Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada

El agua es un recurso esencial para conservar la vida de todos los seres que habitan el planeta, y se ha visto afectado por el uso indiscriminado de plaguicidas tóxicos. Según las estadísticas de comercialización de plaguicidas químicos de uso agrícola reportadas por el Instituto Colombiano Agropecu...

Full description

Autores:
Suárez Alvarado, María Angélica
Tipo de recurso:
Masters Thesis
Fecha de publicación:
2019
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/18698
Acceso en línea:
http://hdl.handle.net/11634/18698
Palabra clave:
Chlorpyrifos
Carbofuran
Paraquat
Free porphyrins
Metallic porphyrins with iron (III)
Titanium dioxide nanotubes (TNT)
Heterogeneous photocatalysis
Paraquat
Plaguicidas
Fotocatálisis
Porfirinas
Clorpirifos
Paraquat
Carbofurano
Porfirinas libres
Porfirinas metálicas con hierro (III)
Nanotubos de dióxido de titanio (TNT)
Fotocatálisis heterogénea
Rights
openAccess
License
Abierto (Texto Completo)
id SANTTOMAS2_62af2f4cae8e8fc071b1e941a2313b88
oai_identifier_str oai:repository.usta.edu.co:11634/18698
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada
title Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada
spellingShingle Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada
Chlorpyrifos
Carbofuran
Paraquat
Free porphyrins
Metallic porphyrins with iron (III)
Titanium dioxide nanotubes (TNT)
Heterogeneous photocatalysis
Paraquat
Plaguicidas
Fotocatálisis
Porfirinas
Clorpirifos
Paraquat
Carbofurano
Porfirinas libres
Porfirinas metálicas con hierro (III)
Nanotubos de dióxido de titanio (TNT)
Fotocatálisis heterogénea
title_short Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada
title_full Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada
title_fullStr Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada
title_full_unstemmed Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada
title_sort Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada
dc.creator.fl_str_mv Suárez Alvarado, María Angélica
dc.contributor.advisor.spa.fl_str_mv Vargas Méndez, Leonor Yamile
dc.contributor.author.spa.fl_str_mv Suárez Alvarado, María Angélica
dc.subject.keyword.spa.fl_str_mv Chlorpyrifos
Carbofuran
Paraquat
Free porphyrins
Metallic porphyrins with iron (III)
Titanium dioxide nanotubes (TNT)
Heterogeneous photocatalysis
topic Chlorpyrifos
Carbofuran
Paraquat
Free porphyrins
Metallic porphyrins with iron (III)
Titanium dioxide nanotubes (TNT)
Heterogeneous photocatalysis
Paraquat
Plaguicidas
Fotocatálisis
Porfirinas
Clorpirifos
Paraquat
Carbofurano
Porfirinas libres
Porfirinas metálicas con hierro (III)
Nanotubos de dióxido de titanio (TNT)
Fotocatálisis heterogénea
dc.subject.lemb.spa.fl_str_mv Paraquat
Plaguicidas
Fotocatálisis
Porfirinas
dc.subject.proposal.spa.fl_str_mv Clorpirifos
Paraquat
Carbofurano
Porfirinas libres
Porfirinas metálicas con hierro (III)
Nanotubos de dióxido de titanio (TNT)
Fotocatálisis heterogénea
description El agua es un recurso esencial para conservar la vida de todos los seres que habitan el planeta, y se ha visto afectado por el uso indiscriminado de plaguicidas tóxicos. Según las estadísticas de comercialización de plaguicidas químicos de uso agrícola reportadas por el Instituto Colombiano Agropecuario (ICA), en el año 2016 en nuestro país se vendieron en total 57´284.087 litros de pesticidas, dentro de los cuales resaltan el paraquat con 4´471.787, el mancozeb con 2´764.047, el clorpirifos con 2´197.095 y el carbofurano con 126.21 L (Tabla 1); estos plaguicidas presentan alta toxicidad sobre mamíferos y todos los animales no-objetivo presentes en los ecosistemas. El uso desmedido e indiscriminado de pesticidas poco biodegradables usados en el control de plagas en el país, ha incrementado la producción de lixiviados; debido a que gran parte de ellos no permanecen en el cultivo, se filtran por el suelo y contaminan los acuíferos. Es por esto que en la presente investigación se empleó la fotocatálisis heterogénea como método de oxidación avanzada para degradar el carbofurano, el paraquat y el clorpirifos, los cuales son pesticidas empleados ampliamente en diversos cultivos implementados en Colombia, tales como la papa, caña de azúcar, café, cebolla, maíz, entre otros. Durante este proceso se sintetizó y metaló con hierro (III) las tetrafenilporfirina cloro (TClPP) y tetrafenilporfirina metoxi (TMeOPP) por medio de reacciones de condensación y coordinación reportadas en la literatura (Adler et al., 1967; Falvo et al 1999). Luego las porfirinas fueron soportadas en nanotubos de dióxido de titanio (TNT), lo cuales se prepararon por medio de una reacción hidrotermal, la cual se basa en un tratamiento alcalino de un precursor de óxido de titanio (Wu, et al., 2015). Como resultado, las modificaciones realizadas al dióxido de titanio comercial generaron un aumento en la producción de especies oxidantes cuando se sometía a radiación UV-Vis, así como la ampliación de la activación del semiconductor al rango visible. Los catalizadores sensibilizados con porfirinas libres TClPP/TNT y TMeOPP/TNT degradaron el carbofurano en un 83% y 85%; el paraquat en un 67% y 76%; y el clorpirifos en un 73% y 78%, respectivamente. La inclusión del hierro como centro metálico de los catalizadores incrementó el porcentaje de degradación promedio así: con el empleo de la TClPPFe/TNT se logró degradar el carbofurano, paraquat y clorpirifos en un 95%, 85% y 84% respectivamente, y mediante el uso de la TMeOPPFe/TNT se obtuvo un porcentaje de degradación del carbofurano de 89%, el paraquat 82%; y clorpirifos 84%.
publishDate 2019
dc.date.accessioned.spa.fl_str_mv 2019-09-16T20:13:45Z
dc.date.available.spa.fl_str_mv 2019-09-16T20:13:45Z
dc.date.issued.spa.fl_str_mv 2019-09-09
dc.type.local.spa.fl_str_mv Tesis de maestría
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_bdcc
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/masterThesis
format http://purl.org/coar/resource_type/c_bdcc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Suárez Alvarado, M. A. (2019). Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombia.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/18698
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Suárez Alvarado, M. A. (2019). Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombia.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/18698
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acevedo, M. P., & Suárez, M. A. (2013). Fotoactividad de nanomateriales de TiO2 modificado con porfirinas de Cu (II) y sin metal: formación de •OH y su aplicación en la degradación del carbofuran (Trabajo de grado en pregrado en Química Ambiental). Universidad Santo Tomás, Bucaramanga, Colombia p.82-93.
Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J., & Korsakoff, L. (1967). A simplified synthesis for meso-tetraphenylporphine. Journal of Organic Chemistry, 32(2), 476-477. DOI: 10.1021/jo01288a053
Adler, A. D., Longo, F. R., Kampas, F., & Kim, J. (1970). On the preparation of metalloporphrins. Journal of inorganic and nuclear chemistry, 32(7), 2443-2445. DOI: 10.1016/0022-1902(70)80535-8.
Adler, A. D., Longo, F. R., & Shergalis, W. (1964). Mechanistic investigations of porphyrin syntheses. I. preliminary studies on ms-tetraphenylporphin. Journal of american chemical society, 86(15), 3145-3149. DOI: doi.org/10.1021/ja01069a035.
Affam, A. C., & Chaudhuri, M. (2013). Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. Journal of Environmental Management, 130(1), 160-165. DOI: 10.1016/j.jenvman.2013.08.058
Alza, W. R., García, J. M., & Chaparro, S. P. (2016). Determinación voltamétrica de paraquat y glifosato en aguas superficiales. Corpoica Ciencia y Tecnología Agropecuaria, 17(3), 331-332. DOI: 10.21930/rcta.vol17_num3_art:510
Allinger, N. L. (1984). Heterociclos aromáticos y productos naturales que lo contienen. In Reverté (Ed.), Química Orgánica, Madrid, España, p.1077.
Amiri, H., Nabizadeh, R., Silva, S., Jamaleddin, S., Yaghmaeian, K., Badiei, A., & Naddafi, K. (2018). Response surface methodology modeling to improve degradation of chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicology and Environmental Safety, 147(1), 919-925. DOI: 10.1016 / j.ecoenv.2017.09.062
Bauer, C., Jacques, P., Kalt, A. (1999). Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface. Journal of chemical physics letters, 307(5) 397-406. DOI: 10.1016 / S0009-2614 (99) 00518-7.
Beckie, H.J. (2011). Herbicide-resistant weed management: Focus on glyphosate. Pest Management Science, 67(9), 1037-1048. DOI: 10.1002 / ps.2195
Benjwal, P., & Kar, K.K. (2015). One-step synthesis of Zn doped titania nanotubes and investigation of their visible photocatalytic activity. Materials Chemistry and Physics, 160(1), 279-288. DOI: 10.1016/j.matchemphys.2015.04.038
Berberidou, C., Kitsiou, V., Lambropoulou, D.A., Antoniadis, Α., Ntonou, E., Zalidis, G.C., & Poulios, I. (2017). Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands. Journal of Environmental Management, 195(2), 133-139. DOI: 10.1016/j.jenvman.2016.06.010
Bouras, P., Stathatos, E., & Lianos, P. (2007). Preversos metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis B: Environmental, 73(1-2), 51-59 DOI: 10.1016/j.apcatb.2006.06.007
Braslavskym, S.E., (2007). Glossary of terms used in potochemistry 3rd edition. Pure and applied chemistry IUPAC, 79(3), 293-465.
Burnham, B., & Zuckerman, J. (1970). Complex formation between porphyrins and metal ion. Journal of american chemical society, 95(6), 1547-1550. DOI: 10.1021/ja00709a019
Byrne, J.A., Fernandez, P.A., Dunlop, P.S.M., Alrousan, D.M.A., & Hamilton, J.W.J. (2011). Photocatalytic enhancement for solar desinfection of water: A Review. International Journal of Photoenergy, 2011(1), 1-12. DOI: 10.1155/2011/798051
Calderbank, A., Charlton, D. Farrington, A. & James, R. (1972). Bipyridylium quaternary salts and related compounds. Part IV. Pyridones derived from paraquat and diquat. Journal of the chemical society, perkin transactions 1, 1972(1), 138-142. DOI: 10.1039 / P19720000138
Camacho, W.R., Colmenares, J., García, M., & Acuña, S.P. (2016). Estimación del riesgo de contaminación de fuentes hídricas de pesticidas (Mancozeb y Carbofuran) en Ventaquemada, Boyacá - Colombia. Acta Agronomica, 65(4), 368-374. DOI: 10.15446/acag.v65n4.50325.
Cárdenas, O., Silva, E., Morales, L., & Ortiz, J. (2005). Estudio epidemiológico de exposición a plaguicidas organofosforados y carbamatos en siete departamentos colombianos. Biomédica, 25(2), 170-80. DOI: 10.7705/biomedica.v25i2.1339
Carlson, J., Wisoczanski, A., Voightman. (2014). Limits of quantitation- yet another suggestion. Spectrochimica Acta part B: Atomic spectroscopy, 96(6), 69-73. DOI: 10.1016/j.sab.2014.03.012.
Castells, X.E. (2012). Diccionario de Términos ambientales: Reciclaje de residuos industriales. (Ediciones Dias de Santos, Ed.). Madrid, España, p 567-569
Castro, K., Figueira, F., Mendes, R., Cavaleiro, J., Neves, M., Simles, M., Almeida, F., Tomé, J., & Nakagaki, S. (2017) Copper–Porphyrin–Metal–Organic frameworks as oxidative heterogeneous catalysts. ChemCatChem Communications, 9(5), 2939-2945. DOI: 10.1002/cctc.201700484
Comninellis, C., Kapalka, A., Malato, S., Parsons, S., Poulios, I., & Mantzavinos, D. (2008). Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology & Biotechnology, 83(6), 769-776. DOI: 10.1002/jctb.1873
Costa, J.M. (2005). Diccionario de Química Física. (Díaz de Santos S.A, Ed.) (1st ed.). Barcelona, España, p.420
Coy, G., Bojaca, R., & Duque, M. (2006). Estandarización de métodos analíticos. En: Procedimientos para la estandarización de métodos analiticos. Instituto de hidrología meteorología y estudios ambientales-IDEAM. p. 3.
