Materiales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisión
El presente estudio proporciona una revisión bibliográfica acerca de materiales compuestos fabricados a partir de polímeros reciclados y fibras naturales, con el fin de identificar algunas de las mezclas existentes y la influencia de variables como la carga de fibra, el pretratamiento, uso de agente...
- Autores:
-
Rios Rojas, Deyner Sahamir
Ortega Diaz, Mayerly
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/33854
- Acceso en línea:
- http://hdl.handle.net/11634/33854
- Palabra clave:
- Coupling agent
natural fibers
composite materials
recycled polymers
pretreatment
Agente de acople
fibras naturales
materiales compuestos
polímeros reciclados
pretratamiento
- Rights
- closedAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_68c07f2a55a8aef48799e882a964dbd8 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/33854 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Materiales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisión |
title |
Materiales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisión |
spellingShingle |
Materiales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisión Coupling agent natural fibers composite materials recycled polymers pretreatment Agente de acople fibras naturales materiales compuestos polímeros reciclados pretratamiento |
title_short |
Materiales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisión |
title_full |
Materiales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisión |
title_fullStr |
Materiales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisión |
title_full_unstemmed |
Materiales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisión |
title_sort |
Materiales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisión |
dc.creator.fl_str_mv |
Rios Rojas, Deyner Sahamir Ortega Diaz, Mayerly |
dc.contributor.advisor.none.fl_str_mv |
Orjuela, David Solano, Karina Gomez, Zully |
dc.contributor.author.none.fl_str_mv |
Rios Rojas, Deyner Sahamir Ortega Diaz, Mayerly |
dc.subject.keyword.spa.fl_str_mv |
Coupling agent natural fibers composite materials recycled polymers pretreatment |
topic |
Coupling agent natural fibers composite materials recycled polymers pretreatment Agente de acople fibras naturales materiales compuestos polímeros reciclados pretratamiento |
dc.subject.proposal.spa.fl_str_mv |
Agente de acople fibras naturales materiales compuestos polímeros reciclados pretratamiento |
description |
El presente estudio proporciona una revisión bibliográfica acerca de materiales compuestos fabricados a partir de polímeros reciclados y fibras naturales, con el fin de identificar algunas de las mezclas existentes y la influencia de variables como la carga de fibra, el pretratamiento, uso de agentes de acople y tamaño de fibra en las propiedades mecánicas resultantes de los compuestos. Se identificó que la proporción de fibra más adecuada para que las propiedades mecánicas mejoren varía de 15% a 40% en peso; además, que pretratamientos como el NaOH y agentes de acople derivados del anhídrido maleico mejoran la unión interfacial entre la matriz y la fibra resultando en mejores propiedades mecánicas. Así mismo, se evidenció que propiedades como la resistencia a la tracción, módulo de tracción, resistencia a la flexión, módulo de flexión y resiliencia al impacto mejoraron con la adición de fibra hasta 40% en peso, mientras que la resistencia al impacto, tensión por deformación a la rotura y elongación siguieron la tendencia de no mejorar ante la adición de fibras. Así pues, tras realizar la comparación de las propiedades mecánicas de diferentes mezclas de materiales compuestos; se identificó que variables como el pretratamiento, el uso de agentes de acople, el tamaño de fibra y las proporciones de matriz-refuerzo tienen una gran influencia dentro de los materiales compuestos resultantes; y que tan solo con variar ligeramente una de ellas, la interacción interfacial puede cambiar radicalmente. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-04-27T17:24:51Z |
dc.date.available.none.fl_str_mv |
2021-04-27T17:24:51Z |
dc.date.issued.none.fl_str_mv |
2021-04-27 |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Ortega Diaz, M., Rios Rojas, D. S., Gómez Rosales, Z. E., Orjuela Yepes, D., & Solano Meza, J. K. (2021). Materiales compuestos de fibras naturales y polímero reciclados: Mezclas, pretratamientos, agentes de acople y propiedades mecánicas - una revisión. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/33854 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Ortega Diaz, M., Rios Rojas, D. S., Gómez Rosales, Z. E., Orjuela Yepes, D., & Solano Meza, J. K. (2021). Materiales compuestos de fibras naturales y polímero reciclados: Mezclas, pretratamientos, agentes de acople y propiedades mecánicas - una revisión. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/33854 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
D. B. Rocha and D. d. S. Rosa, "Coupling effect of starch coated fibers for recycled polymer/wood composites," Composites Part B: Engineering, vol. 172, pp. 1-8, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836818343051. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.05.052 M. Tufan et al, "Effects of different filler types on decay resistance and thermal, physical, and mechanical properties of recycled high-density polyethylene composites," Iran Polym J, vol. 25, (7), pp. 615-622, 2016. . DOI: 10.1007/s13726-016-0452-6. M. Poletto, "Maleated soybean oil as coupling agent in recycled polypropylene/wood flour composites: Mechanical, thermal, and morphological properties," Journal of Thermoplastic Composite Materials, vol. 32, (8), pp. 1056-1067, 2019. Available: https://journals.sagepub.com/doi/full/10.1177/0892705718785707. DOI: 10.1177/0892705718785707. J. Anggono et al, "Deformation and failure of sugarcane bagasse reinforced PP," European Polymer Journal, vol. 112, pp. 153-160, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0014305718320317. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.eurpolymj.2018.12.033. M. F. V. Marques et al, "Thermal and Mechanical Properties of Sustainable Composites Reinforced with Natural Fibers," J Polym Environ, vol. 23, (2), pp. 251-260, 2015. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s10924-014-0687-2. DOI: 10.1007/s10924-014-0687-2. M. K. Lila et al, "A recyclability study of bagasse fiber reinforced polypropylene composites," Polymer Degradation and Stability, vol. 152, pp. 272-279, 2018. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0141391018301484. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymdegradstab.2018.05.001. M. Hughes and M. Hughes, "Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites," J Mater Sci, vol. 47, (2), pp. 599-609, 2012. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s10853-011-6025-3. DOI: 10.1007/s10853-011-6025-3. A. Komuraiah, N. S. Kumar and B. D. Prasad, "Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties," Mech Compos Mater, vol. 50, (3), pp. 359-376, 2014. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s11029-014-9422-2. DOI: 10.1007/s11029-014-9422-2. M. Rokbi et al, "Effect of processing parameters on tensile properties of recycled polypropylene based composites reinforced with jute fabrics," International Journal of Lightweight Materials and Manufacture, vol. 3, (2), pp. 144-149, 2020. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S2588840419301076. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.ijlmm.2019.09.005. A. Lima et al, "Recycled Polyethylene Composites Reinforced with Jute Fabric from Sackcloth: Part I-Preparation and Preliminary Assessment," J Polym Environ, vol. 20, (1), pp. 245-253, 2012. Available: https://search.proquest.com/docview/922370538. DOI: 10.1007/s10924-011-0373-6. P. Naldony, T. H. Flores-Sahagun and K. G. Satyanarayana, "Effect of the type of fiber (coconut, eucalyptus, or pine) and compatibilizer on the properties of extruded composites of recycled high density polyethylene," Journal of Composite Materials, vol. 50, (1), pp. 45-56, 2016. Available: https://journals.sagepub.com/doi/full/10.1177/0021998315570141. DOI: 10.1177/0021998315570141. M. D. Erdman and B. A. Erdman, "Arrowroot (Maranta arundinacea), Food, Feed, Fuel, and Fiber Resource," Economic Botany, vol. 38, (3), pp. 332-341, 1984. Available: https://www.jstor.org/stable/4254646. DOI: 10.1007/BF02859011. R. S. Chen et al, "Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials," Thermochimica Acta, vol. 640, pp. 52-61, 2016. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0040603116302027. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.tca.2016.08.005. M. N. Islam and M. S. Islam, "Characterization of chemically modified sawdust-reinforced recycled polyethylene composites," Journal of Thermoplastic Composite Materials, vol. 28, (8), pp. 1135-1153, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0892705713503671. DOI: 10.1177/0892705713503671. S. K. Najafi et al, "Water Absorption Behavior of Composites from Sawdust and Recycled Plastics," Journal of Reinforced Plastics and Composites, vol. 26, (3), pp. 341-348, 2007. Available: https://journals.sagepub.com/doi/full/10.1177/0731684407072519. DOI: 10.1177/0731684407072519. N. Hidayah Marzuki et al, "Mechanical properties of kenaf fiber and montmorillonite reinforced recycled polyethylene terephthalate/recycled polypropylene," Materials Today: Proceedings, vol. 5, (10), pp. 21879-21887, 2018. Available: http://dx.doi.org/10.1016/j.matpr.2018.07.046. DOI: 10.1016/j.matpr.2018.07.046. D. D. P. Moreno, D. Hirayama and C. Saron, "Accelerated aging of pine wood waste/recycled LDPE composite," Polymer Degradation and Stability, vol. 149, pp. 39-44, 2018. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0141391018300211. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymdegradstab.2018.01.014. B. Koohestani et al, "Comparison of different natural fiber treatments: a literature review," Int. J. Environ. Sci. Technol., vol. 16, (1), pp. 629-642, 2019. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s13762-018-1890-9. DOI: 10.1007/s13762-018-1890-9. K. Zadeh et al, "Effects of date palm leaf fiber on the thermal and tensile properties of recycled ternary polyolefin blend composites," Fibers Polym, vol. 18, (7), pp. 1330-1335, 2017. Available: https://search.proquest.com/docview/1925068279. DOI: 10.1007/s12221-017-1106-9. M. R. Islam, M. D. H. Beg and A. Gupta, "Characterization of alkali-treated kenaf fibre-reinforced recycled polypropylene composites," Journal of Thermoplastic Composite Materials, vol. 27, (7), pp. 909-932, 2014. Available: https://journals.sagepub.com/doi/full/10.1177/0892705712461511. DOI: 10.1177/0892705712461511. C. Wu and C. Wu, "Enhanced Interfacial Adhesion and Characterisation of Recycled Natural Fibre-Filled Biodegradable Green Composites," J Polym Environ, vol. 26, (7), pp. 2676-2685, 2018. Available: https://search.proquest.com/docview/1973290625. DOI: 10.1007/s10924-017-1160-9. I. Ahmad and T. M. Mei, "Mechanical and Morphological Studies of Rubber Wood Sawdust-Filled UPR Composite Based on Recycled PET," Polymer-Plastics Technology & Engineering, vol. 48, (12), pp. 1262-1268, 2009. Available: https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=49234996&lang=es&site=ehost-live. DOI: 10.1080/03602550903204105. P. S. Sari et al, "Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding," Composites Part B: Engineering, vol. 177, pp. 107344, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836819309813. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.107344. R. M. de Sá, C. S. de Miranda and N. M. José, "Preparation and Characterization of Nanowhiskers Cellulose from Fiber Arrowroot (Maranta arundinacea)," Materials Research, vol. 18, (2), pp. 225-229, 2015. Available: https://www.openaire.eu/search/publication?articleId=od______3056::b326e7eb240014ea7b17eee1ca7699f7. DOI: 10.1590/1516-1439.366214. J. A. Foulk et al, "Enzyme-Retted Flax Fiber and Recycled Polyethylene Composites," Journal of Polymers and the Environment, vol. 12, (3), pp. 165-171, 2004. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1023/B:JOOE.0000038548.73494.59. DOI: 10.1023/B:JOOE.0000038548.73494.59. Y. Martinez Lopez et al, "Production of wood-plastic composites using cedrela odorata sawdust waste and recycled thermoplastics mixture from post-consumer products - A sustainable approach for cleaner production in Cuba," Journal of Cleaner Production, vol. 244, pp. 118723, 2020. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0959652619335930. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.jclepro.2019.118723. A. Lima, S. Monteiro and K. Satyanarayana, "Recycled Polyethylene Composites Reinforced with Jute Fabric from Sackcloth: Part II-Impact Strength Evaluation," J Polym Environ, vol. 19, (4), pp. 957-965, 2011. Available: https://search.proquest.com/docview/905879036. DOI: 10.1007/s10924-011-0347-8. M. Cosnita, C. Cazan and A. Duta, "Interfaces and mechanical properties of recycled rubber–polyethylene terephthalate–wood composites," Journal of Composite Materials, vol. 48, (6), pp. 683-694, 2014. Available: https://journals.sagepub.com/doi/full/10.1177/0021998313476561. DOI: 10.1177/0021998313476561. A. C. N. Singleton et al, "On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite," Composites Part B, vol. 34, (6), pp. 519-526, 2003. Available: http://dx.doi.org/10.1016/S1359-8368(03)00042-8. DOI: 10.1016/S1359-8368(03)00042-8. A. Ogah and A. Ogah, "Characterization of Sorghum Bran/Recycled Low Density Polyethylene for the Manufacturing of Polymer Composites," J Polym Environ, vol. 25, (3), pp. 533-543, 2017. Available: https://search.proquest.com/docview/1928618344. DOI: 10.1007/s10924-016-0830-3. J. R. Araújo, W. R. Waldman and M. A. De Paoli, "Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect," Polymer Degradation and Stability, vol. 93, (10), pp. 1770-1775, 2008. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0141391008002516. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymdegradstab.2008.07.021. D. K. Rajak et al, "Recent progress of reinforcement materials: a comprehensive overview of composite materials," Journal of Materials Research and Technology, vol. 8, (6), pp. 6354-6374, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S2238785419312086. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.jmrt.2019.09.068. E. Corradini et al, "Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber," Polymer Testing, vol. 28, (2), pp. 183-187, 2009. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0142941808001943. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymertesting.2008.11.014. M. J. P. Macedo et al, "Composites from recycled polyethylene and plasma treated kapok fibers," Cellulose, vol. 27, (4), pp. 2115-2134, 2020. Available: https://search.proquest.com/docview/2364155851. DOI: 10.1007/s10570-019-02946-4. A. Arsad et al, "The influence of kenaf fiber as reinforcement on recycled polypropylene/recycled polyamide-6 composites," Int J Plast Technol, vol. 17, (2), pp. 149-162, 2013. Available: https://search.proquest.com/docview/1512181575. DOI: 10.1007/s12588-013-9055-7. R. H. Cruz-Estrada et al, "Potential use of waste from tree pruning and recovered plastic to obtain a building material: Case study of Merida, Mexico," Waste Management & Research, pp. 734242, 2020. . DOI: 10.1177/0734242X20928404. N. Hidayah Marzuki et al, "Mechanical properties of kenaf fiber and montmorillonite reinforced recycled polyethylene terephthalate/recycled polypropylene," Materials Today: Proceedings, vol. 5, (10), pp. 21879-21887, 2018. Available: http://dx.doi.org/10.1016/j.matpr.2018.07.046. DOI: 10.1016/j.matpr.2018.07.046. M. N. Islam and M. S. Islam, "Characterization of chemically modified sawdust-reinforced recycled polyethylene composites," Journal of Thermoplastic Composite Materials, vol. 28, (8), pp. 1135-1153, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0892705713503671. DOI: 10.1177/0892705713503671. S. Nayak, G. Dixit and K. Appu Kuttan, "Mechanical properties of eco-friendly recycled polymer composites: a comparative study of theoretical and experimental results," Int J Plast Technol, vol. 17, (1), pp. 75-93, 2013. Available: https://search.proquest.com/docview/1400587951. DOI: 10.1007/s12588-013-9050-z. T. P. Nguyen, C. Sollogoub and A. Guinault, "Relationship between fiber chemical treatment and properties of recycled pp/bamboo fiber composites," Journal of Reinforced Plastics & Composites, vol. 29, (21), pp. 3244-3256, 2010. Available: https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=55060828&lang=es&site=ehost-live. DOI: 10.1177/0731684410370905. P. Noorunnisa Khanam and M. A. AlMaadeed, "Improvement of ternary recycled polymer blend reinforced with date palm fibre," Materials & Design, vol. 60, pp. 532-539, 2014. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S026130691400301X. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.matdes.2014.04.033. R. S. Chen and S. Ahmad, "Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics," Materials Chemistry and Physics, vol. 198, pp. 57-65, 2017. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0254058417304236. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.matchemphys.2017.05.054. Y. Lei et al, "Preparation and properties of recycled HDPE/natural fiber composites," Composites Part A: Applied Science and Manufacturing, vol. 38, (7), pp. 1664-1674, 2007. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359835X07000310. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesa.2007.02.001. N. Lu and S. Oza, "A comparative study of the mechanical properties of hemp fiber with virgin and recycled high density polyethylene matrix," Composites Part B: Engineering, vol. 45, (1), pp. 1651-1656, 2013. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836812006403. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2012.09.076. A. Dehghani et al, "Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites," Materials & Design (1980-2015), vol. 52, pp. 841-848, 2013. M. J. Taufiq, M. R. Mansor and Z. Mustafa, "Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend," Composite Structures, vol. 189, pp. 510-515, 2018. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0263822317327976. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compstruct.2018.01.090. O. A. Saputra et al, "Improvement of Thermo-Mechanical Properties of Short Natural Fiber Reinforced Recycled Polypropylene Composites through Double Step Grafting Process," IOP Conference Series: Earth and Environmental Science, vol. 75, pp. 12023, 2017. . DOI: 10.1088/1755-1315/75/1/012023. M. Z. Abdullah and N. H. Che Aslan, "Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber," Resources, vol. 8, (2), pp. 97, 2019. Available: https://www.openaire.eu/search/publication?articleId=dedup_wf_001::1e774172e17a5e56c03839f109383b12. DOI: 10.3390/resources8020097. A. Gupta et al, "Mechanical and thermal degradation behavior of sisal fiber (SF) reinforced recycled polypropylene (RPP) composites," Fibers Polym, vol. 15, (5), pp. 994-1003, 2014. Available: https://search.proquest.com/docview/1530762892. DOI: 10.1007/s12221-014-0994-1. M. Naushad et al, "Mechanical and damage tolerance behavior of short sisal fiber reinforced recycled polypropylene biocomposites," Journal of Composite Materials, vol. 51, (8), pp. 1087-1097, 2017. Available: https://journals.sagepub.com/doi/full/10.1177/0021998316658945. DOI: 10.1177/0021998316658945. K. Rohit and S. Dixit, "Tensile and Impact Behaviour of Thermoplastic BOPP/Milk Pouches Blends Reinforced with Sisal Fibers," Progress in Rubber Plastics and Recycling Technology, vol. 33, (3), pp. 139-152, 2017. Available: https://journals.sagepub.com/doi/full/10.1177/147776061703300302. DOI: 10.1177/147776061703300302. A. L. Catto et al, "Characterization of polypropylene composites using yerba mate fibers as reinforcing filler," Composites Part B: Engineering, vol. 174, pp. 106935, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836819309783. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.106935. E. Erbas Kiziltas, A. Kiziltas and E. C. Lee, "Structure and properties of compatibilized recycled polypropylene/recycled polyamide 12 blends with cellulose fibers addition," Polymer Composites, vol. 39, (10), pp. 3556-3563, 2018. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.24376. DOI: 10.1002/pc.24376. K. M. Zadeh, D. Ponnamma and M. Al Ali Al-Maadeed, "Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy," Polymer Testing, vol. 61, pp. 341-348, 2017. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0142941817302210. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymertesting.2017.05.006. K. B. Adhikary, S. Pang and M. P. Staiger, "Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE)," Composites Part B: Engineering, vol. 39, (5), pp. 807-815, 2008. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S135983680700145X. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2007.10.005. G. N. Farahani, I. Ahmad and Z. Mosadeghzad, "Effect of Fiber Content, Fiber Length and Alkali Treatment on Properties of Kenaf Fiber/UPR Composites Based on Recycled PET Wastes," Polymer-Plastics Technology & Engineering, vol. 51, (6), pp. 634-639, 2012. Available: https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=74638531&lang=es&site=ehost-live. DOI: 10.1080/03602559.2012.659314. A. A. El-Fattah et al, "The effect of sugarcane bagasse fiber on the properties of recycled high density polyethylene," Journal of Composite Materials, vol. 49, (26), pp. 3251-3262, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0021998314561484. DOI: 10.1177/0021998314561484. Khalil, H. P. S. A et al, "Recycle Polypropylene (RPP) - Wood Saw Dust (WSD) Composites - Part 1: The Effect of Different Filler Size and Filler Loading on Mechanical and Water Absorption Properties," Journal of Reinforced Plastics and Composites, vol. 25, (12), pp. 1291-1303, 2006. Available: https://journals.sagepub.com/doi/full/10.1177/0731684406062060. DOI: 10.1177/0731684406062060. A. R. Kakroodi et al, "Mechanical Properties of Recycled Polypropylene/SBR Rubber Crumbs Blends Reinforced by Birch Wood Flour," Polymers and Polymer Composites, vol. 20, (5), pp. 439-444, 2012. Available: https://search.proquest.com/docview/1018695041. DOI: 10.1177/096739111202000503. C. Homkhiew, T. Ratanawilai and W. Thongruang, "Composites from recycled polypropylene and rubberwood flour," Journal of Thermoplastic Composite Materials, vol. 28, (2), pp. 179-194, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0892705712475019. DOI: 10.1177/0892705712475019. Dinesh and S. Palsule, "Structure and properties of recycled bamboo fiber reinforced chemically functionalized ethylene propylene rubber composites," Polymers and Polymer Composites, pp. 96739111989411, 2019. . DOI: 10.1177/0967391119894112. J. O. Agunsoye and V. S. Aigbodion, "Bagasse filled recycled polyethylene bio-composites: Morphological and mechanical properties study," Results in Physics, vol. 3, pp. 187-194, 2013. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S2211379713000296. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.rinp.2013.09.003. C. Tan, I. Ahmad and M. Heng, "Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers," Materials & Design, vol. 32, (8), pp. 4493-4501, 2011. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0261306911002007. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.matdes.2011.03.037. T. Zi‐Ni et al, "Characteristics of Metroxylon sagu Resistant Starch Type III as Prebiotic Substance," Journal of Food Science, vol. 80, (4), pp. H875-H882, 2015. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/1750-3841.12817. DOI: 10.1111/1750-3841.12817. K. Das et al, "Development of Recycled Polypropylene Matrix Composites Reinforced with Waste Jute Caddies," Journal of Reinforced Plastics and Composites, vol. 29, (2), pp. 201-208, 2010. Available: https://journals.sagepub.com/doi/full/10.1177/0731684408096929. DOI: 10.1177/0731684408096929. H. Younesi-Kordkheili and A. Pizzi, "Ionic liquid- modified lignin as a bio- coupling agent for natural fiber- recycled polypropylene composites," Composites Part B: Engineering, vol. 181, pp. 107587, 2020. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836818314719. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.107587. H. Hong et al, "Transform Rice Husk and Recycled Polyethylene into High Performance Composites: Using a Novel Compatibilizer to Infiltratively Enhance the Interfacial Interactions," Progress in Rubber Plastics and Recycling Technology, vol. 32, (4), pp. 253-268, 2016. Available: https://journals.sagepub.com/doi/full/10.1177/147776061603200405. DOI: 10.1177/147776061603200405. K. M. Zadeh, D. Ponnamma and M. Al Ali Al-Maadeed, "Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy," Polymer Testing, vol. 61, pp. 341-348, 2017. Available: http://dx.doi.org/10.1016/j.polymertesting.2017.05.006. DOI: 10.1016/j.polymertesting.2017.05.006. |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Acceso cerrado |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Acceso cerrado http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado de Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/33854/1/2021deynerrios.pdf https://repository.usta.edu.co/bitstream/11634/33854/2/Carta_aprobacion_facultad_autoarchivo%20-%20Mayerly%20Ortega%20y%20Sahamir%20Rios.pdf https://repository.usta.edu.co/bitstream/11634/33854/3/Carta_de%20no%20_autorizacion_autoarchivo_%20Sahamir%20Rios%2c%20Mayerly%20Ortega.pdf https://repository.usta.edu.co/bitstream/11634/33854/5/license.txt https://repository.usta.edu.co/bitstream/11634/33854/4/license_rdf https://repository.usta.edu.co/bitstream/11634/33854/6/2021deynerrios.pdf.jpg https://repository.usta.edu.co/bitstream/11634/33854/7/Carta_aprobacion_facultad_autoarchivo%20-%20Mayerly%20Ortega%20y%20Sahamir%20Rios.pdf.jpg https://repository.usta.edu.co/bitstream/11634/33854/8/Carta_de%20no%20_autorizacion_autoarchivo_%20Sahamir%20Rios%2c%20Mayerly%20Ortega.pdf.jpg |
bitstream.checksum.fl_str_mv |
