Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales.
En el siguiente trabajo de grado presenta una propuesta del diseño y desarrollo de un convertidor tipo Forward junto con un controlador, siendo el controlador usado como control principal hacia el convertidor, basado en redes neuronales artificiales. Para esto se realizó una serie de investigaciones...
- Autores:
-
Noriega Nonsoque, Brian David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/45688
- Acceso en línea:
- http://hdl.handle.net/11634/45688
- Palabra clave:
- Artificial Neural Network
Forward converter
Power converter
Digital control
Ingeniería eléctrica
Ingeniería
Redes neuronales artificiales
Red neuronal artificial
Convertidor Forward
Convertidor de potencia
Control digital
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_62aba2af8d81a59c9ebd4d48c8bc4505 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/45688 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. |
title |
Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. |
spellingShingle |
Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. Artificial Neural Network Forward converter Power converter Digital control Ingeniería eléctrica Ingeniería Redes neuronales artificiales Red neuronal artificial Convertidor Forward Convertidor de potencia Control digital |
title_short |
Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. |
title_full |
Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. |
title_fullStr |
Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. |
title_full_unstemmed |
Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. |
title_sort |
Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. |
dc.creator.fl_str_mv |
Noriega Nonsoque, Brian David |
dc.contributor.advisor.none.fl_str_mv |
Guarnizo Marín, José Guillermo Bayona Navarro, Jhon Fredy |
dc.contributor.author.none.fl_str_mv |
Noriega Nonsoque, Brian David |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/ 0000-0003-0351-7243 |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Santo Tomás |
dc.subject.keyword.spa.fl_str_mv |
Artificial Neural Network Forward converter Power converter Digital control |
topic |
Artificial Neural Network Forward converter Power converter Digital control Ingeniería eléctrica Ingeniería Redes neuronales artificiales Red neuronal artificial Convertidor Forward Convertidor de potencia Control digital |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería eléctrica Ingeniería Redes neuronales artificiales |
dc.subject.proposal.spa.fl_str_mv |
Red neuronal artificial Convertidor Forward Convertidor de potencia Control digital |
description |
En el siguiente trabajo de grado presenta una propuesta del diseño y desarrollo de un convertidor tipo Forward junto con un controlador, siendo el controlador usado como control principal hacia el convertidor, basado en redes neuronales artificiales. Para esto se realizó una serie de investigaciones las cuales dan como resultado un diseño electrónico detallado del convertidor Forward junto el proceso, que llevó la realización de la red neuronal para implementarlo al convertidor. En la cual su programación fue ejecutada en el software de MATLAB/SIMULINK. Para la implementación en físico se efectúan las modificaciones en el algoritmo en la DSP C2000-F28069M LaunchPad y en el convertidor Forward diseñado capaz de aportar una potencia de salida de 120W a 12V, con un voltaje de entrada de 220V. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-08T19:05:26Z |
dc.date.available.none.fl_str_mv |
2022-07-08T19:05:26Z |
dc.date.issued.none.fl_str_mv |
2022-07-05 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Noriega Nonsoque, B. D. (2022). Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio institucional. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/45688 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Noriega Nonsoque, B. D. (2022). Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio institucional. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/45688 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Hisham M Soliman y RS Al Abri. «Saturated Digital Control for Regional Pole Placement». En: 2017 9th IEEE-GCC Conference and Exhibition (GCCCE). IEEE. 2017, págs. 1-6 Xuanying Shao, Jian Hu y Zhongtian Zhao. «Stabilisation strategy based on feedback linearisation for DC microgrid with multi-converter». En: The Journal of Engineering 2019.16 (2019), págs. 1802-1806 Saman A Gorji y col. «Topologies and control schemes of bidirectional DC–DC power converters: An overview». En: IEEE Access 7 (2019), págs. 117997-118019. Jesus Aguila-Leon y col. «Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller». En: Advances in Science, Technology and Engineering Systems Journal 6.1 (2021), págs. 619-625. Hidenori Maruta y col. «Improved transient response for wide input range of DC-DC converter with neural network based digital controller». En: 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe). IEEE. 2017, P-1. Pedro Melin y col. «Study of the Open-Source Arduino DUE Board as Digital Control Platform for Three-Phase Power Converters». En: IEEE Access 10 (2021), págs. 7574-7587 Airan Frances y col. «Modeling electronic power converters in smart DC microgrids—An overview». En: IEEE Transactions on Smart Grid 9.6 (2017), págs. 6274-6287. Tamer Kamel, Yevgen Biletskiy y Liuchen Chang. «Capacitor aging detection for the DC filters in the power electronic converters using ANFIS algorithm». En: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE. 2015, págs. 663-668 Ravindra Janga y Sushama Malaji. «Performance evaluation of active clamp forward converter with fuzzy logic controller». En: 2017 International Conference on Intelligent Computing and Control (I2C2). IEEE. 2017, págs. 1-6. Ju-Young Lee, Chang-Min Lee y Sang-Kyoo Han. «Two-Switch Reset Winding Forward Converter with Low Input Current Ripple». En: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. IEEE. 2018, págs. 1543-1549 Irina A Belova, Miroslav V Martinovich y Vladimir A Skolota. «Neural network model of the solar battery». En: 2017 18th International Conference of Young Specialists on Micro/- Nanotechnologies and Electron Devices (EDM). IEEE. 2017, págs. 417-421 S Kumaravel, A Sivaprasad y S Ashok. «A fuzzy controller for a DC/DC converter to integrate different power characteristic sources». En: 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE). IEEE. 2016, págs. 550-555. Babita Panda y Bhagabat Panda. «Non-Linear Sliding Mode Control of Three Phase ACDC PWM Converters». En: International Journal of Application or Innovation in Engineering & Management (IJAIEM) (2013). Martin Lešo y col. «Survey of control methods for DC-DC converters». En: Acta Electrotechnica et Informatica 18.3 (2018), págs. 41-46. Pradeep Shenoy y Anthony Fagnani. «Common Mistakes in DC/DC Converters and How to Fix Them». En: Power Supply Design Seminar (2018) Anton Glushchenko y Vladislav Petrov. «Adaptive Control System Based on Neural Tuner of DC Drive with Sinamics DCM». En: 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP). IEEE. 2019, págs. 117-120. Meng Jia, Zhuochao Sun y Liter Siek. «A Novel Zero-Voltage-Detector for Buck Converter in Discontinuous Conduction Mode (DCM)». En: 2018 IEEE 4th Southern Power Electronics Conference (SPEC). IEEE. 2018, págs. 1-4. S-C Tan y col. «Special family of PWM-based sliding-mode voltage controllers for basic DC-DC converters in discontinuous conduction mode». En: IET Electric Power Applications 1.1 (2007), págs. 64-74. Carlos Olalla, Ramon Leyva y Abdelali El Aroudi. «QFT design for current-mode PWM buck converters operating in continuous and discontinuous conduction modes». En: IECON 2006-32nd Annual Conference on IEEE Industrial Electronics. IEEE. 2006, págs. 1828-1833. Babita Panda y col. «A comparative study of pi and fuzzy controllers for solar powered dc-dc boost converter». En: 2015 International Conference on Computational Intelligence and Networks. IEEE. 2015, págs. 47-51. Ayoub Jebri y col. «Robust Adaptive Neuronal Controller for Exoskeletons with SlidingMode». En: Neurocomputing (2020) Sarah Kliff y col. There Aren’t Enough Ventilators to Cope With the Coronavirus. Mar. de 2020. URL: https://www.nytimes.com/2020/03/18/business/coronavirusventilator-shortage.html. Arturo Wallace. Coronavirus: cómo funcionan los respiradores y por qué la desesperada