Cruz, M., Gomez, C., Duran-Valle, C.J., Pastrana-Martínez, L.M., Faria, J.L., Silva, A.M.T., & Bahamonde, A. (2017). Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Applied Surface Science, 416(1), 1013-1021. DOI: 10.1016/j.apsusc.2015.09.268
Chen, J., & Browne, W. (2018). Photochemistry of iron complexes. Coordination Chemistry Reviews, 374(21), 15-35. DOI: 10.1016/j.ccr.2018.06.008
Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chemical engineering journal, 284(1), 582-598. DOI: 10.1016/j.cej.2015.09.001
Cho, Y., Choi, W., Lee, C., Hyeon, T., & Lee, H. (2001). Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology, 35(5), 966-970. DOI: 10.1021/es001245e
Delsouz, M. R., Shafeeyan, M. S., Abdul, A. A., & Wan, W. M. A. (2017). Application of doped photocatalysts for organic pollutant degradation - A review. Journal of Environmental Management, 198(2), 78-94. DOI: 10.1016/j.jenvman.2017.04.099
Demeestere, K., Dewulf, J., & Van, H. (2007). Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: state of art. Critical reviews in environmetal science and technology, (37)6, 489-538. DOI: 10.1080/10643380600966467
Departamento Administrativo Nacional de Estadística. (2016). Tercer censo nacional agropecuario: Hay campo para todos - Tomo 2. Departamento Administrativo Nacional de Estadística (DANE). Bogotá, Colombia, p.47-286.
Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M.A. (2017). New perspectives for Advanced Oxidation Processes. Journal of Environmental Management, 195(2), 93–99. DOI: 10.1016/j.jenvman.2017.04.010
Domènech, X., Jardim, W., & Litter, M. (2001). Procesos avanzados de oxidación para la eliminación de contaminantes. In M. A. Blesa (Ed.), Eliminación de Contaminantes por Fotocatálisis Heterogénea (1st ed). La Plata, Argentina, p.3-26.
Dorough, G D., Miller, J R., & Huennekens, Frank. (1951). Spectra of the metallo-derivatives of α,β,y,δ- tetraphenylporphine. Journal of american chemical society, 73(9), 4315-4320. DOI: doi.org/10.1021/ja01153a085.
Dyke, B.R., Sanderson, D., & Noakes, D. (1970). Acute toxicity data for pesticides. World Review of Pest Control, 9(3), 119-127.
Egerton, R. (2016). The scanning electron microscope. En: Physical principles of electron microscopy. Springer, Cham. p. 121-147
Esplugas, S., Giménez, J., Contreras, S., Pascual, E., & Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water research, 36(6), 1034,1042. Doi: 10.1016/S0043-1354(01)00301-3
Fagadar, E., Vlascici, D., Tudose, R., & Costisor, O. (2007). UV-VIS and fluorescence spectra of meso-tetraphenylporphyrin and mesotetrakis-(4-methoxyphenyl) porphyrin in THF and THF-water systems. The influence of pH. En Revista de Chimie -Bucharest- Original Edition, 58(5), 451-455.
Falvo, R., Mink, L., & Marsh, D. (1999). Microscale synthesis and 1H NMR analysis of tetraphenylporphyrins. Journal of chemical education, 76(2), 237-239. DOI: 10.1021/ed076p237.
Feng, Y., Chen, S., Guo, W., Zhang, Y., & Liu, G. (2007). Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5 M H2SO4 solutions. En: Journal of Electroanalytical Chemistry, 602(1),115-122. DOI: 10.1016/j.jelechem.2006.12.016
Fernandes, A., Morao, A., Magrinho, M., Lopes, A., & Gonçalves, I. (2004). Electrochemical degradation of C.I. Acid Orange 7. Dyes and Pigments, 61(3), 287-296. DOI: 10.1016/j.dyepig.2003.11.008
Finlayson, B. J., Harrington, J. M., Fujimura, R., & G. Isaac. (1991). Toxicity of Colusa Basin Drain water to young mysids and striped bass. En: California Department of Fish and Game Environmental Services Division Administrative Report, Sacramento, California. p. 91-92.
Florêncio, H., Pires, E., Castro, A., Nunes, M., Borges, C., & Costa, F. (2004). Photodegradation of diquat and paraquat in aqueous solutions by titanium dioxide: evolution of degradation reactions and characterisation of intermediates. Chemosphere, 55(2004), 345-355. DOI: 10.1016/j.chemosphere.2003.11.013
Fraume, N.J., Palomino, A.T., & Ramirez, M.A. (2006). Manual abecedario ecológico: la más completa guia de términos ambientales. (Editorial San Pablo, Ed.) (6th ed.). Bogotá, Colombia, p.95.
Garcés, L.F., Mejía, E.A., & Santamaría, J.J. (2004). La fotocatálisis como alternativa para el tratamiento de aguas residuales. Revista Lasallista de Investigación, 1(1), 83-92.
Gaya, U., & Abdullah, A. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals progress and problems. Journal of photochemistry reviews, 9(1), 1-12. DOI: 10.1016/j.jphotochemrev.2007.12.003
Gil, E., Cabrera, M., & Jaramillo, S. A. (2003). Foto-oxidación del sistema cromo hexavalente-4-clorofenol. Universidad Eafit 39(0120–341X), 60-75.
Gil, E., Quintero, L., Rincon, M., & Rivera, D. (2006). Degradación de colorantes de aguas residuales empleando UV/TiO2/H2O2/Fe2+. Revista universidad Eafit, 42(146), 80-101.
Giovannetti, R. (2012). The use of spectrophotometry UV-Vis for the study of porphyrins. En J. Uddin (Ed), Macro to nano spectroscopy. Rijeka, Croacia, p. 87-108.
Gmurek, M., Olak, M., & Ledakowicz, S. (2017). Photochemical deomposition of endocrine disrupting compounds – A review. Chemical Engineering Journal, 310(2), 437-456. DOI: 10.1016/j.cej.2016.05.014
Gobernación de Boyacá. (2016). Plan de Desarrollo Departamental de Boyacá 2016 - 2019. p.600-601.
Goldstein, S., & Czapsky, G. (1984). Mannitol as an OH• scavenger in aqueous solutions and in biological systems. International journal of radiation biology and related studies in physics, chemistry and medicine, 46(6), 725-729. DOI: 10.1080/09553008414551961.
Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., & Dickey, E.C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of material research, 16(12) 3331-3334. DOI: 10.1557/JMR.2001.0457.
Granados, G., Páez, E.A., Ortega, F.M., Ferronato, C., & Chovelon, J.M. (2009). Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Applied Catalysis B: Environmental, 89(3–4), 448–454. DOI: 10.1016/j.apcatb.2009.01.001
Granados, G., Torres, E., Zambrano, M., Nieto, A., & Gómez, V. (2018). Formation of hydroxyl radicals by a Fe2O3 microcrystals and its role in photodegradation of 2,4- dinitrophenol and lipid peroxidation. Research on Chemical Intermediates, 44(5), 3407-3424. DOI: 10.1007/s11164-018-3315-2.
Grant, F. (1959). Properties of rutile (titanium dioxide). Reviews of modern physics, 31(3), 646-674. DOI: 10.1103/RevModPhys.31.646.
Gupta, N., & Bardos, T. (1968). Synthetic porphyrins II: Preparation and spectra of some metal chelates of para-substituted-meso-Tetraphenylporphines. Journal of pharmaceutical sciences, 57(2), 300-304. DOI: 10.1002/jps.2600570211.
Gupta, V., & Ali, I. (2008). Removal of endosulfan and methoxychlor from water on carbon slurry. Environmental Science and Technology, 42(3), 766-770. DOI: 10.1021/es7025032
Han, C., Shao, Q., Liu, M., Ge, S., Liu, Q., & Lei, J. (2016). 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin decorated TiO2 nanotube arrays: Composite photoelectrodes for visible photocurrent generation and simultaneous degradation of organic pollutant. Materials science in semiconductro processing, 56(1), 166-173. DOI: 10.1016/j.mssp.2016.08.015.
Herrmann, J.M. (2005) Destrucción de contaminantes orgánicos por fotocatálisis Heterogénea. En Tecnologías solares para la desinfección y descontaminación del agua. Solar Safe Water, 147-164.
Hien, T.D., Scharmüller, A., Kattwinkel, M., Kühne, R., Schüürmann, G., & Schäfer, R.B. (2017). Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicology and Environmental Safety, 145(1), 135-141. DOI: 10.1016/j.ecoenv.2017.07.027.
Hoyer, P. (1996). Formation of a titianium dioxide nanotube array. Langmuir, 12(6), 1411-1413. DOI: 10.1021/la9507803.
Huang, C., Lv, Y., Zhou, Q., Kang, S., Li, X., & Mu, J. (2014). Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group. Ceramics International, 40(5), 7093-7098. DOI: 10.1016/j.ceramint.2013.12.042
Huang, X., Nahanishi, K., & Berova, N. (2000). Porphyrins and Metalloporphyrins: Versatile Circular Dichroic Reporter Groups for Structural Studies. Chirality, 12(4), 237-255. DOI: 10.1002/(SICI)1520-636X(2000)12:4<237::AID-CHIR10>3.0.CO;2-6
Hung, H., & Lien, S. (2007). Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and purification technology, 58(1), 179-191. DOI: 10.1016/j.seppur.2007.07.017.
Instituto Colombiano Agropecuario (2017). Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2016. Bogotá, Colombia p.7-35.
Instituto Colombiano Agropecuario (2018). Registros Nacionales PQUA. Bogotá, Colombia, p.1-118
International Centre for Diffraction Data (2014). PDF-2 [base de datos]. Recuperado de http://www.icdd.com/index.php/pdf-2/
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of titanium oxide nanotube. Langmuir, 14(12), 3160-3163. DOI: 10.1021/la9713816
Kasuga, T., Hiramatsu, M., Hoso, A., Sekino, T., & Nihara, K. (1999). Titania Nanotubes Prepared by Chemical Processing. Advanced Materials, 11(15), 1307-1311. DOI: 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
Kathiravan, A., & Renganathan, R. (2009). Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins. Journal of colloid and interface science, 331(2), 401-407. DOI: 10.1016/j.jcis.2008.12.001.
Katsumata, H., Matsuba, K., Kaneco, S., & Suzuki, T. (2005). Degradation of carbofuran in aqueous solution by Fe (III) aquacomplexes as effective photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 170(3), 239-245. DOI: 10.1016/j.jphotochem.2004.09.002
Kaur, T., Sraw, A., Pal, A., & Wanchoo, R. (2016). Utilization of solar energy for the degradation of carbendazim and propiconazole by Fe doped TiO2. Solar Energy, 125(3), 65-76. DOI: 10.1016/j.solener.2015.12.001
Kenkel, J. (2002). Introduction to spectrochemical methods. En: Analytical chemistry for technicians (Third edition), New York, p. 194-195.
Kim, H., & Lee, K. (2013). Photocatalytic activity of TiO2 nanotubes doped with Ag nanoparticles. Journal of nanoscience and nanotechnology, 13(8), 5597-5600. DOI: 10.1166/jnn.2013.7035
Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous sustems by advanced oxidation processes. Environment international, 35(2), 402-417. DOI: 10.1016/j.envint.2008.07.009
Köck, M., Villagrasa, M., López de Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458-460(1), 466-476. DOI: 10.1016/j.scitotenv.2013.04.010
Koppenol, W., & Butler, J. (1984). The radiation chemistry of Cytochrome c. Israel journal of chemistry, 24(1), 11-16. DOI: 10.1002/ijch.198400002.
Kumar G, R., & Chandra Ch, M. (2016). Advanced oxidation process–based nanomaterials for the remediation of recalcitrant pollutants. En Nanomaterials for Wastewater Remediation. Uttar Pradesh, India, p. 33-48, DOI: 10.1016/B978-0-12-804609-8.00003-0
Kumar, S., Kaushik, G., Dar, M. A., Nimesh, S., López, U.J., & Villareal, J.F. (2018). Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere, 28(2), 190-208. DOI: 10.1016/S1002-0160(18)60017-7
Kuo, W.S., Chiang, Y.H., & Lai, L.S. (2006). Degradation of carbofuran in water by solar photocatalysis in presence of photosensitizers. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 41(6), 937-948. DOI: 10.1080/03601230600806137
La Penna, M., Alvarez, M.G., Yslas, E.I., Rivarola, V., & Durantiti, E. (2001). Characterization of photodynamic effects of meso-tetrakis-(4-methoxyphenyl) porphyrin: biological consequences in a human carcinoma cell line. Dyes and Pigments, 49(2), 75-82. DOI: 10.1016/S0143-7208(01)00010-9
Lee, K., Mazare, A., & Schmuki, P. (2014). One-dimensional titanium dioxide nanomaterials: Nanotubes. Chemical Reviews, 114(19), 9385-9454. DOI: 10.1021/cr500061m
Levine, A.D., & Asano, T. (2004). Peer reviewed: Recovering sustainable water from wastewater. Environmental Science & Technology, 38(1), 201A-208A. DOI: doi.org/10.1021/es040504n
Levine, I. N. (2004). Cinética de reacción. In Fisicoquímica (quinta ed.). Madrid, España, p.719
Li, J., Xu, J., Dai, W., Li, H., & Fan, K. (2009). Direct hydro-alcohol thermal sythesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity. Applied Catalysis B: Environmental, 85(3-4), 162-170. DOI: 10.1016/j.apcatb.2008.07.008
Lin, L., Hou, C., Zhang, X., Wang, Y., Chen, Y., & He, T. (2018). Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl)porphyrin iron (III) Chloride heterogeneous catalysts. Applied Catalysis B: Environmental, 221(2), 312-319. DOI: 10.1016/j.apcatb.2017.09.033
Lindsey, J., Schereiman, I., Hsu, H., Keaney, P., & Marguerettas, A. (1987). Journal of organic chemistry, 57(5), 827-836. DOI: 10.1021/jo00381a022
Litter, M. (1999). Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23(2-3), 89-114. DOI: 10.1016/S0926-3373(99)00069-7.