3b3d565bb5aa93111b061c33cb611514 12d72e22d10b0c75706cc9db6c6ce3d4 dc09fda6da6dbce0b7a0f1d1000c7cb2 aedeaf396fcd827b537c73d23464fc27 217700a34da79ed616c2feb68d4c5e06 4c8da6467534644ec2c19ac049e5d2fb 618e94058858342f6549e2ffee27646d ccd32760303e63daa2d532cfea4ae3f6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026366205558784 |
spelling |
Orjuela, DavidSolano, KarinaGomez, ZullyRios Rojas, Deyner SahamirOrtega Diaz, Mayerly2021-04-27T17:24:51Z2021-04-27T17:24:51Z2021-04-27Ortega Diaz, M., Rios Rojas, D. S., Gómez Rosales, Z. E., Orjuela Yepes, D., & Solano Meza, J. K. (2021). Materiales compuestos de fibras naturales y polímero reciclados: Mezclas, pretratamientos, agentes de acople y propiedades mecánicas - una revisión.http://hdl.handle.net/11634/33854reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl presente estudio proporciona una revisión bibliográfica acerca de materiales compuestos fabricados a partir de polímeros reciclados y fibras naturales, con el fin de identificar algunas de las mezclas existentes y la influencia de variables como la carga de fibra, el pretratamiento, uso de agentes de acople y tamaño de fibra en las propiedades mecánicas resultantes de los compuestos. Se identificó que la proporción de fibra más adecuada para que las propiedades mecánicas mejoren varía de 15% a 40% en peso; además, que pretratamientos como el NaOH y agentes de acople derivados del anhídrido maleico mejoran la unión interfacial entre la matriz y la fibra resultando en mejores propiedades mecánicas. Así mismo, se evidenció que propiedades como la resistencia a la tracción, módulo de tracción, resistencia a la flexión, módulo de flexión y resiliencia al impacto mejoraron con la adición de fibra hasta 40% en peso, mientras que la resistencia al impacto, tensión por deformación a la rotura y elongación siguieron la tendencia de no mejorar ante la adición de fibras. Así pues, tras realizar la comparación de las propiedades mecánicas de diferentes mezclas de materiales compuestos; se identificó que variables como el pretratamiento, el uso de agentes de acople, el tamaño de fibra y las proporciones de matriz-refuerzo tienen una gran influencia dentro de los materiales compuestos resultantes; y que tan solo con variar ligeramente una de ellas, la interacción interfacial puede cambiar radicalmente.This study provides a bibliographic review about composite materials made from recycled polymers and natural fibers, in order to identify some of the existing mixtures and the influence of variables such as fiber loading, pretreatment, use of coupling agents and fiber size in the resulting mechanical properties of the composites. It was identified that the most suitable fiber proportion so that the mechanical properties improve varies from 15% to 40% by weight; furthermore, that pre-treatments such as NaOH and coupling agents derived from maleic anhydride improve the interfacial bond between the matrix and the fiber, resulting in better mechanical properties. Likewise, it was evidenced that properties such as tensile strength, tensile modulus, flexural strength, flexural modulus and impact resilience improved with the addition of fiber up to 40% by weight, while impact resistance, tension due to deformation at break and elongation followed the trend of not improving with the addition of fibers. In addition, a correlation between fiber sizes and mechanical properties was performed in search of a trend, but since the tests were carried out under different conditions, it was not possible to make an ideal comparison for these combinations.Ingeniero Ambientalhttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Acceso cerradoinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbMateriales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisiónCoupling agentnatural fiberscomposite materialsrecycled polymerspretreatmentAgente de acoplefibras naturalesmateriales compuestospolímeros recicladospretratamientoTrabajo de Gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáD. B. Rocha and D. d. S. Rosa, "Coupling effect of starch coated fibers for recycled polymer/wood composites," Composites Part B: Engineering, vol. 172, pp. 1-8, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836818343051. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.05.052M. Tufan et al, "Effects of different filler types on decay resistance and thermal, physical, and mechanical properties of recycled high-density polyethylene composites," Iran Polym J, vol. 25, (7), pp. 615-622, 2016. . DOI: 10.1007/s13726-016-0452-6.M. Poletto, "Maleated soybean oil as coupling agent in recycled polypropylene/wood flour composites: Mechanical, thermal, and morphological properties," Journal of Thermoplastic Composite Materials, vol. 32, (8), pp. 1056-1067, 2019. Available: https://journals.sagepub.com/doi/full/10.1177/0892705718785707. DOI: 10.1177/0892705718785707.J. Anggono et al, "Deformation and failure of sugarcane bagasse reinforced PP," European Polymer Journal, vol. 112, pp. 153-160, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0014305718320317. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.eurpolymj.2018.12.033.M. F. V. Marques et al, "Thermal and Mechanical Properties of Sustainable Composites Reinforced with Natural Fibers," J Polym Environ, vol. 23, (2), pp. 251-260, 2015. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s10924-014-0687-2. DOI: 10.1007/s10924-014-0687-2.M. K. Lila et al, "A recyclability study of bagasse fiber reinforced polypropylene composites," Polymer Degradation and Stability, vol. 152, pp. 272-279, 2018. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0141391018301484. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymdegradstab.2018.05.001.M. Hughes and M. Hughes, "Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites," J Mater Sci, vol. 47, (2), pp. 599-609, 2012. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s10853-011-6025-3. DOI: 10.1007/s10853-011-6025-3.A. Komuraiah, N. S. Kumar and B. D. Prasad, "Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties," Mech Compos Mater, vol. 50, (3), pp. 359-376, 2014. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s11029-014-9422-2. DOI: 10.1007/s11029-014-9422-2.M. Rokbi et al, "Effect of processing parameters on tensile properties of recycled polypropylene based composites reinforced with jute fabrics," International Journal of Lightweight Materials and Manufacture, vol. 3, (2), pp. 144-149, 2020. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S2588840419301076. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.ijlmm.2019.09.005.A. Lima et al, "Recycled Polyethylene Composites Reinforced with Jute Fabric from Sackcloth: Part I-Preparation and Preliminary Assessment," J Polym Environ, vol. 20, (1), pp. 245-253, 2012. Available: https://search.proquest.com/docview/922370538. DOI: 10.1007/s10924-011-0373-6.P. Naldony, T. H. Flores-Sahagun and K. G. Satyanarayana, "Effect of the type of fiber (coconut, eucalyptus, or pine) and compatibilizer on the properties of extruded composites of recycled high density polyethylene," Journal of Composite Materials, vol. 50, (1), pp. 45-56, 2016. Available: https://journals.sagepub.com/doi/full/10.1177/0021998315570141. DOI: 10.1177/0021998315570141.M. D. Erdman and B. A. Erdman, "Arrowroot (Maranta arundinacea), Food, Feed, Fuel, and Fiber Resource," Economic Botany, vol. 38, (3), pp. 332-341, 1984. Available: https://www.jstor.org/stable/4254646. DOI: 10.1007/BF02859011.R. S. Chen et al, "Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials," Thermochimica Acta, vol. 640, pp. 52-61, 2016. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0040603116302027. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.tca.2016.08.005.M. N. Islam and M. S. Islam, "Characterization of chemically modified sawdust-reinforced recycled polyethylene composites," Journal of Thermoplastic Composite Materials, vol. 28, (8), pp. 1135-1153, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0892705713503671. DOI: 10.1177/0892705713503671.S. K. Najafi et al, "Water Absorption Behavior of Composites from Sawdust and Recycled Plastics," Journal of Reinforced Plastics and Composites, vol. 26, (3), pp. 341-348, 2007. Available: https://journals.sagepub.com/doi/full/10.1177/0731684407072519. DOI: 10.1177/0731684407072519.N. Hidayah Marzuki et al, "Mechanical properties of kenaf fiber and montmorillonite reinforced recycled polyethylene terephthalate/recycled polypropylene," Materials Today: Proceedings, vol. 5, (10), pp. 21879-21887, 2018. Available: http://dx.doi.org/10.1016/j.matpr.2018.07.046. DOI: 10.1016/j.matpr.2018.07.046.D. D. P. Moreno, D. Hirayama and C. Saron, "Accelerated aging of pine wood waste/recycled LDPE composite," Polymer Degradation and Stability, vol. 149, pp. 39-44, 2018. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0141391018300211. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymdegradstab.2018.01.014.B. Koohestani et al, "Comparison of different natural fiber treatments: a literature review," Int. J. Environ. Sci. Technol., vol. 16, (1), pp. 629-642, 2019. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s13762-018-1890-9. DOI: 10.1007/s13762-018-1890-9.K. Zadeh et al, "Effects of date palm leaf fiber on the thermal and tensile properties of recycled ternary polyolefin blend composites," Fibers Polym, vol. 18, (7), pp. 1330-1335, 2017. Available: https://search.proquest.com/docview/1925068279. DOI: 10.1007/s12221-017-1106-9.M. R. Islam, M. D. H. Beg and A. Gupta, "Characterization of alkali-treated kenaf fibre-reinforced recycled polypropylene composites," Journal of Thermoplastic Composite Materials, vol. 27, (7), pp. 909-932, 2014. Available: https://journals.sagepub.com/doi/full/10.1177/0892705712461511. DOI: 10.1177/0892705712461511.C. Wu and C. Wu, "Enhanced Interfacial Adhesion and Characterisation of Recycled Natural Fibre-Filled Biodegradable Green Composites," J Polym Environ, vol. 26, (7), pp. 2676-2685, 2018. Available: https://search.proquest.com/docview/1973290625. DOI: 10.1007/s10924-017-1160-9.I. Ahmad and T. M. Mei, "Mechanical and Morphological Studies of Rubber Wood Sawdust-Filled UPR Composite Based on Recycled PET," Polymer-Plastics Technology & Engineering, vol. 48, (12), pp. 1262-1268, 2009. Available: https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=49234996&lang=es&site=ehost-live. DOI: 10.1080/03602550903204105.P. S. Sari et al, "Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding," Composites Part B: Engineering, vol. 177, pp. 107344, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836819309813. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.107344.R. M. de Sá, C. S. de Miranda and N. M. José, "Preparation and Characterization of Nanowhiskers Cellulose from Fiber Arrowroot (Maranta arundinacea)," Materials Research, vol. 18, (2), pp. 225-229, 2015. Available: https://www.openaire.eu/search/publication?articleId=od______3056::b326e7eb240014ea7b17eee1ca7699f7. DOI: 10.1590/1516-1439.366214.J. A. Foulk et al, "Enzyme-Retted Flax Fiber and Recycled Polyethylene Composites," Journal of Polymers and the Environment, vol. 12, (3), pp. 165-171, 2004. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1023/B:JOOE.0000038548.73494.59. DOI: 10.1023/B:JOOE.0000038548.73494.59.Y. Martinez Lopez et al, "Production of wood-plastic composites using cedrela odorata sawdust waste and recycled thermoplastics mixture from post-consumer products - A sustainable approach for cleaner production in Cuba," Journal of Cleaner Production, vol. 244, pp. 118723, 2020. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0959652619335930. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.jclepro.2019.118723.A. Lima, S. Monteiro and K. Satyanarayana, "Recycled Polyethylene Composites Reinforced with Jute Fabric from Sackcloth: Part II-Impact Strength Evaluation," J Polym Environ, vol. 19, (4), pp. 957-965, 2011. Available: https://search.proquest.com/docview/905879036. DOI: 10.1007/s10924-011-0347-8.M. Cosnita, C. Cazan and A. Duta, "Interfaces and mechanical properties of recycled rubber–polyethylene terephthalate–wood composites," Journal of Composite Materials, vol. 48, (6), pp. 683-694, 2014. Available: https://journals.sagepub.com/doi/full/10.1177/0021998313476561. DOI: 10.1177/0021998313476561.A. C. N. Singleton et al, "On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite," Composites Part B, vol. 34, (6), pp. 519-526, 2003. Available: http://dx.doi.org/10.1016/S1359-8368(03)00042-8. DOI: 10.1016/S1359-8368(03)00042-8.A. Ogah and A. Ogah, "Characterization of Sorghum Bran/Recycled Low Density Polyethylene for the Manufacturing of Polymer Composites," J Polym Environ, vol. 25, (3), pp. 533-543, 2017. Available: https://search.proquest.com/docview/1928618344. DOI: 10.1007/s10924-016-0830-3.J. R. Araújo, W. R. Waldman and M. A. De Paoli, "Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect," Polymer Degradation and Stability, vol. 93, (10), pp. 1770-1775, 2008. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0141391008002516. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymdegradstab.2008.07.021.D. K. Rajak et al, "Recent progress of reinforcement materials: a comprehensive overview of composite materials," Journal of Materials Research and Technology, vol. 8, (6), pp. 6354-6374, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S2238785419312086. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.jmrt.2019.09.068.E. Corradini et al, "Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber," Polymer Testing, vol. 28, (2), pp. 183-187, 2009. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0142941808001943. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymertesting.2008.11.014.M. J. P. Macedo et al, "Composites from recycled polyethylene and plasma treated kapok fibers," Cellulose, vol. 27, (4), pp. 2115-2134, 2020. Available: https://search.proquest.com/docview/2364155851. DOI: 10.1007/s10570-019-02946-4.A. Arsad et al, "The influence of kenaf fiber as reinforcement on recycled polypropylene/recycled polyamide-6 composites," Int J Plast Technol, vol. 17, (2), pp. 149-162, 2013. Available: https://search.proquest.com/docview/1512181575. DOI: 10.1007/s12588-013-9055-7.R. H. Cruz-Estrada et al, "Potential use of waste from tree pruning and recovered plastic to obtain a building material: Case study of Merida, Mexico," Waste Management & Research, pp. 734242, 2020. . DOI: 10.1177/0734242X20928404.N. Hidayah Marzuki et al, "Mechanical properties of kenaf fiber and montmorillonite reinforced recycled polyethylene terephthalate/recycled polypropylene," Materials Today: Proceedings, vol. 5, (10), pp. 21879-21887, 2018. Available: http://dx.doi.org/10.1016/j.matpr.2018.07.046. DOI: 10.1016/j.matpr.2018.07.046.M. N. Islam and M. S. Islam, "Characterization of chemically modified sawdust-reinforced recycled polyethylene composites," Journal of Thermoplastic Composite Materials, vol. 28, (8), pp. 1135-1153, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0892705713503671. DOI: 10.1177/0892705713503671.S. Nayak, G. Dixit and K. Appu Kuttan, "Mechanical properties of eco-friendly recycled polymer composites: a comparative study of theoretical and experimental results," Int J Plast Technol, vol. 17, (1), pp. 75-93, 2013. Available: https://search.proquest.com/docview/1400587951. DOI: 10.1007/s12588-013-9050-z.T. P. Nguyen, C. Sollogoub and A. Guinault, "Relationship between fiber chemical treatment and properties of recycled pp/bamboo fiber composites," Journal of Reinforced Plastics & Composites, vol. 29, (21), pp. 3244-3256, 2010. Available: https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=55060828&lang=es&site=ehost-live. DOI: 10.1177/0731684410370905.P. Noorunnisa Khanam and M. A. AlMaadeed, "Improvement of ternary recycled polymer blend reinforced with date palm fibre," Materials & Design, vol. 60, pp. 532-539, 2014. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S026130691400301X. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.matdes.2014.04.033.R. S. Chen and S. Ahmad, "Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics," Materials Chemistry and Physics, vol. 198, pp. 57-65, 2017. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0254058417304236. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.matchemphys.2017.05.054.Y. Lei et al, "Preparation and properties of recycled HDPE/natural fiber composites," Composites Part A: Applied Science and Manufacturing, vol. 38, (7), pp. 1664-1674, 2007. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359835X07000310. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesa.2007.02.001.N. Lu and S. Oza, "A comparative study of the mechanical properties of hemp fiber with virgin and recycled high density polyethylene matrix," Composites Part B: Engineering, vol. 45, (1), pp. 1651-1656, 2013. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836812006403. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2012.09.076.A. Dehghani et al, "Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites," Materials & Design (1980-2015), vol. 52, pp. 841-848, 2013.M. J. Taufiq, M. R. Mansor and Z. Mustafa, "Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend," Composite Structures, vol. 189, pp. 510-515, 2018. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0263822317327976. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compstruct.2018.01.090.O. A. Saputra et al, "Improvement of Thermo-Mechanical Properties of Short Natural Fiber Reinforced Recycled Polypropylene Composites through Double Step Grafting Process," IOP Conference Series: Earth and Environmental Science, vol. 75, pp. 12023, 2017. . DOI: 10.1088/1755-1315/75/1/012023.M. Z. Abdullah and N. H. Che Aslan, "Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber," Resources, vol. 8, (2), pp. 97, 2019. Available: https://www.openaire.eu/search/publication?articleId=dedup_wf_001::1e774172e17a5e56c03839f109383b12. DOI: 10.3390/resources8020097.A. Gupta et al, "Mechanical and thermal degradation behavior of sisal fiber (SF) reinforced recycled polypropylene (RPP) composites," Fibers Polym, vol. 15, (5), pp. 994-1003, 2014. Available: https://search.proquest.com/docview/1530762892. DOI: 10.1007/s12221-014-0994-1.M. Naushad et al, "Mechanical and damage tolerance behavior of short sisal fiber reinforced recycled polypropylene biocomposites," Journal of Composite Materials, vol. 51, (8), pp. 1087-1097, 2017. Available: https://journals.sagepub.com/doi/full/10.1177/0021998316658945. DOI: 10.1177/0021998316658945.K. Rohit and S. Dixit, "Tensile and Impact Behaviour of Thermoplastic BOPP/Milk Pouches Blends Reinforced with Sisal Fibers," Progress in Rubber Plastics and Recycling Technology, vol. 33, (3), pp. 139-152, 2017. Available: https://journals.sagepub.com/doi/full/10.1177/147776061703300302. DOI: 10.1177/147776061703300302.A. L. Catto et al, "Characterization of polypropylene composites using yerba mate fibers as reinforcing filler," Composites Part B: Engineering, vol. 174, pp. 106935, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836819309783. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.106935.E. Erbas Kiziltas, A. Kiziltas and E. C. Lee, "Structure and properties of compatibilized recycled polypropylene/recycled polyamide 12 blends with cellulose fibers addition," Polymer Composites, vol. 39, (10), pp. 3556-3563, 2018. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.24376. DOI: 10.1002/pc.24376.K. M. Zadeh, D. Ponnamma and M. Al Ali Al-Maadeed, "Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy," Polymer Testing, vol. 61, pp. 341-348, 2017. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0142941817302210. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymertesting.2017.05.006.K. B. Adhikary, S. Pang and M. P. Staiger, "Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE)," Composites Part B: Engineering, vol. 39, (5), pp. 807-815, 2008. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S135983680700145X. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2007.10.005.G. N. Farahani, I. Ahmad and Z. Mosadeghzad, "Effect of Fiber Content, Fiber Length and Alkali Treatment on Properties of Kenaf Fiber/UPR Composites Based on Recycled PET Wastes," Polymer-Plastics Technology & Engineering, vol. 51, (6), pp. 634-639, 2012. Available: https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=74638531&lang=es&site=ehost-live. DOI: 10.1080/03602559.2012.659314.A. A. El-Fattah et al, "The effect of sugarcane bagasse fiber on the properties of recycled high density polyethylene," Journal of Composite Materials, vol. 49, (26), pp. 3251-3262, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0021998314561484. DOI: 10.1177/0021998314561484.Khalil, H. P. S. A et al, "Recycle Polypropylene (RPP) - Wood Saw Dust (WSD) Composites - Part 1: The Effect of Different Filler Size and Filler Loading on Mechanical and Water Absorption Properties," Journal of Reinforced Plastics and Composites, vol. 25, (12), pp. 1291-1303, 2006. Available: https://journals.sagepub.com/doi/full/10.1177/0731684406062060. DOI: 10.1177/0731684406062060.A. R. Kakroodi et al, "Mechanical Properties of Recycled Polypropylene/SBR Rubber Crumbs Blends Reinforced by Birch Wood Flour," Polymers and Polymer Composites, vol. 20, (5), pp. 439-444, 2012. Available: https://search.proquest.com/docview/1018695041. DOI: 10.1177/096739111202000503.C. Homkhiew, T. Ratanawilai and W. Thongruang, "Composites from recycled polypropylene and rubberwood flour," Journal of Thermoplastic Composite Materials, vol. 28, (2), pp. 179-194, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0892705712475019. DOI: 10.1177/0892705712475019.Dinesh and S. Palsule, "Structure and properties of recycled bamboo fiber reinforced chemically functionalized ethylene propylene rubber composites," Polymers and Polymer Composites, pp. 96739111989411, 2019. . DOI: 10.1177/0967391119894112.J. O. Agunsoye and V. S. Aigbodion, "Bagasse filled recycled polyethylene bio-composites: Morphological and mechanical properties study," Results in Physics, vol. 3, pp. 187-194, 2013. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S2211379713000296. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.rinp.2013.09.003.C. Tan, I. Ahmad and M. Heng, "Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers," Materials & Design, vol. 32, (8), pp. 4493-4501, 2011. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0261306911002007. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.matdes.2011.03.037.T. Zi‐Ni et al, "Characteristics of Metroxylon sagu Resistant Starch Type III as Prebiotic Substance," Journal of Food Science, vol. 80, (4), pp. H875-H882, 2015. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/1750-3841.12817. DOI: 10.1111/1750-3841.12817.K. Das et al, "Development of Recycled Polypropylene Matrix Composites Reinforced with Waste Jute Caddies," Journal of Reinforced Plastics and Composites, vol. 29, (2), pp. 201-208, 2010. Available: https://journals.sagepub.com/doi/full/10.1177/0731684408096929. DOI: 10.1177/0731684408096929.H. Younesi-Kordkheili and A. Pizzi, "Ionic liquid- modified lignin as a bio- coupling agent for natural fiber- recycled polypropylene composites," Composites Part B: Engineering, vol. 181, pp. 107587, 2020. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836818314719. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.107587.H. Hong et al, "Transform Rice Husk and Recycled Polyethylene into High Performance Composites: Using a Novel Compatibilizer to Infiltratively Enhance the Interfacial Interactions," Progress in Rubber Plastics and Recycling Technology, vol. 32, (4), pp. 253-268, 2016. Available: https://journals.sagepub.com/doi/full/10.1177/147776061603200405. DOI: 10.1177/147776061603200405.K. M. Zadeh, D. Ponnamma and M. Al Ali Al-Maadeed, "Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy," Polymer Testing, vol. 61, pp. 341-348, 2017. Available: http://dx.doi.org/10.1016/j.polymertesting.2017.05.006. DOI: 10.1016/j.polymertesting.2017.05.006.ORIGINAL2021deynerrios.pdf2021deynerrios.pdfTrabajo de gradoapplication/pdf1177075https://repository.usta.edu.co/bitstream/11634/33854/1/2021deynerrios.pdf3b3d565bb5aa93111b061c33cb611514MD51metadata only accessCarta_aprobacion_facultad_autoarchivo - Mayerly Ortega y Sahamir Rios.pdfCarta_aprobacion_facultad_autoarchivo - Mayerly Ortega y Sahamir Rios.pdfCarta aprobación facultadapplication/pdf310388https://repository.usta.edu.co/bitstream/11634/33854/2/Carta_aprobacion_facultad_autoarchivo%20-%20Mayerly%20Ortega%20y%20Sahamir%20Rios.pdf12d72e22d10b0c75706cc9db6c6ce3d4MD52metadata only accessCarta_de no _autorizacion_autoarchivo_ Sahamir Rios, Mayerly Ortega.pdfCarta_de no _autorizacion_autoarchivo_ Sahamir Rios, Mayerly Ortega.pdfCarta de NO autorización de publicaciónapplication/pdf116326https://repository.usta.edu.co/bitstream/11634/33854/3/Carta_de%20no%20_autorizacion_autoarchivo_%20Sahamir%20Rios%2c%20Mayerly%20Ortega.pdfdc09fda6da6dbce0b7a0f1d1000c7cb2MD53metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/33854/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/33854/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessTHUMBNAIL2021deynerrios.pdf.jpg2021deynerrios.pdf.jpgIM Thumbnailimage/jpeg9457https://repository.usta.edu.co/bitstream/11634/33854/6/2021deynerrios.pdf.jpg4c8da6467534644ec2c19ac049e5d2fbMD56open accessCarta_aprobacion_facultad_autoarchivo - Mayerly Ortega y Sahamir Rios.pdf.jpgCarta_aprobacion_facultad_autoarchivo - Mayerly Ortega y Sahamir Rios.pdf.jpgIM Thumbnailimage/jpeg6743https://repository.usta.edu.co/bitstream/11634/33854/7/Carta_aprobacion_facultad_autoarchivo%20-%20Mayerly%20Ortega%20y%20Sahamir%20Rios.pdf.jpg618e94058858342f6549e2ffee27646dMD57open accessCarta_de no _autorizacion_autoarchivo_ Sahamir Rios, Mayerly Ortega.pdf.jpgCarta_de no _autorizacion_autoarchivo_ Sahamir Rios, Mayerly Ortega.pdf.jpgIM Thumbnailimage/jpeg5744https://repository.usta.edu.co/bitstream/11634/33854/8/Carta_de%20no%20_autorizacion_autoarchivo_%20Sahamir%20Rios%2c%20Mayerly%20Ortega.pdf.jpgccd32760303e63daa2d532cfea4ae3f6MD58open access11634/33854oai:repository.usta.edu.co:11634/338542022-12-21 03:15:30.844metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |