la industria.Waste cooking oil (WCO) is an important feedstock for biofuel production due to its low cost and extensive availability, primarily employing transesterification. A more recent approximation to take advantage of this feedstock is through pyrolysis. In this work, WCO was collected from a fast-food restaurant and then pyrolyzed, employing two different heating rates and four temperatures, at a fixed residence time. The composition of the products was determined by GC-MS. The best bio-oil yield was 77.59%, obtained at 700°C and 10°C/min. The highest contents of octane, nonane, and decade were reached at 400°C and 15°C/min. Therefore, waste cooking oil proves to be an important resource for obtaining biofuel or chemical solvents for the industry.Ingeniero Mecánicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería MecánicaFacultad de Ingeniería MecánicaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Production of bio-oil from waste cooking oil by pyrolysisBiofuel productionWaste cooking oilPyrolysisRaw MaterialsChemical decomposition of organic matterChemical solvents for industryThermal degradation of substancesMaterias primasAceite de cocina usadoDescomposición química de materia orgánicaSolventes químicos para la industriaDegradación térmica de sustanciasProducción de biocombustiblesPirólisisAceite usado de cocinaTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáAlarcón, R., Malagón-Romero, D., & Ladino, A. (2017). Biodiesel production from waste frying oil and palm oil mixtures. Chemical Engineering Transactions, 57, 571–576. https://doi.org/10.3303/CET1757096Ben Hassen-Trabelsi, A., Kraiem, T., Naoui, S., & Belayouni, H. (2014). Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Waste Management, 34(1), 210–218. https://doi.org/10.1016/j.wasman.2013.09.019Ben Hassen Trabelsi, A., Zaafouri, K., Baghdadi, W., Naoui, S., & Ouerghi, A. (2018). Second generation biofuels production from waste cooking oil via pyrolysis process. Renewable Energy, 126, 888–896. https://doi.org/10.1016/j.renene.2018.04.002Bridgwater, A. V., & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73. https://doi.org/10.1016/S1364-0321(99)00007-6Chang, J.-S., Cheng, J.-C., Ling, T.-R., Chern, J.-M., Wang, G.-B., Chou, T.-C., & Kuo, C.-T. (2016). Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. Journal of the Taiwan Institute of Chemical Engineers, 73, 1–11. https://doi.org/10.1016/j.jtice.2016.04.014Chen, D., Yin, L., Wang, H., & He, P. (2015). Reprint of: Pyrolysis technologies for municipal solid waste: A review. Waste Management, 37, 116–136. https://doi.org/10.1016/j.wasman.2015.01.022Chen, G., Liu, C., Ma, W., Zhang, X., Li, Y., Yan, B., & Zhou, W. (2014). Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresource Technology, 166, 500–507. https://doi.org/10.1016/j.biortech.2014.05.090Chhetri, A., Watts, K., & Islam, M. (2008). Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies, 1(1), 3–18. https://doi.org/10.3390/en1010003Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387–394. https://doi.org/10.1016/j.egypro.2017.07.275De Almeida, V. F., García-Moreno, P. J., Guadix, A., & Guadix, E. M. (2015). Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Processing Technology, 133, 152–160. https://doi.org/10.1016/j.fuproc.2015.01.041Gashaw, A., & Teshita, A. (2014). Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International Journal of Renewable and Sustainable Energy, 3(5), 92–98. https://doi.org/10.11648/j.ijrse.20140305.12Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, 129(July 2017), 134–149. https://doi.org/10.1016/j.jaap.2017.11.019Inguanzo, M., Domínguez, A., Menéndez, J. A., Blanco, C. G., & Pis, J. J. (2002). On the pyrolysis of sewage sludge: The influence of pyrolysis conditions on solid, liquid and gas fractions. Journal of Analytical and Applied Pyrolysis, 63(1), 209–222. https://doi.org/10.1016/S0165-2370(01)00155-3International Energy Agency. (2020). Global Energy Review 2019. https://www.iea.org/reports/global-energy-review-2019Kraiem, T., Hassen-Trabelsi, A. Ben, Naoui, S., Belayouni, H., & Jeguirim, M. (2015). Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Processing Technology, 138, 404–412. https://doi.org/10.1016/j.fuproc.2015.05.007Kraiem, T., Hassen, A. Ben, Belayouni, H., & Jeguirim, M. (2017). Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environmental Science and Pollution Research, 24(11), 9951–9961. https://doi.org/10.1007/s11356-016-7704-zLam, S. S., Wan Mahari, W. A., Anuar, T. N. S. T., Chong, C. T., Ma, N. L., Lam, W. H., & Ibrahim, M. D. (2018). Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment. Energy Conversion and Management, 171(April), 1292–1301. https://doi.org/10.1016/j.enconman.2018.06.073López, L., Bocanegra, J., & Malagón-Romero, D. (2015). Obtención de biodiesel por transesterificación de aceite de cocina usado. Ingenieria y Universidad. https://doi.org/10.11144/Javeriana.iyu19-1.sprqMaddikeri, G. L., Gogate, P. R., & Pandit, A. B. (2014). Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel, 137, 285–292. https://doi.org/10.1016/j.fuel.2014.08.013Mannu, A., Garroni, S., Ibanez Porras, J., & Mele, A. (2020). Available Technologies and Materials for Waste Cooking Oil Recycling. Processes, 8(3), 366. https://doi.org/10.3390/pr8030366Moreno, D., Velasco, M., & Malagón-Romero, D. (2020). Production of polyurethanes from used vegetable oil-based polyols. Chemical Engineering Transactions, 79(March), 337–342. https://doi.org/10.3303/CET2079057Naima, K., & Liazid, A. (2013). Waste oils as alternative fuel for diesel engine : A review. Journal of Petroleum Technology and Alternative Fuels, 4(March), 30–43. https://doi.org/10.5897/JPTAF12.026NOAA National Centers for Environmental Information. (2019). Global Climate Report - Annual 2019. https://www.ncdc.noaa.gov/sotc/global/201913Petroleum, B. (2020). Statistical Review of World Energy 2020 | 69th Edition (Vol. 69). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdfPhan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008Ranzi, E., Costa, M., Casallas, I. D., Carvajal, E., Mahecha, E., Castrillón, C., Gómez, H., López, C., & Malagón-Romero, D. (2018). Pre-treatment of Waste Cooking Oils for Biodiesel Production. CHEMICAL ENGINEERING TRANSACTIONS, 65.Riesco, J., Flores, E., Elizalde, F., MArtinez, S., & Malagon, D. (2017). Evaluación del proceso de obtención de biodiesel a partir de aceites vegetales usados. Memorias Del XXIII Congreso Internacional Anual de La SOMIM, 144–151. http://revistasomim.net/congreso2017/articulos/A4_212.pd77Rodríguez, D., Riesco, J., & Malagon-Romero, D. (2017). Production of Biodiesel from Waste Cooking Oil and Castor Oil Blends. Chemical Engineering Transactions, 57, 679–684. https://doi.org/10.3303/CET1757114Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683–710. https://doi.org/10.1016/j.apenergy.2012.11.061Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122Wisniewski, A., Wiggers, V. R., Simionatto, E. L., Meier, H. F., Barros, A. A. C., & Madureira, L. A. S. (2010). Biofuels from waste fish oil pyrolysis: Chemical composition. Fuel, 89(3), 563–568. https://doi.org/10.1016/j.fuel.2009.07.017Xue, Y., Zhou, S., Brown, R. C., Kelkar, A., & Bai, X. (2015). Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel, 156, 40–46. https://doi.org/10.1016/j.fuel.2015.04.033ORIGINAL2021joselondono.pdf2021joselondono.pdfapplication/pdf350371https://repository.usta.edu.co/bitstream/11634/33537/1/2021joselondono.pdf70c9be3a2c7d1cf71e6508e214380fffMD51open accessCarta_derechos_autor_jose_mario.pdfCarta_derechos_autor_jose_mario.pdfapplication/pdf470673https://repository.usta.edu.co/bitstream/11634/33537/4/Carta_derechos_autor_jose_mario.pdf46d8bcd3663f94181d019702a2801b55MD54metadata only accessCarta aprobacion trabajo de grado José Mario Londoño.pdfCarta aprobacion trabajo de grado José Mario Londoño.pdfapplication/pdf124516https://repository.usta.edu.co/bitstream/11634/33537/5/Carta%20aprobacion%20trabajo%20de%20grado%20Jos%c3%a9%20Mario%20Londo%c3%b1o.pdf07f13fb4cd92b722732b92ea9c6c08f4MD55metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repository.usta.edu.co/bitstream/11634/33537/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/33537/3/license.txtaedeaf396fcd827b537c73d23464fc27MD53open accessTHUMBNAIL2021joselondono.pdf.jpg2021joselondono.pdf.jpgIM Thumbnailimage/jpeg8795https://repository.usta.edu.co/bitstream/11634/33537/6/2021joselondono.pdf.jpgab12064f2e6f65082247cff5c1f3841aMD56open accessCarta_derechos_autor_jose_mario.pdf.jpgCarta_derechos_autor_jose_mario.pdf.jpgIM Thumbnailimage/jpeg7250https://repository.usta.edu.co/bitstream/11634/33537/7/Carta_derechos_autor_jose_mario.pdf.jpgb01902427a86b8dbfc8ec4f19e760519MD57open accessCarta aprobacion trabajo de grado José Mario Londoño.pdf.jpgCarta aprobacion trabajo de grado José Mario Londoño.pdf.jpgIM Thumbnailimage/jpeg6619https://repository.usta.edu.co/bitstream/11634/33537/8/Carta%20aprobacion%20trabajo%20de%20grado%20Jos%c3%a9%20Mario%20Londo%c3%b1o.pdf.jpg164098dc83726af17682b60bebc5f74cMD58open access11634/33537oai:repository.usta.edu.co:11634/335372022-10-20 03:03:42.806open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K