carrera por fabricar más es clave en la batalla contra covid-19. Mar. de 2020. URL: https://www. bbc.com/mundo/noticias-52060716. Nubia Ilia Ponce de León Puig y col. «An Adaptive Predictive control scheme with dynamic Hysteresis Modulation applied to a DC-DC buck converter». En: ISA transactions (2020). Mengting Zhang y col. «Digital LQR steady-state optimal control with feedforward for nonminimum phase boost DC-DC converter». En: 2016 Chinese Control and Decision Conference (CCDC). IEEE. 2016, págs. 384-389. E Sudeep y col. «Design and implementation of current mode controlled 150W miniature forward converter for defence application». En: 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE. 2016, págs. 1-6. Amir Sharifian, Samaneh Fathi Sasansara y Alireza Agah Balgori. «A new control method based on type-2 fuzzy neural PI controller to improve dynamic performance of a halfbridge DC–DC converter». En: Neurocomputing 214 (2016), págs. 718-728. JA Ganeswari y R Kiranmayi. «Performance improvement for DC boost converter with fuzzy controller». En: 2018 2nd International Conference on Inventive Systems and Control (ICISC). IEEE. 2018, págs. 358-362 Ricardo Madeira y col. «Live Demonstration: An Automated Test Bench for an 130nm SC DC-DC Converter». En: 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2018, págs. 1-1. Reinhard Jaschke. «Conduction losses in dc/dc-converters as buckboost/boostbuck synchronous rectifier types». En: 2007 Compatibility in Power Electronics. IEEE. 2007, págs. 1-10. Hao Quan y col. «A survey of computational intelligence techniques for wind power uncertainty quantification in smart grids». En: IEEE Transactions on Neural Networks and Learning Systems (2019). Robert W Erickson y Dragan Maksimovic. Fundamentals of power electronics. Springer Science & Business Media, 2007. T Arunkumari, V Indragandhi y S Sreejith. «Topologies of a DC–DC Converter for Microgrid Application and Implementation of Parallel Quadratic Boost Converter». En: Advances in Smart Grid and Renewable Energy. Springer, 2018, págs. 633-644. Ahmed Hussein y col. «The dynamic performance of photovoltaic supplied dc motor fed from DC-DC converter and controlled by neural networks». En: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290). Vol. 1. IEEE. 2002, págs. 607-612. Chen Lanping, Ma Zhenghua y Duan Soulin. «Adaptive speed controller design based on backstepping for DC motor system with parameter uncertainties». En: 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Vol. 2. IEEE. 2009, págs. 140-144. Li Wang y Mi Sa-Nguyen Thi. «Stability enhancement of large-scale integration of wind, solar, and marine-current power generation fed to an SG-based power system through an LCC-HVDC link». En: IEEE Transactions on Sustainable Energy 5.1 (2013), págs. 160-170. Yi-Hung Liao. «A novel reduced switching loss bidirectional AC/DC converter PWM strategy with feedforward control for grid-tied microgrid systems». En: IEEE Transactions on Power Electronics 29.3 (2013), págs. 1500-1513. Chequeo COVID-Colombia. Uso de respiradores artificiales en casos críticos de COVID-19. Mayo de 2020. URL: https : / / uniandes . edu . co / es / noticias / salud - y - medicina/uso-respiradores-artificiales-casos-criticos-covid19. Abraham Pressman. Switching power supply design. McGraw-Hill Education, 2009. Afshin Balal, Shah Rukh y Shahab Balali. «Designing a Dual Active Transformer DC-DC Forward Converter for DC Micro-Grid Applications Using LTSPICE». En: International Journal of Applied Engineering Research 16.4 (2021), págs. 327-331. MJ Willis y col. «Artificial neural networks in process engineering». En: IEE Proceedings D (Control Theory and Applications). Vol. 138. 