Adaptive filtering implemented over TMS320c6713 DSP platform for system identification

This paper presents the experimental development of software and hardware configuration to implement two adaptive algorithms: LMS (Least Mean Square) and RLS (Recursive Least Square), using TMS320C6713 DSP platform of Texas Instruments, for unknown systems identification. Methodology for implementat...

Full description

Autores:
Jiménez-López, Fabián Rolando
Pardo-Beainy, Camilo Ernesto
Gutiérrez-Cáceres, Edgar Andrés
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/36118
Acceso en línea:
http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/726
http://hdl.handle.net/11634/36118
Palabra clave:
Rights
License
Copyright (c) 2018 ITECKNE
Description
Summary:This paper presents the experimental development of software and hardware configuration to implement two adaptive algorithms: LMS (Least Mean Square) and RLS (Recursive Least Square), using TMS320C6713 DSP platform of Texas Instruments, for unknown systems identification. Methodology for implementation and validation analysis for the adaptive algorithms is described in detail for real-time systems identification applications, and the experimental results were evaluated in terms of performance criterions in time domain, frequency domain, computational complexity, and accuracy.