Adaptive filtering implemented over TMS320c6713 DSP platform for system identification
This paper presents the experimental development of software and hardware configuration to implement two adaptive algorithms: LMS (Least Mean Square) and RLS (Recursive Least Square), using TMS320C6713 DSP platform of Texas Instruments, for unknown systems identification. Methodology for implementat...
- Autores:
-
Jiménez-López, Fabián Rolando
Pardo-Beainy, Camilo Ernesto
Gutiérrez-Cáceres, Edgar Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/36118
- Acceso en línea:
- http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/726
http://hdl.handle.net/11634/36118
- Palabra clave:
- Rights
- License
- Copyright (c) 2018 ITECKNE
Summary: | This paper presents the experimental development of software and hardware configuration to implement two adaptive algorithms: LMS (Least Mean Square) and RLS (Recursive Least Square), using TMS320C6713 DSP platform of Texas Instruments, for unknown systems identification. Methodology for implementation and validation analysis for the adaptive algorithms is described in detail for real-time systems identification applications, and the experimental results were evaluated in terms of performance criterions in time domain, frequency domain, computational complexity, and accuracy. |
---|