3. IET. 1991, págs. 256-266. Juan P Romero y col. «Bio-inspired PSO technique applied to PID sintonization for powerfactor correction in a Boost Converter». En: 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC). IEEE. 2021, págs. 139-144. Hong-Tao Ye y Zhen-Qiang Li. «PID neural network decoupling control based on hybrid particle swarm optimization and differential evolution». En: International Journal of Automation and Computing 17.6 (2020), págs. 867-872. Hong-Tao Ye y Zhen-Qiang Li. «PID neural network decoupling control based on hybrid particle swarm optimization and differential evolution». En: International Journal of Automation and Computing 17.6 (2020), págs. 867-872. Xiang Lin Zhu y col. «Decoupling control based on fuzzy neural-network inverse system in marine biological enzyme fermentation process». En: IEEE Access 6 (2018), págs. 36168-36175 Brian Noriega y col. «Design and Simulation of a Voltage Control Based on Neural Networks». En: 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC). IEEE. 2021, págs. 133-138. Baowei Wang y col. «Temperature error correction based on BP neural network in meteorological wireless sensor network». En: International Journal of Sensor Networks 23.4 (2017), págs. 265-278. Ji-chao Li y col. «A link prediction method for heterogeneous networks based on BP neural network». En: Physica A: Statistical Mechanics and its Applications 495 (2018), págs. 1-17. Kai Cui y Xiang Jing. «Research on prediction model of geotechnical parameters based on BP neural network». En: Neural Computing and Applications 31.12 (2019), págs. 8205-8215. Wei He y Yiting Dong. «Adaptive fuzzy neural network control for a constrained robot using impedance learning». En: IEEE transactions on neural networks and learning systems 29.4 (2017), págs. 1174-1186. Paulo Vitor de Campos Souza. «Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature». En: Applied soft computing 92 (2020), pág. 106275 Jinjun Tang y col. «Lane-changes prediction based on adaptive fuzzy neural network». En: Expert Systems with Applications 91 (2018), págs. 452-463. Jhon Fredy Bayona, Jose Guarnizo y Nancy Gelvez. «Pulse Width Prediction Control Technique Applied to a Half-Bridge Boost». En: Tecciencia 13.25 (2018), págs. 47-54. José Guillermo Guarnizo Marin, Nelson Díaz Aldana, Rodríguez Trujillo y col. «Diseño e implementación de un Controlador Neuronal Inverso aplicado a un Conversor VSC para el control de la potencia activa y potencia reactiva, basado en regiones de trabajo». En: Revista Facultad de Ingeniería Universidad de Antioquia 72 (2014), págs. 9-19 Nelson Díaz Aldcmcí, César Leonardo Trujillo y José Guillermo Guarnizo. «Active and reactive power flow regulation for a grid connected vsc based on fuzzy controllers». En: Revista Facultad de Ingeniería Universidad de Antioquia 66 (2013), págs. 118-130. Jose Guillermo Guarnizo Marin, Juan Carlos Lopez Rodriguez y col. «Análisis diseño e implementación de un control neuronal de un conversor DC-DC». B.S. thesis. Universidad Distrital Francisco José de Caldas. Guarnizo M José Guillermo, Guacaneme M Javier Antonio y Trujillo R Cesar Leonardo. «General inverse neural current control for buck converter». En: Novel Algorithms and Techniques in Telecommunications, Automation and Industrial Electronics. Springer, 2008, págs. 117-122. Gergana VACHEVA, Nikolay HINOV y Bogdan GILEV. «Comparision Between Clasical and Modern Methods for Optimal Control of Buck DC/DC Converter». En: 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA). IEEE. 2019, págs. 1-4. Tomislav Dragiˇcevi´c, Patrick Wheeler y Frede Blaabjerg. «Artificial intelligence aided automated design for reliability of power electronic systems». En: IEEE Transactions on Power Electronics 34.8 (2018), págs. 7161-7171. Hidenori Maruta y Daiki Hoshino. «Transient response improvement of repetitive-trained neural network controlled dc-dc converter with overcompensation suppression». En: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Vol. 1. IEEE. 2019, págs. 2088-2093. Xavier Glorot y Yoshua Bengio. «Understanding the difficulty of training deep feedforward neural networks». En: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop y Conference Proceedings. 2010, págs. 249-256. |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Electrónica |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/45688/4/license_rdf https://repository.usta.edu.co/bitstream/11634/45688/5/license.txt https://repository.usta.edu.co/bitstream/11634/45688/1/2022briannoriega.pdf https://repository.usta.edu.co/bitstream/11634/45688/2/Carta%20Aprobaci%c3%b3n%20Facultad.pdf https://repository.usta.edu.co/bitstream/11634/45688/3/Carta%20Derechos%20de%20Autor.pdf https://repository.usta.edu.co/bitstream/11634/45688/6/2022briannoriega.pdf.jpg https://repository.usta.edu.co/bitstream/11634/45688/7/Carta%20Aprobaci%c3%b3n%20Facultad.pdf.jpg https://repository.usta.edu.co/bitstream/11634/45688/8/Carta%20Derechos%20de%20Autor.pdf.jpg |