Little, T. (2015). Method validation essentials, limit of blank, limit of detection, and limit of quantitation. BioPharm International, 28(4), 48-51.
Liu, N., Chen, X., Zhang, J., & Schwank, J. (2014). A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis today, 225(4), 34-51. DOI: 10.1016/j.cattod.2013.10.090.
Lock, E., & Wilks, M. (2010). Paraquat. En Hayes’ Handbook of pesticide toxicology (third ed.). London, UK, 1771-1827. DOI: 10.1016/C2009-1-03818-0.
Longo, F., Brown, E., & Quimby, D. (1973). Kinetic studies on metal chelation by porphyrins. Annals of the New york academy of sciences, 206(1), 420-442. DOI: 10.1111/j.1749-6632.1973.tb43227.x
Longo, F., Brown, E., & Quimby, D. (1973). Kinetic studies on metal chelation by porphyrins. Annals of the New york academy of sciences, 206(1), 420-442. DOI: 10.1111/j.1749-6632.1973.tb43227.x
Lü, X., Qian, H., Mele, G., De Riccardis, A., Zhao, R., Chen, J., & Hu, N. (2017). Impact of different TiO2 samples and porphyrin substituents on the photocatalytic performance of TiO2 copper porphyrin composites. Catalysis Today, 281(1), 45-52. DOI: 10.1016/j.cattod.2016.04.027
Ma, T., Inoue, K., Noma, H., Yao, K., & Abe, E. (2002). Effect of functional group on photochemical properties and photosensitization of TiO2 electrode sensitized by porphyrin derivates. Journal of photochemistry and photobiology A: Chemistry, 152(1), 207-212. DOI: 10.1016/S1010-6030(02)00025-4
Maddila, S., Lavanya, P., & Jonnalagadda, S. B. (2015). Degradation, mineralization of bromoxynil pesticide by heterogeneous photocatalytic ozonation. Journal of Industrial and Engineering Chemistry, 24(1), 333-341. DOI: 10.1016/j.jiec.2014.10.005
Mahalakshmi, M., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2007). Photocatalytic degradation of carbofuran using semiconductor oxides. Journal of Hazardous Materials, 143(1-2), 240-245. DOI: 10.1016/j.jhazmat.2006.09.008
Malato, S., & Blanco, J. (1997). Procesos fotocatalíticos para la destrucción de contaminantes orgánicos en el agua. In Instituto de Estudios Almerienses (Ed.), Recursos naturales y medio ambiente en el sureste peninsular. Almería, España, p.49-62.
Malato, S., Blanco, J., Estrada, C. A., Bandala, E. R., & Peñuela, G. (2001). Degradación de plaguicidas. En Eliminación de contaminantes por fotocatálisis heterogénea (1st ed). Madrid, España, p.269-284.
Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. DOI: 10.1016/j.cattod.2009.06.018
Malato, S., Maldonado, M.I., Fernández, P., Oller, I., Polo, I., & Sánchez, R. (2016). Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing, 42(1), 15-23. DOI: 10.1016/j.mssp.2015.07.017
Manfroi, D.C., Cavalheiro, A.A., Perazolli, L.A., Varela, J.A., & Zaghete, M.A. (2014). Titanate nanotubes produced from microwave-assisted hydrothermal synthesis : Photocatalytic and structural properties. Ceramics International, 40(9), 14483-14491. DOI: 10.1016/j.ceramint.2014.07.007
Margat, J., & Vallée, D. (2000). Mediterranean vision on water, population and the environment for the 21 st Century, En Drainage canals and rice fields. Egypt, p.1-66.
Marinas A.A. (2007). Catálisis heterogénea y Química Verde. Anales de La Real Sociedad Española de Química, 103(1), 30-37.
Matamoros, V., & Salvadó, V. (2013). Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain. Journal of Environmental Management, 117(1), 96-102. DOI: 10.1016/j.jenvman.2012.12.021
Mele, G., Del Sole, R., Vasapollo, G., García, E., Palmisiano, L., & Schiavello, M. (2003). Photocatalytic degradation of 4-nitrophenol in aqueous suspensión by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine. Journal of Catalysis, 217(2), 334-342. DOI: 10.1016/S0021-9517(03)00040-X
Menck, R., & Yonamine, M. (2007). Gas chromatographic-mass spectrometric method for the determination of the herbicides paraquat and diquat in plasma and urine samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 853(1-2), 260-264. DOI: 10.1016/j.jchromb.2007.03.026
MiarAlipour, S., Friedmann, D., Scott, J., & Amal, R. (2018). TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 341(1), 404-423. DOI: 10.1016/j.jhazmat.2017.07.070
Milgrom, L R. (1997). Where porphyrins come from. En: Oxford university press. The color of life: an introduction to the chemistry of porphyrins and related, New York, p. 6-10 ; 48-62.
Ministerio de agricultura. (2016). Evaluaciones Agropecuarias Municipales. Boyacá, Colombia, p. 1-5.
Ministerio de la Protección Social, & Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2017). Resolución Numero 2115, Minambiente. Bogotá, Colombia, p. 1-85.
Moctezuma, E., Leyva, E., Monreal, E., Villegas, N., & Infante, D. (1999). Photocatalytic degradation of the herbicide “paraquat”. Chemosphere, 39(3)551-517. DOI: 10.1016/S0045-6535(98)00599-2
Monroy C.O.M. (2009). Caracterización de las prácticas agrícolas asociadas con el uso y manejo de plaguicidas en cultivos de papa. caso vereda mata de mora, en el Páramo de Merchán, Saboya, Boyacá (Tesis de Maestría en Gestión Ambiental). Universidad Pontificia Javeriana. p.45-59
Morales, C.A., & Rodríguez, N. (2004). El Clorpirifos: posible disruptor endocrino en bovinos de leche. Revista Colombiana de Ciencias Pecuarias, 17(3), 255-266.
Moreira, F., Boaventura, R., Brillas, E., & Vilar, V. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewater. Applied Catalysis B: Environmental 202(1), 217-261. DOI: 10.1016/j.apcatb.2016.08.037
Mothilal, K.K., Johnson, J., Gandhidasan, R., & Murugesa, R., (2004). Photosensitization with anthraquinone derivates: optical and EPR spin trapping studies of photogeneration of reactive oxygen species. Journal of Photochemistry and Photobiology A: Chemistry, 162(1), 9-16. DOI: 10.1016/S1010-6030(03)00290-9
Natividad, M., Ormad, M., Mosteo, R., & Ovelleiro, J. (2012). Photocatalytic degradation of pesticides in natural water: effect of hydrogen peroxide. International Journal of Photoenergy, 2012(1), 1-12. DOI: 10.1155/2012/371714
NATO Science for Peace and Security Series C: Environmental Security. (2011). Environmental Security in South-Eastern Europe: International Agreements and their Implementation. En Springer Science & Business Media. Vama, Bulgaria, 5, p.69-84.
Niu, J., Yao, B., Chen, Y., Peng, C., Yu, X., Zhang, J., & Bai, G. (2013). Enhanced photocatalytic activity of nitrogen doped TiO2 photocatalysts sensitized by metallo Co, Ni-porphyrins. Applied Surface Science, 271(1), 39-44. DOI: 10.1016/j.apsusc.2012.12.175
Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068-1072. DOI: 10.1126/science.1128845
Orellana, G., Villén, L., & Jimenez, E. (2005). Desinfección mediante fotosensibilizadores: principios básicos. En: Solar Safe Water. Buenos Aires, Argentina, p. 243-247.
Park, J.Y., Choi, K., Lee, J.H., Hwang, C.H., Choi, D.Y., & Lee, J.W. (2013). Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions. Materials Letters, 97(1), 64-66. DOI: 10.1016/j.matlet.2013.01.047
Patarroyo, L.C., Reyes, Y.C., Toloza, E.P., Becerra, M.L., & Medina, O.J. (2013). Determinación de plaguicidas clorpirifos en cultivos de fresa, mora y tomate de los municipios de Arcabuco y Sutamarchán por técnicas analíticas. En VIII Encuentro Facultad de Ciencias. Tunja, Colombia, p.128-130.
Peláez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., & Dionysiou, D.D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125(1), 331-349. DOI: 10.1016/j.apcatb.2012.05.036.
Peñuela, G., & Barceló, D. (1997). Comparative degradation kinetics of chlorpyrifos in water by photocatalysis with FeCl3, TiO2 and photolysis using solid-phase disk extraction followed by gas chromatographic techniques. Toxicological & environmental chemistry, 62(1-4), 135-147. DOI: 10.1080/02772249709358503.
Pérez, C.C. (1996). Configuración del sensor. En Sensores Ópticos. Universidad de Valencia, Valencia, España, p.97-114.
Pérez, M.H., Peñuela, G., Maldonado, M.I., Malato, O., Fernández-Ibáñez, P., Oller, I., & Malato, S. (2006). Degradation of pesticides in water using solar advanced oxidation processes. Applied Catalysis B: Environmental, 64(3), 272–281. DOI: 10.1016/j.apcatb.2005.11.013.
Pey, J. (2008). Aplicación de procesos de oxidación avanzada (Fotocatálisis solar) para el tratamiento y reutilización de efluentes textiles (Tesis Doctoral). Universidad Politécnica De Valencia, Valencia, España, p.15-61.
Pineda, L.L. (2017). Diagnóstico de la Planta de Tratamiento de Agua Residual (PTAR) de Tunja – Boyacá (Tesis de pregrado). Universidad Católica de Colombia. Bogotá, Colombia, p.22-26.
Pino, N., & Peñuela, G. (2011). Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. International Biodeterioration and Biodegradation, 65(6), 827-831. DOI: 10.1016/j.ibiod.2011.06.001.
Portela, R.R. (2008). Eliminación fotocatalítica de H2S en aire mediante TiO2 soportado sobre sustratos transparentes en el UV-A (Tesis Doctoral). Universidad de Santiago de Compostela, Santiago de compostela, España, p.201.
Portilla, Á., Pinilla, G.D., Caballero, A J., Gómez, E., Marín, L.R., Manrique, E.F., & Gamboa, N. (2014). Prevalencia de signos y síntomas asociados a la exposición directa a plaguicidas neurotóxicos en una población rural colombiana en 2013. Médicas UIS, 27(2), 41-49.
Qiang, Z., Liu, C., Dong, B., & Zhang, Y. (2010). Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process. Chemosphere, 78(5), 517-526. DOI: 10.1016/j.chemosphere.2009.11.037.
Ray, A., & Ghosh, M. (2005). Aquatic toxicity of carbamates and organophosphates. Toxicology of organophosphate & carbamate compound, 2006(1), 657-672. DOI: 10.1016/B978-012088523-7/50046-6.
Razali, M., Noor, A.F., Mohamed, A & Sreekantan., S. (2012). Morphological and structural studies of titanate an titania nanostructured materials obtained after heat tratments of hydrotermally produced layered titanate. Journal of nanomaterial, 2012(1), 1-10. DOI: 10.1155/2012/962073
Restrepo, I., Sanchez, L.D., Galvis, A., Rojas, J., & Sanabria, I.J. (2007). Tecnologías alternativas para la desinfección de aguas. En Avances en investigación y desarrollo en agua y saneamiento para el cumplimiento de las metas del milenio. Valle, Colombia, p.370-379.
Richardson, S.D. (2008). Environmental Mass Spectrometry: Ermerging Contaminants and Current Issues. Analytical Chemistry, 80(12), 4373-4402. DOI: 10.1021/ac800660d.
Rodríguez, A., Letón, P., Rosal, R., Dorado, M., Villar, S., & Sanz, J.(2016). Técnologías emergentes. Tratamientos avanzados de aguas residuales industriales, Madrid, España, p. 46- 48.
Rodríguez, D.L. (2011). Evaluación de la presencia de residuos de plaguicidas en miel de abejas provenientes de los departamentos de Boyacá, Cundinamarca (Tesis Magister en ciencia químicas), Magdalena y Santander. Universidad Nacional de Colombia. Bogotá, Colombia, p.126-130.
Rothemund, P., & Menotti, A. (1941). Phorphyrin studies. IV. The synthesis of α,β,ϒ,δ-tetraphenylporphine. Journal of american chemical society, 63(1), 267-270. DOI: 10.1021/ja01846a065.
Sanches, S., Barreto, M., & Pereira, V. (2010). Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water research, 44(2010), 1809-1818. DOI: 10.1016/j.watres.2009.12.001.
Sangpour, P., Hashemi, F., & Moshfegh, A. Z. (2010). Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M = Au, Ag, Cu) nanocomposite systems: A comparative study. Journal of Physical Chemistry C, 114(33), 13955-13961. DOI: 10.1021/jp910454r
Santos, M.S.F., Alves, A., & Madeira, L.M. (2011). Paraquat removal from water by oxidation with Fenton’s reagent. Chemical Engineering Journal, 175(1), 279-290. DOI: 10.1016/j.cej.2011.09.106.
Santos., L. (2008). Compuestos orgánicos como fotocatalizadores solares para la eliminación de contaminantes en medios acuosos: aplicaciones y estudios fotofísicos (Tesis Doctoral). Universitat Politècnica de Valencia, Valencia, España, p.11-54.
Sattler, K.D. (2010). Handbook of Nanophysics: Nanomedicine and Nanorobotics CRC Press. London, New york, p. 10-1-10-4.
Sauer, T., Cesconeto, G., José, H., & Moreira R. (2002). Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry, 149(1), 147-154. DOI: 10.1016/S1010-6030(02)00015-1
Sclafani, A., & Herrmann, J. (1996) Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. Journal of physical chemistry, 100(32), 13655-13661. DOI: 10.1021/jp9533584.
Scheid, S. (2009). Síntese e caracterização da Meso-tetrakis(4-metóxifenil)porfirina e derivados. (Tesis maestría en química aplicada). Universidade Estadual de Ponta Grossa, Brasil. p. 41-56.
Shi, J., Chen, G., Zeng, G., Chen, A., He, K., Huang, Z., Hu, L., Zeng, J., Wu, J., & Liu, W. (2018). Hydrothermal synthesis of graphene wrapped Fe-doped TiO2 nanospheres with high photocatalysis performance. Ceramics International, 44(7), 7473-7480. DOI: 10.1016/j.ceramint.2018.01.124.
Shifu, C., & Gengyu, C. (2005). Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2•SiO2/beads by sunlight. Solar Energy, 79(1), 1-9. DOI: 10.1016/j.solener.2004.10.006
Shriver, D., Atkins, P., & Langford, C. (2007). Estructura Molecular. In Química Inorgánica. Barcelona, España, p.91-92.
Shukla, O., & Kulshretha, A. (1998). Effect and Fate of Pesticides in Rats. En Pesticides, man and biosphere. p. 217–417.
Silverstein, R., Morril, T., & Bassier, C. (1991). Ultraviolet Spectrometry. En Spectrometric identification of Orfanic Compounds (5th edition). New York. p. 240-274.
Simonsen, M.E. (2014). Heterogeneous Photocatalysis. En Chemistry of Advanced Environmental Purification Processes of Water: Fundamentals and Applications (1st ed.). Amsterdam, p.135-170.
Sinclair, C.J., & Boxall, A.B.A. (2003). Assessing the ecotoxicity of pesticide transformation products. Environmental Science and Technology, 37(20), 4617-4625. DOI: 10.1021/es030038m
Sivagami, K., Vikraman, B., Krishna, R.R., & Swaminathan, T. (2016). Chlorpyrifos and Endosulfan degradation studies in an annular slurry photo reactor. Ecotoxicology and Environmental Safety, 134(2), 327-331. DOI: 10.1016/j.ecoenv.2015.08.015
Soto, A.C.A., & López F.G.A. (2009). Degradación Fotocatalítica de la Fluoresceina (Trabajo de grado de pregrado). Universidad Tecnología de Pereira - Escuela de Tecnología Química, Pereira, Colombia, p.44 -45.
Suárez, S., Carballa, M., Omil, F., & Lema, J.M. (2008). How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters. Reviews in Environmental Science and Biotechnology 7(2), 125-138. DOI: 10.1007/s11157-008-9130-2
Sun, B., Vorontsov, A., & Smirniotis, P. (2003). Role of platinum deposite on TiO2 in pheol photocatalytic oxidation. Langmuir, 19(8), 3151-3156. DOI: doi.org/10.1021/la0264670.
Sun, L., Li, J., Wangs, C., Li, S., Chen, H., & Lin, C. (2009). An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Solar Energy Materials and Solar Cells, 93(10), 1875-1880. DOI: 10.1016/j.solmat.2009.07.001
Sun, Y., Zhao, Q., Wang, G., & Yan, K. (2017). Influence of water content on the formation of TiO2 nanotubes and photoelectrochemical hydrogen generation. Journal of alloys and compounds, 711(1), 514-520. DOI: 10.1016/j.jallcom.2017.03.007
Sun, Z., She, Y., Zhou, Y., Song, X., & Li, K. (2011). Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes. Molecules, 16(4)2960-2970. DOI: 0.3390/molecules16042960.
Testai, E., Buratti, F., & Di Consiglio, E. (2010). Chlorpyrifos. En Hayes’ Handbook of pesticide toxicology (Third Edit). Italy, p. 1505-1526.
Thind, P.S., Kumari, D., & John, S. (2018). TiO2/H2O2 mediated UV photocatalysis of Chlorpyrifos: Optimization of process parameters using response surface methodology. Journal of Environmental Chemical Engineering, 6(3), 3602 – 3609. DOI: 10.1016/j.jece.2017.05.031.
Thomas, D., & Marell, A. (1959). Metal chelates of tetraphenylporphine and of some p-substituted derivates. Journal of american chemical society, 81(19) 5111-5119. DOI: 10.1021/ja01528a024.
Tobin, J.S. (1970). Carbofuran. A new carbamate insecticide. Journal of Occupational Medicine, 12(1), 16-19.
United States Environmental Protection Agency (2006). Reregistration Eligibility Decision for Chlorpyrifos p.6-8, 43-45.
United States Environmental Protection Agency. (1997). Reregistration Eligibility Decision (RED) Paraquat Dichloride. Washington D,C. p. 2-9, 71-77
United States Environmental Protection Agency. (2007). Completion of the Tolerance Reassessment and Final Registration Eligibility Decisions for the N-methyl Carbamate Pesticides. p.3–5, 18-20.
Vallero, D. (2004). Glossary of environmental sciences and engineering terminology. En Environmental Contaminats: Assessment and Control (First Edition), Durham, USA, p. 695
Vela, N., Calín, M., Yáñez-Gascón, M. J., Garrido, I., Pérez-Lucas, G., Fenoll, J., & Navarro, S. (2018). Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 353(1), 271-278. DOI: 10.1016/j.jphotochem.2017.11.040
Walter, M.G., Rudine, A.B., & Wamser, C.C. (2010). Porphyrins and phthalocyanines in solar photovoltaic cells. Journal of Porphyrins and Phthalocyanines, 14(9), 759-792. DOI: 10.1142/S1088424610002689
Wang, Q., Jin, R., Zhang, M., & Gao, S. (2017). Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. Journal of Alloys and Compounds, 690(1), 139-144. DOI: 10.1016/j.jallcom.2016.07.281.
Wei, M., Wan, J., Hu, Z., Peng, Z., Wang, B., & Wang, H. (2017). Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO2 nanotube photocatalyst. Applied Surface Science, 391(B), 267-274. DOI: 10.1016/j.apsusc.2016.05.161.
Wei, M., Wan, J., Hu, Z., Wang, B., & Peng, Z. (2015). Synthesis, electron transfer and photocatalytic activity of TiO2 nanotubes sensitized by meso-tetra(4-carboxyphenyl)porphyrin under visible-light irradiation. RSC Advances 5(72), 58184-58190. DOI: 10.1039/C5RA11526D.
Williams, D., & Carter, C. (1996) The transmission electron microscope. En: Transmission electron microscopy. Springer, Boston p. 5-14.
Wintgens, T., Salehi, F., Hochstrat, R., & Melin, T. (2008). Emerging contaminants and treatment options in water recycling for indirect potable use. Water Science and Technology, 57(1), 99-107. DOI: 10.2166/wst.2008.799.
Wintrobe, M., & Geer, J. P. (2009). Molecular genetic aspects of nonhodkin. En Wintrobe’s Clinical Hematology (Twelfth ed), Filadelfia, Pensilvania, p.90-207.
World Health Organization. (2009). The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification. Germany. p.1-81
Wu, L., Qiu, Y., Xi, M., Li, X., & Cen, C., (2015). Fabrication of TiO2 nanotubes-assembled hierarchical microspheres with enhanced photocatalytic degradation activity. New Journal of Chemestry, 39(6), 4766-4773. DOI: 10.1039/C5NJ00373C.
Yao, B., Peng, C., Zhang, W., Zhang Q., Niu, J., & Zhao, J. (2015). A novel Fe(III) porphyrin-conjugated TiO2 visible-light photocatalyst. Applied catalysis B: Environmental, 174-175(9), 77-84. DOI: 10.1016/j.apcatb.2015.02.030.
Yu, H., Wang, X., Sun, H., & Huo, M. (2010). Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film. Journal of Hazardous Materials, 184(1-3), 753-758. DOI: 10.1016/j.jhazmat.2010.08.103.
Yuan, R., Zhou, B., Hua, D., & Shi, C. (2014). Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water. Environmental Science & Engineering, 9(5), 850-860. DOI: 10.1007/s11783-014-0737-y.
Zahedi, F., Behpour, M., Ghoreishi, S. M., & Khalilian, H. (2015). Photocatalytic degradation of paraquat herbicide in the presence TiO2 nanostructure thin films under visible and sun light irradiation using continuous flow photoreactor. Solar Energy, 120(1), 287-295. DOI: 10.1016/j.solener.2015.07.010.
Zakavi, S., Hosini, S., & Mojarrad, A. (2017). New insights into the influence of weak and strong acids on the oxidative staability and photocatalytic activity of porphyrins. New Journal of Chemistry, 41(19), 11053-11059. DOI: 10.1039 / C7NJ02442H.
Zalat, O., Elsayed, M., Fayed, M., & Abd El Megid, M. (2014). Validation of UV spectrophotometric and HPLC methods for quantitave determination of chlorpyrifos. International Letters of Chemistry, Physics and Astronomy, 21(1), 58-63. DOI: 10.18052/www.scipress.com/ILCPA.21.58.
Zangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., & Hasnain Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26(1), 1-36. DOI: 10.1016/j.jiec.2014.10.043.
Zhang, J., Zhou, P., Liu, J., & Yu, J. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Journal of Physical Chemistry Chemical Physics, 16(38), 20382-20386. DOI: 10.1039/c4cp02201g
Zhang, Q., Gao, L., & Guo, J. (2000). Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied catalysis B: Environmental, 26(1), 207-215. DOI: 10.1016/S0926-3373(00)00122-3.
Zhang, Z., Wang, C.C., Zakaria, R., & Ying, J. (1998). Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. Journal of physical chemistry, 102(52), 10871-10878. DOI: 10.1021/jp982948+.
Zhao, X., Liu, X., Yu, M., Wang, C., & Li, J. (2017). The highly efficient and stable Cu, Co, Zn-porphyrin–TiO2 photocatalysts with heterojunction by using fashioned one-step method. Dyes and Pigments, 136(1), 648-656. DOI: 10.1016/j.dyepig.2016.09.025.
Zheng, W., Shan, N., Yu, L., & Wang, X. (2008). UV visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes and Pigments, 77(1), 153-157. DOI: 10.1016/j.dyepig.2007.04.007.
Zoltan, T., Rosales, M.C., & Yadarola, C. (2016). Reactive oxygen species quantification and their correlation with the photocatalytic activity of TiO2 (anatase and rutile) sensitized with asymmetric porphyrins. Journal of Environmental Chemical Engineering, 4(4), 3967-3980. DOI: 10.1016/j.jece.2016.09.008.
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bucaramanga
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Maestría Ciencias y Tecnologías Ambientales
dc.publisher.faculty.spa.fl_str_mv Facultad de Química Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/18698/4/license.txt
https://repository.usta.edu.co/bitstream/11634/18698/1/2019Ang%c3%a9licaSu%c3%a1rez.pdf
https://repository.usta.edu.co/bitstream/11634/18698/2/2019Ang%c3%a9licaSu%c3%a1rez1.pdf
https://repository.usta.edu.co/bitstream/11634/18698/3/2019Ang%c3%a9licaSu%c3%a1rez2.pdf
https://repository.usta.edu.co/bitstream/11634/18698/5/2019Ang%c3%a9licaSu%c3%a1rez.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/18698/6/2019Ang%c3%a9licaSu%c3%a1rez1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/18698/7/2019Ang%c3%a9licaSu%c3%a1rez2.pdf.jpg
bitstream.checksum.fl_str_mv f6b8c5608fa6b2f649b2d63e10c5fa73
578e53879a98ddc4c3153cdb0b9142c8
5a558c75bc284333991233547f6bba20
2c9ac5e215d0a400e6a5964efcda5f6d
5678d4206487220003da8ed2d1481df2
8f209ff7955329511b9faae84ae061b3
08f920feab299e2076f25366415f32ba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026313777807360
spelling Vargas Méndez, Leonor YamileSuárez Alvarado, María Angélica2019-09-16T20:13:45Z2019-09-16T20:13:45Z2019-09-09Suárez Alvarado, M. A. (2019). Degradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzada [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombia.http://hdl.handle.net/11634/18698reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl agua es un recurso esencial para conservar la vida de todos los seres que habitan el planeta, y se ha visto afectado por el uso indiscriminado de plaguicidas tóxicos. Según las estadísticas de comercialización de plaguicidas químicos de uso agrícola reportadas por el Instituto Colombiano Agropecuario (ICA), en el año 2016 en nuestro país se vendieron en total 57´284.087 litros de pesticidas, dentro de los cuales resaltan el paraquat con 4´471.787, el mancozeb con 2´764.047, el clorpirifos con 2´197.095 y el carbofurano con 126.21 L (Tabla 1); estos plaguicidas presentan alta toxicidad sobre mamíferos y todos los animales no-objetivo presentes en los ecosistemas. El uso desmedido e indiscriminado de pesticidas poco biodegradables usados en el control de plagas en el país, ha incrementado la producción de lixiviados; debido a que gran parte de ellos no permanecen en el cultivo, se filtran por el suelo y contaminan los acuíferos. Es por esto que en la presente investigación se empleó la fotocatálisis heterogénea como método de oxidación avanzada para degradar el carbofurano, el paraquat y el clorpirifos, los cuales son pesticidas empleados ampliamente en diversos cultivos implementados en Colombia, tales como la papa, caña de azúcar, café, cebolla, maíz, entre otros. Durante este proceso se sintetizó y metaló con hierro (III) las tetrafenilporfirina cloro (TClPP) y tetrafenilporfirina metoxi (TMeOPP) por medio de reacciones de condensación y coordinación reportadas en la literatura (Adler et al., 1967; Falvo et al 1999). Luego las porfirinas fueron soportadas en nanotubos de dióxido de titanio (TNT), lo cuales se prepararon por medio de una reacción hidrotermal, la cual se basa en un tratamiento alcalino de un precursor de óxido de titanio (Wu, et al., 2015). Como resultado, las modificaciones realizadas al dióxido de titanio comercial generaron un aumento en la producción de especies oxidantes cuando se sometía a radiación UV-Vis, así como la ampliación de la activación del semiconductor al rango visible. Los catalizadores sensibilizados con porfirinas libres TClPP/TNT y TMeOPP/TNT degradaron el carbofurano en un 83% y 85%; el paraquat en un 67% y 76%; y el clorpirifos en un 73% y 78%, respectivamente. La inclusión del hierro como centro metálico de los catalizadores incrementó el porcentaje de degradación promedio así: con el empleo de la TClPPFe/TNT se logró degradar el carbofurano, paraquat y clorpirifos en un 95%, 85% y 84% respectivamente, y mediante el uso de la TMeOPPFe/TNT se obtuvo un porcentaje de degradación del carbofurano de 89%, el paraquat 82%; y clorpirifos 84%.Water is an essential resource to conserve the life of all beings that inhabit the planet and has been affected by the indiscriminate use of toxic pesticides. According to the commercialization statistics of chemical pesticides for agricultural use reported by the Colombian Agricultural Institute (ICA), in 2016 in our country a total of 57’284.087 liters of pesticides were sold, among which stand out the paraquat with 4'471.787 , mancozeb with 2’764.047, chlorpyrifos with 2’197.095 and carbofuran with 126.21 L (Table 1); These pesticides have high toxicity to mammals and all non-target animals present in ecosystems. The excessive and indiscriminate use of low biodegradable pesticides used in the control of pests in the country, has increased the production of leachates; Because a large part of them do not remain in the crop, they seep through the soil and contaminate the aquifers. That is why in the present investigation heterogeneous photocatalysis was used as an advanced oxidation method to degrade carbofuran, paraquat and chlorpyrifos, which are pesticides widely used in various crops implemented in Colombia, such as potatoes, sugar cane , coffee, onion, corn, among others. During this process, tetraphenylporphyrin chlorine (TClPP) and tetraphenylporphyrin methoxy (TMeOPP) were synthesized and metallized with iron (III) through condensation and coordination reactions reported in the literature (Adler et al., 1967; Falvo et al 1999). Porphyrins were then supported on titanium dioxide (TNT) nanotubes, which were prepared by hydrothermal reaction, which is based on an alkaline treatment of a titanium oxide precursor (Wu, et al., 2015). As a result, the modifications made to commercial titanium dioxide generated an increase in the production of oxidizing species when subjected to UV-Vis radiation, as well as the extension of semiconductor activation to the visible range. Catalysts sensitized with free porphyrins TClPP/TNT and TMeOPP/TNT degraded carbofuran in 83% and 85%; paraquat in 67% and 76%; and chlorpyrifos in 73% and 78%, respectively. The inclusion of iron as the metal center of the catalysts increased the average degradation percentage as follows: with the use of TClPPFe/TNT, it was possible to degrade carbofuran, paraquat and chlorpyrifos in 95%, 85% and 84% respectively, and through using the TMeOPPFe/TNT a percentage of carbofuran degradation of 89%, paraquat 82% was obtained; and chlorpyrifos 84%.Magister en Ciencias y Tecnologías Ambientaleshttp://www.ustabuca.edu.co/ustabmanga/presentacionMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ciencias y Tecnologías AmbientalesFacultad de Química AmbientalDegradación de carbofurano, paraquat y clorpirifos por procesos de oxidación avanzadaChlorpyrifosCarbofuranParaquatFree porphyrinsMetallic porphyrins with iron (III)Titanium dioxide nanotubes (TNT)Heterogeneous photocatalysisParaquatPlaguicidasFotocatálisisPorfirinasClorpirifosParaquatCarbofuranoPorfirinas libresPorfirinas metálicas con hierro (III)Nanotubos de dióxido de titanio (TNT)Fotocatálisis heterogéneaTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisAbierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CRAI-USTA BucaramangaAcevedo, M. P., & Suárez, M. A. (2013). Fotoactividad de nanomateriales de TiO2 modificado con porfirinas de Cu (II) y sin metal: formación de •OH y su aplicación en la degradación del carbofuran (Trabajo de grado en pregrado en Química Ambiental). Universidad Santo Tomás, Bucaramanga, Colombia p.82-93.Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J., & Korsakoff, L. (1967). A simplified synthesis for meso-tetraphenylporphine. Journal of Organic Chemistry, 32(2), 476-477. DOI: 10.1021/jo01288a053Adler, A. D., Longo, F. R., Kampas, F., & Kim, J. (1970). On the preparation of metalloporphrins. Journal of inorganic and nuclear chemistry, 32(7), 2443-2445. DOI: 10.1016/0022-1902(70)80535-8.Adler, A. D., Longo, F. R., & Shergalis, W. (1964). Mechanistic investigations of porphyrin syntheses. I. preliminary studies on ms-tetraphenylporphin. Journal of american chemical society, 86(15), 3145-3149. DOI: doi.org/10.1021/ja01069a035.Affam, A. C., & Chaudhuri, M. (2013). Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. Journal of Environmental Management, 130(1), 160-165. DOI: 10.1016/j.jenvman.2013.08.058Alza, W. R., García, J. M., & Chaparro, S. P. (2016). Determinación voltamétrica de paraquat y glifosato en aguas superficiales. Corpoica Ciencia y Tecnología Agropecuaria, 17(3), 331-332. DOI: 10.21930/rcta.vol17_num3_art:510Allinger, N. L. (1984). Heterociclos aromáticos y productos naturales que lo contienen. In Reverté (Ed.), Química Orgánica, Madrid, España, p.1077.Amiri, H., Nabizadeh, R., Silva, S., Jamaleddin, S., Yaghmaeian, K., Badiei, A., & Naddafi, K. (2018). Response surface methodology modeling to improve degradation of chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicology and Environmental Safety, 147(1), 919-925. DOI: 10.1016 / j.ecoenv.2017.09.062Bauer, C., Jacques, P., Kalt, A. (1999). Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface. Journal of chemical physics letters, 307(5) 397-406. DOI: 10.1016 / S0009-2614 (99) 00518-7.Beckie, H.J. (2011). Herbicide-resistant weed management: Focus on glyphosate. Pest Management Science, 67(9), 1037-1048. DOI: 10.1002 / ps.2195Benjwal, P., & Kar, K.K. (2015). One-step synthesis of Zn doped titania nanotubes and investigation of their visible photocatalytic activity. Materials Chemistry and Physics, 160(1), 279-288. DOI: 10.1016/j.matchemphys.2015.04.038Berberidou, C., Kitsiou, V., Lambropoulou, D.A., Antoniadis, Α., Ntonou, E., Zalidis, G.C., & Poulios, I. (2017). Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands. Journal of Environmental Management, 195(2), 133-139. DOI: 10.1016/j.jenvman.2016.06.010Bouras, P., Stathatos, E., & Lianos, P. (2007). Preversos metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis B: Environmental, 73(1-2), 51-59 DOI: 10.1016/j.apcatb.2006.06.007Braslavskym, S.E., (2007). Glossary of terms used in potochemistry 3rd edition. Pure and applied chemistry IUPAC, 79(3), 293-465.Burnham, B., & Zuckerman, J. (1970). Complex formation between porphyrins and metal ion. Journal of american chemical society, 95(6), 1547-1550. DOI: 10.1021/ja00709a019Byrne, J.A., Fernandez, P.A., Dunlop, P.S.M., Alrousan, D.M.A., & Hamilton, J.W.J. (2011). Photocatalytic enhancement for solar desinfection of water: A Review. International Journal of Photoenergy, 2011(1), 1-12. DOI: 10.1155/2011/798051Calderbank, A., Charlton, D. Farrington, A. & James, R. (1972). Bipyridylium quaternary salts and related compounds. Part IV. Pyridones derived from paraquat and diquat. Journal of the chemical society, perkin transactions 1, 1972(1), 138-142. DOI: 10.1039 / P19720000138Camacho, W.R., Colmenares, J., García, M., & Acuña, S.P. (2016). Estimación del riesgo de contaminación de fuentes hídricas de pesticidas (Mancozeb y Carbofuran) en Ventaquemada, Boyacá - Colombia. Acta Agronomica, 65(4), 368-374. DOI: 10.15446/acag.v65n4.50325.Cárdenas, O., Silva, E., Morales, L., & Ortiz, J. (2005). Estudio epidemiológico de exposición a plaguicidas organofosforados y carbamatos en siete departamentos colombianos. Biomédica, 25(2), 170-80. DOI: 10.7705/biomedica.v25i2.1339Carlson, J., Wisoczanski, A., Voightman. (2014). Limits of quantitation- yet another suggestion. Spectrochimica Acta part B: Atomic spectroscopy, 96(6), 69-73. DOI: 10.1016/j.sab.2014.03.012.Castells, X.E. (2012). Diccionario de Términos ambientales: Reciclaje de residuos industriales. (Ediciones Dias de Santos, Ed.). Madrid, España, p 567-569Castro, K., Figueira, F., Mendes, R., Cavaleiro, J., Neves, M., Simles, M., Almeida, F., Tomé, J., & Nakagaki, S. (2017) Copper–Porphyrin–Metal–Organic frameworks as oxidative heterogeneous catalysts. ChemCatChem Communications, 9(5), 2939-2945. DOI: 10.1002/cctc.201700484Comninellis, C., Kapalka, A., Malato, S., Parsons, S., Poulios, I., & Mantzavinos, D. (2008). Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology & Biotechnology, 83(6), 769-776. DOI: 10.1002/jctb.1873Costa, J.M. (2005). Diccionario de Química Física. (Díaz de Santos S.A, Ed.) (1st ed.). Barcelona, España, p.420Coy, G., Bojaca, R., & Duque, M. (2006). Estandarización de métodos analíticos. En: Procedimientos para la estandarización de métodos analiticos. Instituto de hidrología meteorología y estudios ambientales-IDEAM. p. 3.Cruz, M., Gomez, C., Duran-Valle, C.J., Pastrana-Martínez, L.M., Faria, J.L., Silva, A.M.T., & Bahamonde, A. (2017). Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Applied Surface Science, 416(1), 1013-1021. DOI: 10.1016/j.apsusc.2015.09.268Chen, J., & Browne, W. (2018). Photochemistry of iron complexes. Coordination Chemistry Reviews, 374(21), 15-35. DOI: 10.1016/j.ccr.2018.06.008Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chemical engineering journal, 284(1), 582-598. DOI: 10.1016/j.cej.2015.09.001Cho, Y., Choi, W., Lee, C., Hyeon, T., & Lee, H. (2001). Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology, 35(5), 966-970. DOI: 10.1021/es001245eDelsouz, M. R., Shafeeyan, M. S., Abdul, A. A., & Wan, W. M. A. (2017). Application of doped photocatalysts for organic pollutant degradation - A review. Journal of Environmental Management, 198(2), 78-94. DOI: 10.1016/j.jenvman.2017.04.099Demeestere, K., Dewulf, J., & Van, H. (2007). Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: state of art. Critical reviews in environmetal science and technology, (37)6, 489-538. DOI: 10.1080/10643380600966467Departamento Administrativo Nacional de Estadística. (2016). Tercer censo nacional agropecuario: Hay campo para todos - Tomo 2. Departamento Administrativo Nacional de Estadística (DANE). Bogotá, Colombia, p.47-286.Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M.A. (2017). New perspectives for Advanced Oxidation Processes. Journal of Environmental Management, 195(2), 93–99. DOI: 10.1016/j.jenvman.2017.04.010Domènech, X., Jardim, W., & Litter, M. (2001). Procesos avanzados de oxidación para la eliminación de contaminantes. In M. A. Blesa (Ed.), Eliminación de Contaminantes por Fotocatálisis Heterogénea (1st ed). La Plata, Argentina, p.3-26.Dorough, G D., Miller, J R., & Huennekens, Frank. (1951). Spectra of the metallo-derivatives of α,β,y,δ- tetraphenylporphine. Journal of american chemical society, 73(9), 4315-4320. DOI: doi.org/10.1021/ja01153a085.Dyke, B.R., Sanderson, D., & Noakes, D. (1970). Acute toxicity data for pesticides. World Review of Pest Control, 9(3), 119-127.Egerton, R. (2016). The scanning electron microscope. En: Physical principles of electron microscopy. Springer, Cham. p. 121-147Esplugas, S., Giménez, J., Contreras, S., Pascual, E., & Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water research, 36(6), 1034,1042. Doi: 10.1016/S0043-1354(01)00301-3Fagadar, E., Vlascici, D., Tudose, R., & Costisor, O. (2007). UV-VIS and fluorescence spectra of meso-tetraphenylporphyrin and mesotetrakis-(4-methoxyphenyl) porphyrin in THF and THF-water systems. The influence of pH. En Revista de Chimie -Bucharest- Original Edition, 58(5), 451-455.Falvo, R., Mink, L., & Marsh, D. (1999). Microscale synthesis and 1H NMR analysis of tetraphenylporphyrins. Journal of chemical education, 76(2), 237-239. DOI: 10.1021/ed076p237.Feng, Y., Chen, S., Guo, W., Zhang, Y., & Liu, G. (2007). Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5 M H2SO4 solutions. En: Journal of Electroanalytical Chemistry, 602(1),115-122. DOI: 10.1016/j.jelechem.2006.12.016Fernandes, A., Morao, A., Magrinho, M., Lopes, A., & Gonçalves, I. (2004). Electrochemical degradation of C.I. Acid Orange 7. Dyes and Pigments, 61(3), 287-296. DOI: 10.1016/j.dyepig.2003.11.008Finlayson, B. J., Harrington, J. M., Fujimura, R., & G. Isaac. (1991). Toxicity of Colusa Basin Drain water to young mysids and striped bass. En: California Department of Fish and Game Environmental Services Division Administrative Report, Sacramento, California. p. 91-92.Florêncio, H., Pires, E., Castro, A., Nunes, M., Borges, C., & Costa, F. (2004). Photodegradation of diquat and paraquat in aqueous solutions by titanium dioxide: evolution of degradation reactions and characterisation of intermediates. Chemosphere, 55(2004), 345-355. DOI: 10.1016/j.chemosphere.2003.11.013Fraume, N.J., Palomino, A.T., & Ramirez, M.A. (2006). Manual abecedario ecológico: la más completa guia de términos ambientales. (Editorial San Pablo, Ed.) (6th ed.). Bogotá, Colombia, p.95.Garcés, L.F., Mejía, E.A., & Santamaría, J.J. (2004). La fotocatálisis como alternativa para el tratamiento de aguas residuales. Revista Lasallista de Investigación, 1(1), 83-92.Gaya, U., & Abdullah, A. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals progress and problems. Journal of photochemistry reviews, 9(1), 1-12. DOI: 10.1016/j.jphotochemrev.2007.12.003Gil, E., Cabrera, M., & Jaramillo, S. A. (2003). Foto-oxidación del sistema cromo hexavalente-4-clorofenol. Universidad Eafit 39(0120–341X), 60-75.Gil, E., Quintero, L., Rincon, M., & Rivera, D. (2006). Degradación de colorantes de aguas residuales empleando UV/TiO2/H2O2/Fe2+. Revista universidad Eafit, 42(146), 80-101.Giovannetti, R. (2012). The use of spectrophotometry UV-Vis for the study of porphyrins. En J. Uddin (Ed), Macro to nano spectroscopy. Rijeka, Croacia, p. 87-108.Gmurek, M., Olak, M., & Ledakowicz, S. (2017). Photochemical deomposition of endocrine disrupting compounds – A review. Chemical Engineering Journal, 310(2), 437-456. DOI: 10.1016/j.cej.2016.05.014Gobernación de Boyacá. (2016). Plan de Desarrollo Departamental de Boyacá 2016 - 2019. p.600-601.Goldstein, S., & Czapsky, G. (1984). Mannitol as an OH• scavenger in aqueous solutions and in biological systems. International journal of radiation biology and related studies in physics, chemistry and medicine, 46(6), 725-729. DOI: 10.1080/09553008414551961.Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., & Dickey, E.C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of material research, 16(12) 3331-3334. DOI: 10.1557/JMR.2001.0457.Granados, G., Páez, E.A., Ortega, F.M., Ferronato, C., & Chovelon, J.M. (2009). Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Applied Catalysis B: Environmental, 89(3–4), 448–454. DOI: 10.1016/j.apcatb.2009.01.001Granados, G., Torres, E., Zambrano, M., Nieto, A., & Gómez, V. (2018). Formation of hydroxyl radicals by a Fe2O3 microcrystals and its role in photodegradation of 2,4- dinitrophenol and lipid peroxidation. Research on Chemical Intermediates, 44(5), 3407-3424. DOI: 10.1007/s11164-018-3315-2.Grant, F. (1959). Properties of rutile (titanium dioxide). Reviews of modern physics, 31(3), 646-674. DOI: 10.1103/RevModPhys.31.646.Gupta, N., & Bardos, T. (1968). Synthetic porphyrins II: Preparation and spectra of some metal chelates of para-substituted-meso-Tetraphenylporphines. Journal of pharmaceutical sciences, 57(2), 300-304. DOI: 10.1002/jps.2600570211.Gupta, V., & Ali, I. (2008). Removal of endosulfan and methoxychlor from water on carbon slurry. Environmental Science and Technology, 42(3), 766-770. DOI: 10.1021/es7025032Han, C., Shao, Q., Liu, M., Ge, S., Liu, Q., & Lei, J. (2016). 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin decorated TiO2 nanotube arrays: Composite photoelectrodes for visible photocurrent generation and simultaneous degradation of organic pollutant. Materials science in semiconductro processing, 56(1), 166-173. DOI: 10.1016/j.mssp.2016.08.015.Herrmann, J.M. (2005) Destrucción de contaminantes orgánicos por fotocatálisis Heterogénea. En Tecnologías solares para la desinfección y descontaminación del agua. Solar Safe Water, 147-164.Hien, T.D., Scharmüller, A., Kattwinkel, M., Kühne, R., Schüürmann, G., & Schäfer, R.B. (2017). Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicology and Environmental Safety, 145(1), 135-141. DOI: 10.1016/j.ecoenv.2017.07.027.Hoyer, P. (1996). Formation of a titianium dioxide nanotube array. Langmuir, 12(6), 1411-1413. DOI: 10.1021/la9507803.Huang, C., Lv, Y., Zhou, Q., Kang, S., Li, X., & Mu, J. (2014). Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group. Ceramics International, 40(5), 7093-7098. DOI: 10.1016/j.ceramint.2013.12.042Huang, X., Nahanishi, K., & Berova, N. (2000). Porphyrins and Metalloporphyrins: Versatile Circular Dichroic Reporter Groups for Structural Studies. Chirality, 12(4), 237-255. DOI: 10.1002/(SICI)1520-636X(2000)12:4<237::AID-CHIR10>3.0.CO;2-6Hung, H., & Lien, S. (2007). Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and purification technology, 58(1), 179-191. DOI: 10.1016/j.seppur.2007.07.017.Instituto Colombiano Agropecuario (2017). Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2016. Bogotá, Colombia p.7-35.Instituto Colombiano Agropecuario (2018). Registros Nacionales PQUA. Bogotá, Colombia, p.1-118International Centre for Diffraction Data (2014). PDF-2 [base de datos]. Recuperado de http://www.icdd.com/index.php/pdf-2/Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of titanium oxide nanotube. Langmuir, 14(12), 3160-3163. DOI: 10.1021/la9713816Kasuga, T., Hiramatsu, M., Hoso, A., Sekino, T., & Nihara, K. (1999). Titania Nanotubes Prepared by Chemical Processing. Advanced Materials, 11(15), 1307-1311. DOI: 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-HKathiravan, A., & Renganathan, R. (2009). Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins. Journal of colloid and interface science, 331(2), 401-407. DOI: 10.1016/j.jcis.2008.12.001.Katsumata, H., Matsuba, K., Kaneco, S., & Suzuki, T. (2005). Degradation of carbofuran in aqueous solution by Fe (III) aquacomplexes as effective photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 170(3), 239-245. DOI: 10.1016/j.jphotochem.2004.09.002Kaur, T., Sraw, A., Pal, A., & Wanchoo, R. (2016). Utilization of solar energy for the degradation of carbendazim and propiconazole by Fe doped TiO2. Solar Energy, 125(3), 65-76. DOI: 10.1016/j.solener.2015.12.001Kenkel, J. (2002). Introduction to spectrochemical methods. En: Analytical chemistry for technicians (Third edition), New York, p. 194-195.Kim, H., & Lee, K. (2013). Photocatalytic activity of TiO2 nanotubes doped with Ag nanoparticles. Journal of nanoscience and nanotechnology, 13(8), 5597-5600. DOI: 10.1166/jnn.2013.7035Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous sustems by advanced oxidation processes. Environment international, 35(2), 402-417. DOI: 10.1016/j.envint.2008.07.009Köck, M., Villagrasa, M., López de Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458-460(1), 466-476. DOI: 10.1016/j.scitotenv.2013.04.010Koppenol, W., & Butler, J. (1984). The radiation chemistry of Cytochrome c. Israel journal of chemistry, 24(1), 11-16. DOI: 10.1002/ijch.198400002.Kumar G, R., & Chandra Ch, M. (2016). Advanced oxidation process–based nanomaterials for the remediation of recalcitrant pollutants. En Nanomaterials for Wastewater Remediation. Uttar Pradesh, India, p. 33-48, DOI: 10.1016/B978-0-12-804609-8.00003-0Kumar, S., Kaushik, G., Dar, M. A., Nimesh, S., López, U.J., & Villareal, J.F. (2018). Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere, 28(2), 190-208. DOI: 10.1016/S1002-0160(18)60017-7Kuo, W.S., Chiang, Y.H., & Lai, L.S. (2006). Degradation of carbofuran in water by solar photocatalysis in presence of photosensitizers. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 41(6), 937-948. DOI: 10.1080/03601230600806137La Penna, M., Alvarez, M.G., Yslas, E.I., Rivarola, V., & Durantiti, E. (2001). Characterization of photodynamic effects of meso-tetrakis-(4-methoxyphenyl) porphyrin: biological consequences in a human carcinoma cell line. Dyes and Pigments, 49(2), 75-82. DOI: 10.1016/S0143-7208(01)00010-9Lee, K., Mazare, A., & Schmuki, P. (2014). One-dimensional titanium dioxide nanomaterials: Nanotubes. Chemical Reviews, 114(19), 9385-9454. DOI: 10.1021/cr500061mLevine, A.D., & Asano, T. (2004). Peer reviewed: Recovering sustainable water from wastewater. Environmental Science & Technology, 38(1), 201A-208A. DOI: doi.org/10.1021/es040504nLevine, I. N. (2004). Cinética de reacción. In Fisicoquímica (quinta ed.). Madrid, España, p.719Li, J., Xu, J., Dai, W., Li, H., & Fan, K. (2009). Direct hydro-alcohol thermal sythesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity. Applied Catalysis B: Environmental, 85(3-4), 162-170. DOI: 10.1016/j.apcatb.2008.07.008Lin, L., Hou, C., Zhang, X., Wang, Y., Chen, Y., & He, T. (2018). Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl)porphyrin iron (III) Chloride heterogeneous catalysts. Applied Catalysis B: Environmental, 221(2), 312-319. DOI: 10.1016/j.apcatb.2017.09.033Lindsey, J., Schereiman, I., Hsu, H., Keaney, P., & Marguerettas, A. (1987). Journal of organic chemistry, 57(5), 827-836. DOI: 10.1021/jo00381a022Litter, M. (1999). Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23(2-3), 89-114. DOI: 10.1016/S0926-3373(99)00069-7.Little, T. (2015). Method validation essentials, limit of blank, limit of detection, and limit of quantitation. BioPharm International, 28(4), 48-51.Liu, N., Chen, X., Zhang, J., & Schwank, J. (2014). A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis today, 225(4), 34-51. DOI: 10.1016/j.cattod.2013.10.090.Lock, E., & Wilks, M. (2010). Paraquat. En Hayes’ Handbook of pesticide toxicology (third ed.). London, UK, 1771-1827. DOI: 10.1016/C2009-1-03818-0.Longo, F., Brown, E., & Quimby, D. (1973). Kinetic studies on metal chelation by porphyrins. Annals of the New york academy of sciences, 206(1), 420-442. DOI: 10.1111/j.1749-6632.1973.tb43227.xLongo, F., Brown, E., & Quimby, D. (1973). Kinetic studies on metal chelation by porphyrins. Annals of the New york academy of sciences, 206(1), 420-442. DOI: 10.1111/j.1749-6632.1973.tb43227.xLü, X., Qian, H., Mele, G., De Riccardis, A., Zhao, R., Chen, J., & Hu, N. (2017). Impact of different TiO2 samples and porphyrin substituents on the photocatalytic performance of TiO2 copper porphyrin composites. Catalysis Today, 281(1), 45-52. DOI: 10.1016/j.cattod.2016.04.027Ma, T., Inoue, K., Noma, H., Yao, K., & Abe, E. (2002). Effect of functional group on photochemical properties and photosensitization of TiO2 electrode sensitized by porphyrin derivates. Journal of photochemistry and photobiology A: Chemistry, 152(1), 207-212. DOI: 10.1016/S1010-6030(02)00025-4Maddila, S., Lavanya, P., & Jonnalagadda, S. B. (2015). Degradation, mineralization of bromoxynil pesticide by heterogeneous photocatalytic ozonation. Journal of Industrial and Engineering Chemistry, 24(1), 333-341. DOI: 10.1016/j.jiec.2014.10.005Mahalakshmi, M., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2007). Photocatalytic degradation of carbofuran using semiconductor oxides. Journal of Hazardous Materials, 143(1-2), 240-245. DOI: 10.1016/j.jhazmat.2006.09.008Malato, S., & Blanco, J. (1997). Procesos fotocatalíticos para la destrucción de contaminantes orgánicos en el agua. In Instituto de Estudios Almerienses (Ed.), Recursos naturales y medio ambiente en el sureste peninsular. Almería, España, p.49-62.Malato, S., Blanco, J., Estrada, C. A., Bandala, E. R., & Peñuela, G. (2001). Degradación de plaguicidas. En Eliminación de contaminantes por fotocatálisis heterogénea (1st ed). Madrid, España, p.269-284.Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. DOI: 10.1016/j.cattod.2009.06.018Malato, S., Maldonado, M.I., Fernández, P., Oller, I., Polo, I., & Sánchez, R. (2016). Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing, 42(1), 15-23. DOI: 10.1016/j.mssp.2015.07.017Manfroi, D.C., Cavalheiro, A.A., Perazolli, L.A., Varela, J.A., & Zaghete, M.A. (2014). Titanate nanotubes produced from microwave-assisted hydrothermal synthesis : Photocatalytic and structural properties. Ceramics International, 40(9), 14483-14491. DOI: 10.1016/j.ceramint.2014.07.007Margat, J., & Vallée, D. (2000). Mediterranean vision on water, population and the environment for the 21 st Century, En Drainage canals and rice fields. Egypt, p.1-66.Marinas A.A. (2007). Catálisis heterogénea y Química Verde. Anales de La Real Sociedad Española de Química, 103(1), 30-37.Matamoros, V., & Salvadó, V. (2013). Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain. Journal of Environmental Management, 117(1), 96-102. DOI: 10.1016/j.jenvman.2012.12.021Mele, G., Del Sole, R., Vasapollo, G., García, E., Palmisiano, L., & Schiavello, M. (2003). Photocatalytic degradation of 4-nitrophenol in aqueous suspensión by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine. Journal of Catalysis, 217(2), 334-342. DOI: 10.1016/S0021-9517(03)00040-XMenck, R., & Yonamine, M. (2007). Gas chromatographic-mass spectrometric method for the determination of the herbicides paraquat and diquat in plasma and urine samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 853(1-2), 260-264. DOI: 10.1016/j.jchromb.2007.03.026MiarAlipour, S., Friedmann, D., Scott, J., & Amal, R. (2018). TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 341(1), 404-423. DOI: 10.1016/j.jhazmat.2017.07.070Milgrom, L R. (1997). Where porphyrins come from. En: Oxford university press. The color of life: an introduction to the chemistry of porphyrins and related, New York, p. 6-10 ; 48-62.Ministerio de agricultura. (2016). Evaluaciones Agropecuarias Municipales. Boyacá, Colombia, p. 1-5.Ministerio de la Protección Social, & Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2017). Resolución Numero 2115, Minambiente. Bogotá, Colombia, p. 1-85.Moctezuma, E., Leyva, E., Monreal, E., Villegas, N., & Infante, D. (1999). Photocatalytic degradation of the herbicide “paraquat”. Chemosphere, 39(3)551-517. DOI: 10.1016/S0045-6535(98)00599-2Monroy C.O.M. (2009). Caracterización de las prácticas agrícolas asociadas con el uso y manejo de plaguicidas en cultivos de papa. caso vereda mata de mora, en el Páramo de Merchán, Saboya, Boyacá (Tesis de Maestría en Gestión Ambiental). Universidad Pontificia Javeriana. p.45-59Morales, C.A., & Rodríguez, N. (2004). El Clorpirifos: posible disruptor endocrino en bovinos de leche. Revista Colombiana de Ciencias Pecuarias, 17(3), 255-266.Moreira, F., Boaventura, R., Brillas, E., & Vilar, V. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewater. Applied Catalysis B: Environmental 202(1), 217-261. DOI: 10.1016/j.apcatb.2016.08.037Mothilal, K.K., Johnson, J., Gandhidasan, R., & Murugesa, R., (2004). Photosensitization with anthraquinone derivates: optical and EPR spin trapping studies of photogeneration of reactive oxygen species. Journal of Photochemistry and Photobiology A: Chemistry, 162(1), 9-16. DOI: 10.1016/S1010-6030(03)00290-9Natividad, M., Ormad, M., Mosteo, R., & Ovelleiro, J. (2012). Photocatalytic degradation of pesticides in natural water: effect of hydrogen peroxide. International Journal of Photoenergy, 2012(1), 1-12. DOI: 10.1155/2012/371714NATO Science for Peace and Security Series C: Environmental Security. (2011). Environmental Security in South-Eastern Europe: International Agreements and their Implementation. En Springer Science & Business Media. Vama, Bulgaria, 5, p.69-84.Niu, J., Yao, B., Chen, Y., Peng, C., Yu, X., Zhang, J., & Bai, G. (2013). Enhanced photocatalytic activity of nitrogen doped TiO2 photocatalysts sensitized by metallo Co, Ni-porphyrins. Applied Surface Science, 271(1), 39-44. DOI: 10.1016/j.apsusc.2012.12.175Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068-1072. DOI: 10.1126/science.1128845Orellana, G., Villén, L., & Jimenez, E. (2005). Desinfección mediante fotosensibilizadores: principios básicos. En: Solar Safe Water. Buenos Aires, Argentina, p. 243-247.Park, J.Y., Choi, K., Lee, J.H., Hwang, C.H., Choi, D.Y., & Lee, J.W. (2013). Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions. Materials Letters, 97(1), 64-66. DOI: 10.1016/j.matlet.2013.01.047Patarroyo, L.C., Reyes, Y.C., Toloza, E.P., Becerra, M.L., & Medina, O.J. (2013). Determinación de plaguicidas clorpirifos en cultivos de fresa, mora y tomate de los municipios de Arcabuco y Sutamarchán por técnicas analíticas. En VIII Encuentro Facultad de Ciencias. Tunja, Colombia, p.128-130.Peláez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., & Dionysiou, D.D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125(1), 331-349. DOI: 10.1016/j.apcatb.2012.05.036.Peñuela, G., & Barceló, D. (1997). Comparative degradation kinetics of chlorpyrifos in water by photocatalysis with FeCl3, TiO2 and photolysis using solid-phase disk extraction followed by gas chromatographic techniques. Toxicological & environmental chemistry, 62(1-4), 135-147. DOI: 10.1080/02772249709358503.Pérez, C.C. (1996). Configuración del sensor. En Sensores Ópticos. Universidad de Valencia, Valencia, España, p.97-114.Pérez, M.H., Peñuela, G., Maldonado, M.I., Malato, O., Fernández-Ibáñez, P., Oller, I., & Malato, S. (2006). Degradation of pesticides in water using solar advanced oxidation processes. Applied Catalysis B: Environmental, 64(3), 272–281. DOI: 10.1016/j.apcatb.2005.11.013.Pey, J. (2008). Aplicación de procesos de oxidación avanzada (Fotocatálisis solar) para el tratamiento y reutilización de efluentes textiles (Tesis Doctoral). Universidad Politécnica De Valencia, Valencia, España, p.15-61.Pineda, L.L. (2017). Diagnóstico de la Planta de Tratamiento de Agua Residual (PTAR) de Tunja – Boyacá (Tesis de pregrado). Universidad Católica de Colombia. Bogotá, Colombia, p.22-26.Pino, N., & Peñuela, G. (2011). Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. International Biodeterioration and Biodegradation, 65(6), 827-831. DOI: 10.1016/j.ibiod.2011.06.001.Portela, R.R. (2008). Eliminación fotocatalítica de H2S en aire mediante TiO2 soportado sobre sustratos transparentes en el UV-A (Tesis Doctoral). Universidad de Santiago de Compostela, Santiago de compostela, España, p.201.Portilla, Á., Pinilla, G.D., Caballero, A J., Gómez, E., Marín, L.R., Manrique, E.F., & Gamboa, N. (2014). Prevalencia de signos y síntomas asociados a la exposición directa a plaguicidas neurotóxicos en una población rural colombiana en 2013. Médicas UIS, 27(2), 41-49.Qiang, Z., Liu, C., Dong, B., & Zhang, Y. (2010). Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process. Chemosphere, 78(5), 517-526. DOI: 10.1016/j.chemosphere.2009.11.037.Ray, A., & Ghosh, M. (2005). Aquatic toxicity of carbamates and organophosphates. Toxicology of organophosphate & carbamate compound, 2006(1), 657-672. DOI: 10.1016/B978-012088523-7/50046-6.Razali, M., Noor, A.F., Mohamed, A & Sreekantan., S. (2012). Morphological and structural studies of titanate an titania nanostructured materials obtained after heat tratments of hydrotermally produced layered titanate. Journal of nanomaterial, 2012(1), 1-10. DOI: 10.1155/2012/962073Restrepo, I., Sanchez, L.D., Galvis, A., Rojas, J., & Sanabria, I.J. (2007). Tecnologías alternativas para la desinfección de aguas. En Avances en investigación y desarrollo en agua y saneamiento para el cumplimiento de las metas del milenio. Valle, Colombia, p.370-379.Richardson, S.D. (2008). Environmental Mass Spectrometry: Ermerging Contaminants and Current Issues. Analytical Chemistry, 80(12), 4373-4402. DOI: 10.1021/ac800660d.Rodríguez, A., Letón, P., Rosal, R., Dorado, M., Villar, S., & Sanz, J.(2016). Técnologías emergentes. Tratamientos avanzados de aguas residuales industriales, Madrid, España, p. 46- 48.Rodríguez, D.L. (2011). Evaluación de la presencia de residuos de plaguicidas en miel de abejas provenientes de los departamentos de Boyacá, Cundinamarca (Tesis Magister en ciencia químicas), Magdalena y Santander. Universidad Nacional de Colombia. Bogotá, Colombia, p.126-130.Rothemund, P., & Menotti, A. (1941). Phorphyrin studies. IV. The synthesis of α,β,ϒ,δ-tetraphenylporphine. Journal of american chemical society, 63(1), 267-270. DOI: 10.1021/ja01846a065.Sanches, S., Barreto, M., & Pereira, V. (2010). Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water research, 44(2010), 1809-1818. DOI: 10.1016/j.watres.2009.12.001.Sangpour, P., Hashemi, F., & Moshfegh, A. Z. (2010). Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M = Au, Ag, Cu) nanocomposite systems: A comparative study. Journal of Physical Chemistry C, 114(33), 13955-13961. DOI: 10.1021/jp910454rSantos, M.S.F., Alves, A., & Madeira, L.M. (2011). Paraquat removal from water by oxidation with Fenton’s reagent. Chemical Engineering Journal, 175(1), 279-290. DOI: 10.1016/j.cej.2011.09.106.Santos., L. (2008). Compuestos orgánicos como fotocatalizadores solares para la eliminación de contaminantes en medios acuosos: aplicaciones y estudios fotofísicos (Tesis Doctoral). Universitat Politècnica de Valencia, Valencia, España, p.11-54.Sattler, K.D. (2010). Handbook of Nanophysics: Nanomedicine and Nanorobotics CRC Press. London, New york, p. 10-1-10-4.Sauer, T., Cesconeto, G., José, H., & Moreira R. (2002). Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry, 149(1), 147-154. DOI: 10.1016/S1010-6030(02)00015-1Sclafani, A., & Herrmann, J. (1996) Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. Journal of physical chemistry, 100(32), 13655-13661. DOI: 10.1021/jp9533584.Scheid, S. (2009). Síntese e caracterização da Meso-tetrakis(4-metóxifenil)porfirina e derivados. (Tesis maestría en química aplicada). Universidade Estadual de Ponta Grossa, Brasil. p. 41-56.Shi, J., Chen, G., Zeng, G., Chen, A., He, K., Huang, Z., Hu, L., Zeng, J., Wu, J., & Liu, W. (2018). Hydrothermal synthesis of graphene wrapped Fe-doped TiO2 nanospheres with high photocatalysis performance. Ceramics International, 44(7), 7473-7480. DOI: 10.1016/j.ceramint.2018.01.124.Shifu, C., & Gengyu, C. (2005). Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2•SiO2/beads by sunlight. Solar Energy, 79(1), 1-9. DOI: 10.1016/j.solener.2004.10.006Shriver, D., Atkins, P., & Langford, C. (2007). Estructura Molecular. In Química Inorgánica. Barcelona, España, p.91-92.Shukla, O., & Kulshretha, A. (1998). Effect and Fate of Pesticides in Rats. En Pesticides, man and biosphere. p. 217–417.Silverstein, R., Morril, T., & Bassier, C. (1991). Ultraviolet Spectrometry. En Spectrometric identification of Orfanic Compounds (5th edition). New York. p. 240-274.Simonsen, M.E. (2014). Heterogeneous Photocatalysis. En Chemistry of Advanced Environmental Purification Processes of Water: Fundamentals and Applications (1st ed.). Amsterdam, p.135-170.Sinclair, C.J., & Boxall, A.B.A. (2003). Assessing the ecotoxicity of pesticide transformation products. Environmental Science and Technology, 37(20), 4617-4625. DOI: 10.1021/es030038mSivagami, K., Vikraman, B., Krishna, R.R., & Swaminathan, T. (2016). Chlorpyrifos and Endosulfan degradation studies in an annular slurry photo reactor. Ecotoxicology and Environmental Safety, 134(2), 327-331. DOI: 10.1016/j.ecoenv.2015.08.015Soto, A.C.A., & López F.G.A. (2009). Degradación Fotocatalítica de la Fluoresceina (Trabajo de grado de pregrado). Universidad Tecnología de Pereira - Escuela de Tecnología Química, Pereira, Colombia, p.44 -45.Suárez, S., Carballa, M., Omil, F., & Lema, J.M. (2008). How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters. Reviews in Environmental Science and Biotechnology 7(2), 125-138. DOI: 10.1007/s11157-008-9130-2Sun, B., Vorontsov, A., & Smirniotis, P. (2003). Role of platinum deposite on TiO2 in pheol photocatalytic oxidation. Langmuir, 19(8), 3151-3156. DOI: doi.org/10.1021/la0264670.Sun, L., Li, J., Wangs, C., Li, S., Chen, H., & Lin, C. (2009). An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Solar Energy Materials and Solar Cells, 93(10), 1875-1880. DOI: 10.1016/j.solmat.2009.07.001Sun, Y., Zhao, Q., Wang, G., & Yan, K. (2017). Influence of water content on the formation of TiO2 nanotubes and photoelectrochemical hydrogen generation. Journal of alloys and compounds, 711(1), 514-520. DOI: 10.1016/j.jallcom.2017.03.007Sun, Z., She, Y., Zhou, Y., Song, X., & Li, K. (2011). Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes. Molecules, 16(4)2960-2970. DOI: 0.3390/molecules16042960.Testai, E., Buratti, F., & Di Consiglio, E. (2010). Chlorpyrifos. En Hayes’ Handbook of pesticide toxicology (Third Edit). Italy, p. 1505-1526.Thind, P.S., Kumari, D., & John, S. (2018). TiO2/H2O2 mediated UV photocatalysis of Chlorpyrifos: Optimization of process parameters using response surface methodology. Journal of Environmental Chemical Engineering, 6(3), 3602 – 3609. DOI: 10.1016/j.jece.2017.05.031.Thomas, D., & Marell, A. (1959). Metal chelates of tetraphenylporphine and of some p-substituted derivates. Journal of american chemical society, 81(19) 5111-5119. DOI: 10.1021/ja01528a024.Tobin, J.S. (1970). Carbofuran. A new carbamate insecticide. Journal of Occupational Medicine, 12(1), 16-19.United States Environmental Protection Agency (2006). Reregistration Eligibility Decision for Chlorpyrifos p.6-8, 43-45.United States Environmental Protection Agency. (1997). Reregistration Eligibility Decision (RED) Paraquat Dichloride. Washington D,C. p. 2-9, 71-77United States Environmental Protection Agency. (2007). Completion of the Tolerance Reassessment and Final Registration Eligibility Decisions for the N-methyl Carbamate Pesticides. p.3–5, 18-20.Vallero, D. (2004). Glossary of environmental sciences and engineering terminology. En Environmental Contaminats: Assessment and Control (First Edition), Durham, USA, p. 695Vela, N., Calín, M., Yáñez-Gascón, M. J., Garrido, I., Pérez-Lucas, G., Fenoll, J., & Navarro, S. (2018). Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 353(1), 271-278. DOI: 10.1016/j.jphotochem.2017.11.040Walter, M.G., Rudine, A.B., & Wamser, C.C. (2010). Porphyrins and phthalocyanines in solar photovoltaic cells. Journal of Porphyrins and Phthalocyanines, 14(9), 759-792. DOI: 10.1142/S1088424610002689Wang, Q., Jin, R., Zhang, M., & Gao, S. (2017). Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. Journal of Alloys and Compounds, 690(1), 139-144. DOI: 10.1016/j.jallcom.2016.07.281.Wei, M., Wan, J., Hu, Z., Peng, Z., Wang, B., & Wang, H. (2017). Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO2 nanotube photocatalyst. Applied Surface Science, 391(B), 267-274. DOI: 10.1016/j.apsusc.2016.05.161.Wei, M., Wan, J., Hu, Z., Wang, B., & Peng, Z. (2015). Synthesis, electron transfer and photocatalytic activity of TiO2 nanotubes sensitized by meso-tetra(4-carboxyphenyl)porphyrin under visible-light irradiation. RSC Advances 5(72), 58184-58190. DOI: 10.1039/C5RA11526D.Williams, D., & Carter, C. (1996) The transmission electron microscope. En: Transmission electron microscopy. Springer, Boston p. 5-14.Wintgens, T., Salehi, F., Hochstrat, R., & Melin, T. (2008). Emerging contaminants and treatment options in water recycling for indirect potable use. Water Science and Technology, 57(1), 99-107. DOI: 10.2166/wst.2008.799.Wintrobe, M., & Geer, J. P. (2009). Molecular genetic aspects of nonhodkin. En Wintrobe’s Clinical Hematology (Twelfth ed), Filadelfia, Pensilvania, p.90-207.World Health Organization. (2009). The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification. Germany. p.1-81Wu, L., Qiu, Y., Xi, M., Li, X., & Cen, C., (2015). Fabrication of TiO2 nanotubes-assembled hierarchical microspheres with enhanced photocatalytic degradation activity. New Journal of Chemestry, 39(6), 4766-4773. DOI: 10.1039/C5NJ00373C.Yao, B., Peng, C., Zhang, W., Zhang Q., Niu, J., & Zhao, J. (2015). A novel Fe(III) porphyrin-conjugated TiO2 visible-light photocatalyst. Applied catalysis B: Environmental, 174-175(9), 77-84. DOI: 10.1016/j.apcatb.2015.02.030.Yu, H., Wang, X., Sun, H., & Huo, M. (2010). Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film. Journal of Hazardous Materials, 184(1-3), 753-758. DOI: 10.1016/j.jhazmat.2010.08.103.Yuan, R., Zhou, B., Hua, D., & Shi, C. (2014). Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water. Environmental Science & Engineering, 9(5), 850-860. DOI: 10.1007/s11783-014-0737-y.Zahedi, F., Behpour, M., Ghoreishi, S. M., & Khalilian, H. (2015). Photocatalytic degradation of paraquat herbicide in the presence TiO2 nanostructure thin films under visible and sun light irradiation using continuous flow photoreactor. Solar Energy, 120(1), 287-295. DOI: 10.1016/j.solener.2015.07.010.Zakavi, S., Hosini, S., & Mojarrad, A. (2017). New insights into the influence of weak and strong acids on the oxidative staability and photocatalytic activity of porphyrins. New Journal of Chemistry, 41(19), 11053-11059. DOI: 10.1039 / C7NJ02442H.Zalat, O., Elsayed, M., Fayed, M., & Abd El Megid, M. (2014). Validation of UV spectrophotometric and HPLC methods for quantitave determination of chlorpyrifos. International Letters of Chemistry, Physics and Astronomy, 21(1), 58-63. DOI: 10.18052/www.scipress.com/ILCPA.21.58.Zangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., & Hasnain Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26(1), 1-36. DOI: 10.1016/j.jiec.2014.10.043.Zhang, J., Zhou, P., Liu, J., & Yu, J. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Journal of Physical Chemistry Chemical Physics, 16(38), 20382-20386. DOI: 10.1039/c4cp02201gZhang, Q., Gao, L., & Guo, J. (2000). Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied catalysis B: Environmental, 26(1), 207-215. DOI: 10.1016/S0926-3373(00)00122-3.Zhang, Z., Wang, C.C., Zakaria, R., & Ying, J. (1998). Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. Journal of physical chemistry, 102(52), 10871-10878. DOI: 10.1021/jp982948+.Zhao, X., Liu, X., Yu, M., Wang, C., & Li, J. (2017). The highly efficient and stable Cu, Co, Zn-porphyrin–TiO2 photocatalysts with heterojunction by using fashioned one-step method. Dyes and Pigments, 136(1), 648-656. DOI: 10.1016/j.dyepig.2016.09.025.Zheng, W., Shan, N., Yu, L., & Wang, X. (2008). UV visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes and Pigments, 77(1), 153-157. DOI: 10.1016/j.dyepig.2007.04.007.Zoltan, T., Rosales, M.C., & Yadarola, C. (2016). Reactive oxygen species quantification and their correlation with the photocatalytic activity of TiO2 (anatase and rutile) sensitized with asymmetric porphyrins. Journal of Environmental Chemical Engineering, 4(4), 3967-3980. DOI: 10.1016/j.jece.2016.09.008.LICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/18698/4/license.txtf6b8c5608fa6b2f649b2d63e10c5fa73MD54open accessORIGINAL2019AngélicaSuárez.pdf2019AngélicaSuárez.pdfTrabajo de gradoapplication/pdf3468657https://repository.usta.edu.co/bitstream/11634/18698/1/2019Ang%c3%a9licaSu%c3%a1rez.pdf578e53879a98ddc4c3153cdb0b9142c8MD51metadata only access2019AngélicaSuárez1.pdf2019AngélicaSuárez1.pdfAprobación de facultadapplication/pdf143191https://repository.usta.edu.co/bitstream/11634/18698/2/2019Ang%c3%a9licaSu%c3%a1rez1.pdf5a558c75bc284333991233547f6bba20MD52metadata only access2019AngélicaSuárez2.pdf2019AngélicaSuárez2.pdfAcuerdo de confidencialidadapplication/pdf568186https://repository.usta.edu.co/bitstream/11634/18698/3/2019Ang%c3%a9licaSu%c3%a1rez2.pdf2c9ac5e215d0a400e6a5964efcda5f6dMD53metadata only accessTHUMBNAIL2019AngélicaSuárez.pdf.jpg2019AngélicaSuárez.pdf.jpgIM Thumbnailimage/jpeg5280https://repository.usta.edu.co/bitstream/11634/18698/5/2019Ang%c3%a9licaSu%c3%a1rez.pdf.jpg5678d4206487220003da8ed2d1481df2MD55open access2019AngélicaSuárez1.pdf.jpg2019AngélicaSuárez1.pdf.jpgIM Thumbnailimage/jpeg7690https://repository.usta.edu.co/bitstream/11634/18698/6/2019Ang%c3%a9licaSu%c3%a1rez1.pdf.jpg8f209ff7955329511b9faae84ae061b3MD56open access2019AngélicaSuárez2.pdf.jpg2019AngélicaSuárez2.pdf.jpgIM Thumbnailimage/jpeg8482https://repository.usta.edu.co/bitstream/11634/18698/7/2019Ang%c3%a9licaSu%c3%a1rez2.pdf.jpg08f920feab299e2076f25366415f32baMD57open access11634/18698oai:repository.usta.edu.co:11634/186982022-10-10 15:41:15.647metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBIGRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhIGluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZSBncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEgTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zIG1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbiBpcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K