The class of CUB models is commonly used by practitioners to model ordinal data, in this paper we propose the cubm package which provides the class of CUB models in the R system for statistical computing. The cubm package allows to specify a formula for each parameter of the model, the Maximum Likel...
- Autores:
-
Barajas, Freddy Hernández
Usuga Manco, Olga Cecilia
García Muñoz, Sebastián
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- eng
- OAI Identifier:
- oai:repository.usta.edu.co:11634/14881
- Palabra clave:
- CUB models, Feeling and uncertainty, Ordinal data, R.
- Rights
- License
- Copyright (c) 2018 Comunicaciones en Estadística
id |
SANTTOMAS2_5ec190de671dc5a430736c336509ac6f |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/14881 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
spelling |
Barajas, Freddy HernándezUsuga Manco, Olga CeciliaGarcía Muñoz, Sebastián2018-12-21https://revistas.usantotomas.edu.co/index.php/estadistica/article/view/11The class of CUB models is commonly used by practitioners to model ordinal data, in this paper we propose the cubm package which provides the class of CUB models in the R system for statistical computing. The cubm package allows to specify a formula for each parameter of the model, the Maximum Likelihood (ML) estimation is performed by optimization via the functions nlminb, optim and DEoptim and the variance-covariance matrix can be obtained by numerical approximation of the Hessian matrix or by bootstrap method. The utility of the package is illustrated by an application and a simulation study.application/pdfengUniversidad Santo Tomáshttps://revistas.usantotomas.edu.co/index.php/estadistica/article/view/11/pdfComunicaciones en Estadística; Vol. 11, Núm. 2 (2018); 219-2382339-30762027-3355Comunicaciones en Estadística; Vol. 11, Núm. 2 (2018); 219-238Copyright (c) 2018 Comunicaciones en Estadísticahttp://purl.org/coar/access_right/c_abf2cubm package in R to fit CUB modelsinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1CUB models, Feeling and uncertainty, Ordinal data, R.11634/14881oai:repository.usta.edu.co:11634/148812023-07-14 16:37:32.213metadata only accessRepositorio Universidad Santo Tomásnoreply@usta.edu.co |
dc.title.alternative.eng.fl_str_mv |
cubm package in R to fit CUB models |
dc.creator.fl_str_mv |
Barajas, Freddy Hernández Usuga Manco, Olga Cecilia García Muñoz, Sebastián |
dc.contributor.author.spa.fl_str_mv |
Barajas, Freddy Hernández Usuga Manco, Olga Cecilia García Muñoz, Sebastián |
dc.subject.proposal.eng.fl_str_mv |
CUB models, Feeling and uncertainty, Ordinal data, R. |
topic |
CUB models, Feeling and uncertainty, Ordinal data, R. |
spellingShingle |
CUB models, Feeling and uncertainty, Ordinal data, R. |
description |
The class of CUB models is commonly used by practitioners to model ordinal data, in this paper we propose the cubm package which provides the class of CUB models in the R system for statistical computing. The cubm package allows to specify a formula for each parameter of the model, the Maximum Likelihood (ML) estimation is performed by optimization via the functions nlminb, optim and DEoptim and the variance-covariance matrix can be obtained by numerical approximation of the Hessian matrix or by bootstrap method. The utility of the package is illustrated by an application and a simulation study. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-12-21 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.spa.fl_str_mv |
https://revistas.usantotomas.edu.co/index.php/estadistica/article/view/11 |
url |
https://revistas.usantotomas.edu.co/index.php/estadistica/article/view/11 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.spa.fl_str_mv |
https://revistas.usantotomas.edu.co/index.php/estadistica/article/view/11/pdf |
dc.relation.citationissue.spa.fl_str_mv |
Comunicaciones en Estadística; Vol. 11, Núm. 2 (2018); 219-238 2339-3076 2027-3355 |
dc.relation.citationissue.eng.fl_str_mv |
Comunicaciones en Estadística; Vol. 11, Núm. 2 (2018); 219-238 |
dc.rights.spa.fl_str_mv |
Copyright (c) 2018 Comunicaciones en Estadística |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Copyright (c) 2018 Comunicaciones en Estadística http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
institution |
Universidad Santo Tomás |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
noreply@usta.edu.co |
_version_ |
1782026137588727808 |