bitstream.checksum.fl_str_mv |
217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 56696c7850b524111bef78a73330103c 89a8b9b997e5fe58f1ab8fd1c321d6c4 9553f9d1520c34c9f1536275d4b56644 7e8c3582ae437a6e5d23d7dbff79a2fb 7398114442c50c4866d2749b1a7b575f 8a11ba5611175bafce13382626586dac |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026374356140032 |
spelling |
Guarnizo Marín, José GuillermoBayona Navarro, Jhon FredyNoriega Nonsoque, Brian Davidhttps://orcid.org/ 0000-0003-0351-7243Universidad Santo Tomás2022-07-08T19:05:26Z2022-07-08T19:05:26Z2022-07-05Noriega Nonsoque, B. D. (2022). Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio institucional.http://hdl.handle.net/11634/45688reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn el siguiente trabajo de grado presenta una propuesta del diseño y desarrollo de un convertidor tipo Forward junto con un controlador, siendo el controlador usado como control principal hacia el convertidor, basado en redes neuronales artificiales. Para esto se realizó una serie de investigaciones las cuales dan como resultado un diseño electrónico detallado del convertidor Forward junto el proceso, que llevó la realización de la red neuronal para implementarlo al convertidor. En la cual su programación fue ejecutada en el software de MATLAB/SIMULINK. Para la implementación en físico se efectúan las modificaciones en el algoritmo en la DSP C2000-F28069M LaunchPad y en el convertidor Forward diseñado capaz de aportar una potencia de salida de 120W a 12V, con un voltaje de entrada de 220V.The following work presents a proposal for the design and development of a Forward converter together with a controller, being the controller used as the main control to the converter, based on artificial neural networks. For this, a series of investigations were carried out which resulted in a detailed electronic design of the Forward converter together with the process, which led to the realization of the neural network to implement it to the converter. In which its programming was executed in MATLAB/SIMULINK software. For the physical implementation, the modifications in the algorithm are made in the DSP C2000-F28069M LaunchPad and in the designed Forward converter capable of providing an output power of 120W at 12V, with an input voltage of 220V.Ingeniero ElectronicoPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales.Artificial Neural NetworkForward converterPower converterDigital controlIngeniería eléctricaIngenieríaRedes neuronales artificialesRed neuronal artificialConvertidor ForwardConvertidor de potenciaControl digitalTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáHisham M Soliman y RS Al Abri. «Saturated Digital Control for Regional Pole Placement». En: 2017 9th IEEE-GCC Conference and Exhibition (GCCCE). IEEE. 2017, págs. 1-6Xuanying Shao, Jian Hu y Zhongtian Zhao. «Stabilisation strategy based on feedback linearisation for DC microgrid with multi-converter». En: The Journal of Engineering 2019.16 (2019), págs. 1802-1806Saman A Gorji y col. «Topologies and control schemes of bidirectional DC–DC power converters: An overview». En: IEEE Access 7 (2019), págs. 117997-118019.Jesus Aguila-Leon y col. «Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller». En: Advances in Science, Technology and Engineering Systems Journal 6.1 (2021), págs. 619-625.Hidenori Maruta y col. «Improved transient response for wide input range of DC-DC converter with neural network based digital controller». En: 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe). IEEE. 2017, P-1.Pedro Melin y col. «Study of the Open-Source Arduino DUE Board as Digital Control Platform for Three-Phase Power Converters». En: IEEE Access 10 (2021), págs. 7574-7587Airan Frances y col. «Modeling electronic power converters in smart DC microgrids—An overview». En: IEEE Transactions on Smart Grid 9.6 (2017), págs. 6274-6287.Tamer Kamel, Yevgen Biletskiy y Liuchen Chang. «Capacitor aging detection for the DC filters in the power electronic converters using ANFIS algorithm». En: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE. 2015, págs. 663-668Ravindra Janga y Sushama Malaji. «Performance evaluation of active clamp forward converter with fuzzy logic controller». En: 2017 International Conference on Intelligent Computing and Control (I2C2). IEEE. 2017, págs. 1-6.Ju-Young Lee, Chang-Min Lee y Sang-Kyoo Han. «Two-Switch Reset Winding Forward Converter with Low Input Current Ripple». En: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. IEEE. 2018, págs. 1543-1549Irina A Belova, Miroslav V Martinovich y Vladimir A Skolota. «Neural network model of the solar battery». En: 2017 18th International Conference of Young Specialists on Micro/- Nanotechnologies and Electron Devices (EDM). IEEE. 2017, págs. 417-421S Kumaravel, A Sivaprasad y S Ashok. «A fuzzy controller for a DC/DC converter to integrate different power characteristic sources». En: 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE). IEEE. 2016, págs. 550-555.Babita Panda y Bhagabat Panda. «Non-Linear Sliding Mode Control of Three Phase ACDC PWM Converters». En: International Journal of Application or Innovation in Engineering & Management (IJAIEM) (2013).Martin Lešo y col. «Survey of control methods for DC-DC converters». En: Acta Electrotechnica et Informatica 18.3 (2018), págs. 41-46.Pradeep Shenoy y Anthony Fagnani. «Common Mistakes in DC/DC Converters and How to Fix Them». En: Power Supply Design Seminar (2018)Anton Glushchenko y Vladislav Petrov. «Adaptive Control System Based on Neural Tuner of DC Drive with Sinamics DCM». En: 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP). IEEE. 2019, págs. 117-120.Meng Jia, Zhuochao Sun y Liter Siek. «A Novel Zero-Voltage-Detector for Buck Converter in Discontinuous Conduction Mode (DCM)». En: 2018 IEEE 4th Southern Power Electronics Conference (SPEC). IEEE. 2018, págs. 1-4.S-C Tan y col. «Special family of PWM-based sliding-mode voltage controllers for basic DC-DC converters in discontinuous conduction mode». En: IET Electric Power Applications 1.1 (2007), págs. 64-74.Carlos Olalla, Ramon Leyva y Abdelali El Aroudi. «QFT design for current-mode PWM buck converters operating in continuous and discontinuous conduction modes». En: IECON 2006-32nd Annual Conference on IEEE Industrial Electronics. IEEE. 2006, págs. 1828-1833.Babita Panda y col. «A comparative study of pi and fuzzy controllers for solar powered dc-dc boost converter». En: 2015 International Conference on Computational Intelligence and Networks. IEEE. 2015, págs. 47-51.Ayoub Jebri y col. «Robust Adaptive Neuronal Controller for Exoskeletons with SlidingMode». En: Neurocomputing (2020)Sarah Kliff y col. There Aren’t Enough Ventilators to Cope With the Coronavirus. Mar. de 2020. URL: https://www.nytimes.com/2020/03/18/business/coronavirusventilator-shortage.html.Arturo Wallace. Coronavirus: cómo funcionan los respiradores y por qué la desesperada carrera por fabricar más es clave en la batalla contra covid-19. Mar. de 2020. URL: https://www. bbc.com/mundo/noticias-52060716.Nubia Ilia Ponce de León Puig y col. «An Adaptive Predictive control scheme with dynamic Hysteresis Modulation applied to a DC-DC buck converter». En: ISA transactions (2020).Mengting Zhang y col. «Digital LQR steady-state optimal control with feedforward for nonminimum phase boost DC-DC converter». En: 2016 Chinese Control and Decision Conference (CCDC). IEEE. 2016, págs. 384-389.E Sudeep y col. «Design and implementation of current mode controlled 150W miniature forward converter for defence application». En: 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE. 2016, págs. 1-6.Amir Sharifian, Samaneh Fathi Sasansara y Alireza Agah Balgori. «A new control method based on type-2 fuzzy neural PI controller to improve dynamic performance of a halfbridge DC–DC converter». En: Neurocomputing 214 (2016), págs. 718-728.JA Ganeswari y R Kiranmayi. «Performance improvement for DC boost converter with fuzzy controller». En: 2018 2nd International Conference on Inventive Systems and Control (ICISC). IEEE. 2018, págs. 358-362Ricardo Madeira y col. «Live Demonstration: An Automated Test Bench for an 130nm SC DC-DC Converter». En: 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2018, págs. 1-1.Reinhard Jaschke. «Conduction losses in dc/dc-converters as buckboost/boostbuck synchronous rectifier types». En: 2007 Compatibility in Power Electronics. IEEE. 2007, págs. 1-10.Hao Quan y col. «A survey of computational intelligence techniques for wind power uncertainty quantification in smart grids». En: IEEE Transactions on Neural Networks and Learning Systems (2019).Robert W Erickson y Dragan Maksimovic. Fundamentals of power electronics. Springer Science & Business Media, 2007.T Arunkumari, V Indragandhi y S Sreejith. «Topologies of a DC–DC Converter for Microgrid Application and Implementation of Parallel Quadratic Boost Converter». En: Advances in Smart Grid and Renewable Energy. Springer, 2018, págs. 633-644.Ahmed Hussein y col. «The dynamic performance of photovoltaic supplied dc motor fed from DC-DC converter and controlled by neural networks». En: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290). Vol. 1. IEEE. 2002, págs. 607-612.Chen Lanping, Ma Zhenghua y Duan Soulin. «Adaptive speed controller design based on backstepping for DC motor system with parameter uncertainties». En: 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Vol. 2. IEEE. 2009, págs. 140-144.Li Wang y Mi Sa-Nguyen Thi. «Stability enhancement of large-scale integration of wind, solar, and marine-current power generation fed to an SG-based power system through an LCC-HVDC link». En: IEEE Transactions on Sustainable Energy 5.1 (2013), págs. 160-170.Yi-Hung Liao. «A novel reduced switching loss bidirectional AC/DC converter PWM strategy with feedforward control for grid-tied microgrid systems». En: IEEE Transactions on Power Electronics 29.3 (2013), págs. 1500-1513.Chequeo COVID-Colombia. Uso de respiradores artificiales en casos críticos de COVID-19. Mayo de 2020. URL: https : / / uniandes . edu . co / es / noticias / salud - y - medicina/uso-respiradores-artificiales-casos-criticos-covid19.Abraham Pressman. Switching power supply design. McGraw-Hill Education, 2009.Afshin Balal, Shah Rukh y Shahab Balali. «Designing a Dual Active Transformer DC-DC Forward Converter for DC Micro-Grid Applications Using LTSPICE». En: International Journal of Applied Engineering Research 16.4 (2021), págs. 327-331.MJ Willis y col. «Artificial neural networks in process engineering». En: IEE Proceedings D (Control Theory and Applications). Vol. 138. 3. IET. 1991, págs. 256-266.Juan P Romero y col. «Bio-inspired PSO technique applied to PID sintonization for powerfactor correction in a Boost Converter». En: 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC). IEEE. 2021, págs. 139-144.Hong-Tao Ye y Zhen-Qiang Li. «PID neural network decoupling control based on hybrid particle swarm optimization and differential evolution». En: International Journal of Automation and Computing 17.6 (2020), págs. 867-872.Hong-Tao Ye y Zhen-Qiang Li. «PID neural network decoupling control based on hybrid particle swarm optimization and differential evolution». En: International Journal of Automation and Computing 17.6 (2020), págs. 867-872.Xiang Lin Zhu y col. «Decoupling control based on fuzzy neural-network inverse system in marine biological enzyme fermentation process». En: IEEE Access 6 (2018), págs. 36168-36175Brian Noriega y col. «Design and Simulation of a Voltage Control Based on Neural Networks». En: 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC). IEEE. 2021, págs. 133-138.Baowei Wang y col. «Temperature error correction based on BP neural network in meteorological wireless sensor network». En: International Journal of Sensor Networks 23.4 (2017), págs. 265-278.Ji-chao Li y col. «A link prediction method for heterogeneous networks based on BP neural network». En: Physica A: Statistical Mechanics and its Applications 495 (2018), págs. 1-17.Kai Cui y Xiang Jing. «Research on prediction model of geotechnical parameters based on BP neural network». En: Neural Computing and Applications 31.12 (2019), págs. 8205-8215.Wei He y Yiting Dong. «Adaptive fuzzy neural network control for a constrained robot using impedance learning». En: IEEE transactions on neural networks and learning systems 29.4 (2017), págs. 1174-1186.Paulo Vitor de Campos Souza. «Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature». En: Applied soft computing 92 (2020), pág. 106275Jinjun Tang y col. «Lane-changes prediction based on adaptive fuzzy neural network». En: Expert Systems with Applications 91 (2018), págs. 452-463.Jhon Fredy Bayona, Jose Guarnizo y Nancy Gelvez. «Pulse Width Prediction Control Technique Applied to a Half-Bridge Boost». En: Tecciencia 13.25 (2018), págs. 47-54.José Guillermo Guarnizo Marin, Nelson Díaz Aldana, Rodríguez Trujillo y col. «Diseño e implementación de un Controlador Neuronal Inverso aplicado a un Conversor VSC para el control de la potencia activa y potencia reactiva, basado en regiones de trabajo». En: Revista Facultad de Ingeniería Universidad de Antioquia 72 (2014), págs. 9-19Nelson Díaz Aldcmcí, César Leonardo Trujillo y José Guillermo Guarnizo. «Active and reactive power flow regulation for a grid connected vsc based on fuzzy controllers». En: Revista Facultad de Ingeniería Universidad de Antioquia 66 (2013), págs. 118-130.Jose Guillermo Guarnizo Marin, Juan Carlos Lopez Rodriguez y col. «Análisis diseño e implementación de un control neuronal de un conversor DC-DC». B.S. thesis. Universidad Distrital Francisco José de Caldas.Guarnizo M José Guillermo, Guacaneme M Javier Antonio y Trujillo R Cesar Leonardo. «General inverse neural current control for buck converter». En: Novel Algorithms and Techniques in Telecommunications, Automation and Industrial Electronics. Springer, 2008, págs. 117-122.Gergana VACHEVA, Nikolay HINOV y Bogdan GILEV. «Comparision Between Clasical and Modern Methods for Optimal Control of Buck DC/DC Converter». En: 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA). IEEE. 2019, págs. 1-4.Tomislav Dragiˇcevi´c, Patrick Wheeler y Frede Blaabjerg. «Artificial intelligence aided automated design for reliability of power electronic systems». En: IEEE Transactions on Power Electronics 34.8 (2018), págs. 7161-7171.Hidenori Maruta y Daiki Hoshino. «Transient response improvement of repetitive-trained neural network controlled dc-dc converter with overcompensation suppression». En: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Vol. 1. IEEE. 2019, págs. 2088-2093.Xavier Glorot y Yoshua Bengio. «Understanding the difficulty of training deep feedforward neural networks». En: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop y Conference Proceedings. 2010, págs. 249-256.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/45688/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/45688/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessORIGINAL2022briannoriega.pdf2022briannoriega.pdfTrabajo de Gradoapplication/pdf5387398https://repository.usta.edu.co/bitstream/11634/45688/1/2022briannoriega.pdf56696c7850b524111bef78a73330103cMD51open accessCarta Aprobación Facultad.pdfCarta Aprobación Facultad.pdfCarta aprobación facultadapplication/pdf328445https://repository.usta.edu.co/bitstream/11634/45688/2/Carta%20Aprobaci%c3%b3n%20Facultad.pdf89a8b9b997e5fe58f1ab8fd1c321d6c4MD52metadata only accessCarta Derechos de Autor.pdfCarta Derechos de Autor.pdfCarta Derechos de autorapplication/pdf984008https://repository.usta.edu.co/bitstream/11634/45688/3/Carta%20Derechos%20de%20Autor.pdf9553f9d1520c34c9f1536275d4b56644MD53metadata only accessTHUMBNAIL2022briannoriega.pdf.jpg2022briannoriega.pdf.jpgIM Thumbnailimage/jpeg6949https://repository.usta.edu.co/bitstream/11634/45688/6/2022briannoriega.pdf.jpg7e8c3582ae437a6e5d23d7dbff79a2fbMD56open accessCarta Aprobación Facultad.pdf.jpgCarta Aprobación Facultad.pdf.jpgIM Thumbnailimage/jpeg6942https://repository.usta.edu.co/bitstream/11634/45688/7/Carta%20Aprobaci%c3%b3n%20Facultad.pdf.jpg7398114442c50c4866d2749b1a7b575fMD57open accessCarta Derechos de Autor.pdf.jpgCarta Derechos de Autor.pdf.jpgIM Thumbnailimage/jpeg7264https://repository.usta.edu.co/bitstream/11634/45688/8/Carta%20Derechos%20de%20Autor.pdf.jpg8a11ba5611175bafce13382626586dacMD58open access11634/45688oai:repository.usta.edu.co:11634/456882022-12-24 03:16:50.808open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |