Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales

Este proyecto se propone diseñar una red neuronal para el reconocimiento de melanomas (un tipo de cáncer de piel), mediante el uso de una técnica conocida como redes neuronales convolucionales, mayormente utilizada en visión artificial (una rama de la inteligencia artificial), aplicada en el reconoc...

Full description

Autores:
Riaño Borda, Sebastian
Tipo de recurso:
Masters Thesis
Fecha de publicación:
2022
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/45517
Acceso en línea:
http://hdl.handle.net/11634/45517
Palabra clave:
Convolution
Convolutional Neural Networks
Dermoscopy
Melanoma Detection
Medicina
Procesamiento de imagenes
Ingeniería eléctrica
Convolución
Redes Neuronales Convolucionales
Dermoscopia
Detección de Melanomas
Rights
openAccess
License
Atribución 2.5 Colombia
id SANTTOMAS2_5d438704df9203330d629b949c05812d
oai_identifier_str oai:repository.usta.edu.co:11634/45517
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales
title Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales
spellingShingle Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales
Convolution
Convolutional Neural Networks
Dermoscopy
Melanoma Detection
Medicina
Procesamiento de imagenes
Ingeniería eléctrica
Convolución
Redes Neuronales Convolucionales
Dermoscopia
Detección de Melanomas
title_short Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales
title_full Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales
title_fullStr Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales
title_full_unstemmed Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales
title_sort Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales
dc.creator.fl_str_mv Riaño Borda, Sebastian
dc.contributor.advisor.none.fl_str_mv Mateus, Armando
Camacho, Edgar Camilo
Guillermo Guarnizo, José
dc.contributor.author.none.fl_str_mv Riaño Borda, Sebastian
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/ 0000-0003-4938-2233
https://orcid.org/ 0000-0002-8401-4949
https://orcid.org/ 0000-0002-6084-2512
https://orcid.org/ 0000-0002-2399-4859
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Convolution
Convolutional Neural Networks
Dermoscopy
Melanoma Detection
topic Convolution
Convolutional Neural Networks
Dermoscopy
Melanoma Detection
Medicina
Procesamiento de imagenes
Ingeniería eléctrica
Convolución
Redes Neuronales Convolucionales
Dermoscopia
Detección de Melanomas
dc.subject.lemb.spa.fl_str_mv Medicina
Procesamiento de imagenes
Ingeniería eléctrica
dc.subject.proposal.spa.fl_str_mv Convolución
Redes Neuronales Convolucionales
Dermoscopia
Detección de Melanomas
description Este proyecto se propone diseñar una red neuronal para el reconocimiento de melanomas (un tipo de cáncer de piel), mediante el uso de una técnica conocida como redes neuronales convolucionales, mayormente utilizada en visión artificial (una rama de la inteligencia artificial), aplicada en el reconocimiento de patrones sobre lunares en la piel y determinar la existencia de un melanoma maligno, o no, a partir de un dataset limitado. Para esto, la red convolucional diseñada y entrenada para clasificar los melanomas está formada por unas capas de convolución y pooling apiladas entre sí para formar la red propuesta, una “fully connected layer” y un clasificador con 1 o 2 salidas, y es parametrizada con diferentes valores en características como el dropout, el tamaño de los filtros, entre otros, realizando los entrenamientos en 5 diferentes etapas o experimentos. El dataset propuesto para el entrenamiento de la CNN (Convolutional Neural Networks) es la colección pública más grande de imágenes demoscópicas de lesiones en la piel, proveída de manera gratuita por “International Skin Imaging Collaboration (ISIC)”, un esfuerzo por mejorar el diagnóstico de melanomas, patrocinado por la “International Society for Digital Imaging of the Skin (ISDIS)”. El propósito de este proyecto es diseñar una red neuronal convolucional con alto nivel de precisión que ayude a los profesionales en medicina con el diagnóstico de melanomas, en este caso fue posible conseguir una precisión de hasta 87.82% con la red diseñada con mejor rendimiento.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-30T20:36:38Z
dc.date.available.none.fl_str_mv 2022-06-30T20:36:38Z
dc.date.issued.none.fl_str_mv 2022-06-30
dc.type.local.spa.fl_str_mv Tesis de maestría
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_bdcc
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/masterThesis
format http://purl.org/coar/resource_type/c_bdcc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Riaño Borda, S. (2022). Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/45517
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Riaño Borda, S. (2022). Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/45517
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv F. L. Marqués, «Clinic cloud,» [En línea]. Available: https://clinic cloud.com/blog/aplicaciones-de-la-tecnologia-en-la-salud/. [Último acceso: 15 04 2022].
C. TI, «Canales TI,» 10 06 2020. [En línea]. Available: https://itcomunicacion.com.mx/el uso-de-la-tecnologia-en-la-medicina/. [Último acceso: 15 04 2022].
S. Lee, H. Huang y M. Zelen, «Early detection of disease and scheduling of screening examinations,» Statistical Methods in Medical Research, vol. 13, nº 6, pp. 443-456, 2004.
O. T. Jones, C. K. Ranmuthu, P. N. Hall, G. Funston y F. M. Walter, «Recognising Skin Cancer in Primary Care,» Advances in Therapy, vol. 37, nº 1, p. 603–616, 2020.
C. Garbe, K. Peris, A. Hauschild, P. Saiag, M. Middleton, L. Bastholt, J.-J. Grob, J. Malvehy, J. Newton-Bishop, A. J. Stratigos, H. Pehamberger y A. M. Eggermont, «Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline – Update 2016,» European Journal of Cancer, vol. 63, pp. 201-217, 2016.
I. P. Santos, R. van Doorn y P. Caspers, «Improving clinical diagnosis of early-stage cutaneous melanoma based on Raman spectroscopy,» British Journal of Cancer, vol. 119, p. 1339–1346, 2018.
The International Skin Imaging Collaboration, «ISIC,» [En línea]. Available: https://www.isic-archive.com/#!/topWithHeader/onlyHeaderTop/gallery. [Último acceso: January 2020].
Biblioteca Nacional de Medicina de EE. UU. , «Lunar | Nevos | MedlinePlus en español,» [En línea]. Available: https://medlineplus.gov/spanish/moles.html. [Último acceso: 08 09 2021].
American Cancer Society, «Estadísticas importantes sobre el cáncer de piel tipo melanoma,» [En línea]. Available: https://www.cancer.org/es/cancer/cancer-de-piel-tipo melanoma/acerca/estadisticas-clave.html. [Último acceso: 09 09 2021].
Biblioteca Nacional de Medicina de EE. UU. , «Melanoma: MedlinePlus en español,» [En línea]. Available: https://medlineplus.gov/spanish/melanoma.html. [Último acceso: 08 09 2021].
American Cancer Society, «Etapas del cáncer de piel tipo melanoma,» [En línea]. Available: https://www.cancer.org/es/cancer/cancer-de-piel-tipo-melanoma/deteccion diagnostico-clasificacion-por-etapas/clasificacion-por-etapas-el-cancer-de-piel-tipo melanoma.html. [Último acceso: 09 09 2021].
J. A. Avilés‐Izquierdo, C. Ciudad‐Blanco, A. Sánchez‐Herrero, A. Mateos‐Mayo, L. M. Nieto‐Benito y E. Rodríguez‐Lomba, «Dermoscopy of cutaneous melanoma metastases: A color-based pattern classification,» Journal of Dermatology, vol. 46, nº 7, pp. 564-569, 2019.
V. Teigens, Inteligencia Artificial General, Cambridge Stanford Books, 2000.
V. Advany, «What is Artificial Intelligence? How does AI work, Types and Future of it?,» 19 Octubre 2021. [En línea]. Available: https://www.mygreatlearning.com/blog/what-is artificial-intelligence/#comments. [Último acceso: 25 Noviembre 2021].
S. Khan, H. Rahmani, S. A. A. Shah y M. Bennamoun, A Guide to Convolutional Neural Networks for Computer Vision, Morgan & Claypool, 2018.
A. Hintze, «goverment technology,» 14 11 2016. [En línea]. Available: https://www.govtech.com/computing/understanding-the-four-types-of-artificial intelligence.html#:~:text=2.-,Limited%20memory,and%20monitoring%20them%20over% 20time.. [Último acceso: 10 04 2022].
Google, «Google Trends,» [En línea]. Available: https://trends.google.es/trends/explore?date=all&q=Convolutional%20neural%20network, deep%20learning,machine%20learning. [Último acceso: Agosto 2021].
R. Wason, «Deep learning: Evolution and expansion,» Cognitive Systems Research, vol. 52, pp. 701-708, 2018.
W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu y F. Alsaadi, «A survey of deep neural network architectures and their applications,» Neurocomputing, vol. 234, pp. 11-26, 2017.
Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu y M. S. Lew, «Deep learning for visual understanding: A review,» Neurocomputing, vol. 187, pp. 27-48, 2016.
R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang y R. X. Gao, «Deep learning and its applications to machine health monitoring,» Mechanical Systems and Signal Processing, vol. 115, pp. 213-237, 2019.
F. Ercal, A. Chawla, W. Stoecker, H.-C. Lee y R. Moss, «Neural Network Diagnosis of Malignant Melanoma From Color Images,» IEEE Transactions on Biomedical Engineering, vol. 41, nº 9, pp. 837-845, 1994.
P. Vannoorenberghe, O. Colot y D. De Brucq, «Dempster-Shafer's theory as an aid to color information processing. Application to melanoma detection in dermatology,» de Proceedings 10th International Conference on Image Analysis and Processing, Venice, Italy, 1999.
L. Yu, H. Chen, Q. Dou, J. Qin y P.-A. Heng, «Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks,» IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 36, nº 4, pp. 994-1004, 2017.
Y. Yuan, M. Chao y Y.-C. Lo, «Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks with Jaccard Distance,» IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 36, pp. 1876-1886, 2017.
N. Codella, Q.-B. Nguyen, S. Pankanti, D. Gutman, B. Helba, A. Halpern y J. R. Smith, «Deep learning ensembles for melanoma recognition in dermoscopy images,» IBM Journal of Research and Development, vol. 21, pp. 5:1-5:15, 2017.
I. González-Díaz, «DermaKNet: Incorporating the knowledge of dermatologists to Convolutional Neural Networks for skin lesion diagnosis,» IEEE Journal of Biomedical and Health Informatics, vol. 23, nº 2, pp. 547-559, 2018.
E. Nasr-Esfahani, S. Samavi, N. Karimi y S. Soroushmehr, «Melanoma Detection by Analysis of Clinical Images Using Convolutional Neural Network,» de 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, 2016.
M. u. Rehman, S. H. Khan, S. M. D. Rizvi, Z. Abbas y A. Zafar, «Classification of Skin Lesion by Interference of Segmentation and Convolotion Neural Network,» de 2018 2nd International Conference on Engineering Innovation (ICEI), Bangkok, 2018.
Z. Yu, D. Ni, S. Chen, J. Qin, S. Li, T. Wang y B. Lei, «Hybrid dermoscopy image classification framework based on deep convolutional neural network and Fisher vector,» de 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, 2017.
S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka y H. C. Wulf, «Detection of skin cancer by classification of Raman spectra,» IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 51, nº 10, pp. 1784 - 1793, 2004.
I. Pirnog, R. O. Preda, C. Oprea y C. Paleologu, «Automatic lesion segmentation for melanoma diagnostics in macroscopic images,» de 23rd European Signal Processing Conference (EUSIPCO), Nice, 2015.
R. Kasmi y K. Mokrani, «Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule,» IET Image Processing, vol. 10, nº 6, pp. 448- 455, 2016.
J. R. Varatharaj, N. J, P. R y A. K. L, «Detection of melanoma skin cancer using digital camera images,» ARPN Journal of Engineering and Applied Sciences, vol. 10, pp. 3082- 3085, 2015.
K. Shimizu, H. Iyatomi, . M. E. Celebi, K.-A. Norton y M. Tanaka, «Four-Class Classification of Skin Lesions With Task Decomposition Strategy,» IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 62, nº 1, pp. 274 - 283, 2014.
M. Sadeghi, T. K. Lee, D. McLean, H. Lui y M. S. Atkins, «Detection and Analysis of Irregular Streaks in Dermoscopic Images of Skin Lesions,» Detection and Analysis of Irregular Streaks in Dermoscopic Images of Skin Lesions, vol. 32, nº 5, pp. 849 - 861, 2013.
Y. Gu, Z. Ge, C. P. Bonnington y J. Zhou, «Progressive Transfer Learning and Adversarial Domain Adaptation for Cross-Domain Skin Disease Classification,» IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFOMATICS, vol. 24, nº 5, pp. 1379 - 1393, 2020.
Q. Zhou, Y. Shi, Z. Xu, R. Qu y G. Xu, «Classifying Melanoma Skin Lesions Using Convolutional Spiking Neural Networks With Unsupervised STDP Learning Rule,» IEEE Access, vol. 8, pp. 101309 - 101319, 2020.
L. Wei, K. Ding y H. Hu, «Automatic Skin Cancer Detection in Dermoscopy Images based on Ensemble Lightweight Deep Learning Network,» IEEE Access, vol. 8, pp. 99633 - 99647, 2020.
Q. Zhou, C. Ren y S. Qi, «An Imbalanced R-STDP Learning Rule in Spiking Neural Networks for Medical Image Classification,» IEEE Access , vol. 8, pp. 224162 - 224177, 2020.
A. A. Adegun y S. Viriri, «Deep Learning-Based System for Automatic Melanoma Detection,» IEEE Access, vol. 8, pp. 7160 - 7172, 2019.
S. Albahli, N. Nida, A. Irtaza, M. H. Yousaf y M. T. Mahmood, «Melanoma Lesion Detection and Segmentation Using YOLOv4-DarkNet and Active Contour,» IEEE Access, vol. 8, pp. 198403 - 198414, 2020.
Q. Wang, L. Sun, Y. Wang, M. Zhou, M. Hu, J. Chen, Y. Wen y Q. Li, «Identification of Melanoma From Hyperspectral Pathology Image Using 3D Convolutional Networks,» IEEE Transactions on Medical Imaging , vol. 40, nº 1, pp. 218 - 227, 2021.
K. Thurnhofer-Hemsi, E. López-Rubio, E. Domínguez y D. A. Elizondo , «Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting,» IEEE Access, vol. 9, pp. 112193 - 112205, 2021.
M. Goyal, A. Oakley, P. Bansal, D. Dancey y M. H. Yap, «Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep Learning Methods,» IEEE Access, vol. 8, pp. 4171-4181, 2020.
L. Ichim y D. Popescu, «Melanoma Detection Using an Objective System Based on Multiple Connected Neural Networks,» IEEE Access, vol. 8, pp. 179189-179202, 2020.
L. Talavera-Martínez, P. Bibiloni y M. González-Hidalgo, «Hair Segmentation and Removal in Dermoscopic Images Using Deep Learning,» IEEE Access, vol. 9, pp. 2694- 2704, 2021.
A. Gong, X. Yao y W. Lin, «Dermoscopy Image Classification Based on StyleGANs and Decision Fusion,» IEEE Access, vol. 8, pp. 70640-70650, 2020.
T.-C. Pham, A. Doucet, C.-M. Luong, C.-T. Tran y V.-D. Hoang, «Improving Skin-Disease Classification Based on Customized Loss Function Combined With Balanced Mini-Batch Logic and Real-Time Image Augmentation,» IEEE Access, vol. 8, pp. 150725-150737, 2020.
B. Zhang, Z. Wang, J. Gao, C. Rutjes, K. Nufer, D. Tao, D. D. Feng y S. W. Menzies, «Short-Term Lesion Change Detection for Melanoma Screening With Novel Siamese Neural Network,» IEEE Transactions on Medical Imaging, vol. 40, nº 3, pp. 840-851, 2021.
H. Arab, L. Chioukh, M. Dashti Ardakani, S. Dufour y S. O. Tatu, «Early-Stage Detection of Melanoma Skin Cancer Using Contactless Millimeter-Wave Sensors,» IEEE Sensors Journal, vol. 20, nº 13, pp. 7310-7317, 2020.
L. Song, J. Lin, Z. J. Wang y H. Wang, «An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis,» IEEE Journal of Biomedical and Health Informatics, vol. 24, nº 10, pp. 2912-2921, 2020.
R. Rastghalam, H. Danyali, M. S. Helfroush, M. E. Celebi y M. Mokhtari, «Skin Melanoma Detection in Microscopic Images Using HMM-Based Asymmetric Analysis and Expectation Maximization,» IEEE Journal of Biomedical and Health Informatics, vol. 25, nº 9, pp. 3486-3497, 2021.
M. A. Khan, K. Muhammad, M. Sharif, T. Akram y V. H. C. d. Albuquerque, «Multi-Class Skin Lesion Detection and Classification via Teledermatology,» IEEE Journal of Biomedical and Health Informatics, vol. 25, nº 12, pp. 4267-4275, 2021.
novaderma, «novaderma CLINICA DERMATOLOGICA,» [En línea]. Available: https://www.clinicanovaderma.com/la-dermatoscopia-digital/. [Último acceso: 08 2021].
E. Galán y D. Puerto, Manual para la detección temprana del cancer de piel y recomendaciones para la disminución de exposición a radiación ultravioleta, Bogotá: Instituto Nacional de Cancerología ESE, 2015.
A. Karpathy , F.-F. Li, J. Johnson y S. Yeung, «CS231n: Convolutional Neural Networks for Visual Recognition.,» Stanford CS class, 2016-2019. [En línea]. Available: http://cs231n.github.io/. [Último acceso: January 2020].
T. Guo, J. Dong, H. Li y Y. Gao, «Simple convolutional neural network on image classification,» de IEEE 2nd International Conference on Big Data Analysis (ICBDA)(, Beijing, 2017.
S. ALBAWI, T. A. MOHAMMED y S. AL-ZAWI, «Understanding of a convolutional neural network,» de International Conference on Engineering and Technology (ICET), Antalya, 2017.
R. Sarkar, C. C. Chatterjee y A. Hazra, «Diagnosis of melanoma from dermoscopic images using a deep depthwise separable residual convolutional network,» IET Image Processing, vol. 13, 2019.
M. A. Khan, M. Sharif, M. Raza, A. Anjum, T. Saba y S. A. Shad, «Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection,» Expert Systems, 2019.
Z. Yu, X. Jiang, F. Zhou, J. Qin, D. Ni, S. Chen, B. Lei y T. Wang, «Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features,» IEEE Transactions on Biomedical Engineering, vol. 66, nº 4, pp. 1006-1016, 2019.
K. Jayapriya y I. J. Jacob, «Hybrid fully convolutional networks-based skin lesion segmentation and melanoma detection using deep feature,» International Journal of Imaging Systems and Technology, 2019.
A. Namozov y Y. I. Cho, «Convolutional Neural Network Algorithm with Parameterized Activation Function for Melanoma Classification,» de 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), 2018.
J. Yang, F. Xie, H. Fan, Z. Jiang y J. Liu, «Classification for Dermoscopy Images Using Convolutional Neural Networks Based on Region Average Pooling,» IEEE Access, vol. 6, pp. 65130-65138, 2018.
Y. Li y L. Shen, «Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network,» Sensors, vol. 18, nº 2, p. 556, 2018.
P. Tang, Q. Liang, X. Yan, S. Xiang y D. Zhang, «GP-CNN-DTEL: Global-Part CNN Model With Data-Transformed Ensemble Learning for Skin Lesion Classification,» IEEE Journal of Biomedical and Health Informatics, vol. 24, nº 10, pp. 2870 - 2882, 2020.
R. Ashraf, S. Afzal, A. U. Rehman, S. Gul, J. Baber, M. Bakhtyar, I. Mehmood, O.-Y. Song y M. Maqsood, «Region-of-Interest Based Transfer Learning Assisted Framework for Skin Cancer Detection,» IEEE Access, vol. 8, pp. 147858 - 147871, 2020.
H. Wu, J. Pan, Z. Li, Z. Wen y J. Qin, «Automated Skin Lesion Segmentation Via an Adaptive Dual Attention Module,» IEEE Transactions on Medical Imaging, vol. 40, nº 1, pp. 357-370, 2021.
Y. Jiang, S. Cao, S. Tao y H. Zhang, «Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network,» IEEE Access, vol. 8, pp. 122811-122825, 2020.
A. Gong, X. Yao y W. Lin, «Classification for Dermoscopy Images Using Convolutional Neural Networks Based on the Ensemble of Individual Advantage and Group Decision,» IEEE Access, vol. 8, p. 2020, 2020.
J. Zhang, Y. Xie, Y. Xia y C. Shen, «Attention Residual Learning for Skin Lesion Classification,» IEEE Transactions on Medical Imaging, vol. 38, nº 9, pp. 2092-2103, 2019.
dc.rights.*.fl_str_mv Atribución 2.5 Colombia
Atribución 2.5 Colombia
Atribución 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 2.5 Colombia
http://creativecommons.org/licenses/by/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Maestría Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/45517/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/45517/5/license.txt
https://repository.usta.edu.co/bitstream/11634/45517/1/2022sebastianria%c3%b1o.pdf
https://repository.usta.edu.co/bitstream/11634/45517/2/carta%20de%20derechos.pdf
https://repository.usta.edu.co/bitstream/11634/45517/3/carta%20de%20facultad.pdf
https://repository.usta.edu.co/bitstream/11634/45517/6/2022sebastianria%c3%b1o.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/45517/7/carta%20de%20derechos.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/45517/8/carta%20de%20facultad.pdf.jpg
bitstream.checksum.fl_str_mv 1608e658af296c3febc577e957e919bf
aedeaf396fcd827b537c73d23464fc27
dcfe84b112e529a9bcff7c6fd02251c7
9ff57ac06f0af90e855db6551d4e3285
aa13ad2f3ba52e5157355e70e0478fe3
fadf2b8293dd37ea77d94894c51abf79
ae5a9c2e574994e06f0bbe0beec48fde
1a3f7ae3ce606757b5356d8e52ad5f16
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026331514470400
spelling Mateus, ArmandoCamacho, Edgar CamiloGuillermo Guarnizo, JoséRiaño Borda, Sebastianhttps://orcid.org/ 0000-0003-4938-2233https://orcid.org/ 0000-0002-8401-4949https://orcid.org/ 0000-0002-6084-2512https://orcid.org/ 0000-0002-2399-4859Universidad Santo Tomás2022-06-30T20:36:38Z2022-06-30T20:36:38Z2022-06-30Riaño Borda, S. (2022). Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio institucional.http://hdl.handle.net/11634/45517reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEste proyecto se propone diseñar una red neuronal para el reconocimiento de melanomas (un tipo de cáncer de piel), mediante el uso de una técnica conocida como redes neuronales convolucionales, mayormente utilizada en visión artificial (una rama de la inteligencia artificial), aplicada en el reconocimiento de patrones sobre lunares en la piel y determinar la existencia de un melanoma maligno, o no, a partir de un dataset limitado. Para esto, la red convolucional diseñada y entrenada para clasificar los melanomas está formada por unas capas de convolución y pooling apiladas entre sí para formar la red propuesta, una “fully connected layer” y un clasificador con 1 o 2 salidas, y es parametrizada con diferentes valores en características como el dropout, el tamaño de los filtros, entre otros, realizando los entrenamientos en 5 diferentes etapas o experimentos. El dataset propuesto para el entrenamiento de la CNN (Convolutional Neural Networks) es la colección pública más grande de imágenes demoscópicas de lesiones en la piel, proveída de manera gratuita por “International Skin Imaging Collaboration (ISIC)”, un esfuerzo por mejorar el diagnóstico de melanomas, patrocinado por la “International Society for Digital Imaging of the Skin (ISDIS)”. El propósito de este proyecto es diseñar una red neuronal convolucional con alto nivel de precisión que ayude a los profesionales en medicina con el diagnóstico de melanomas, en este caso fue posible conseguir una precisión de hasta 87.82% con la red diseñada con mejor rendimiento.This project aims to design a neural network for the recognition of melanomas (a type of skin cancer), through the use of a technique known as convolutional neural networks, mostly used in artificial vision (a branch of artificial intelligence), applied in the recognition of patterns on moles on the skin and determine the existence of a malignant melanoma, or not, from a limited dataset. For this, the convolutional network designed and trained to classify melanomas is made up of convolution and pooling layers stacked together to form the proposed network, a "fully connected layer" and a classifier with 1 or 2 outputs, and is parameterized with different values ​​in characteristics such as the dropout, the size of the filters, among others, performing the training in 5 different stages or experiments. The dataset proposed for the training of CNN (Convolutional Neural Networks) is the largest public collection of demoscopic images of skin lesions, provided free of charge by the "International Skin Imaging Collaboration (ISIC)", an effort to improve the diagnosis of melanomas, sponsored by the “International Society for Digital Imaging of the Skin (ISDIS)”. The purpose of this project is to design a convolutional neural network with a high level of precision that helps medical professionals with the diagnosis of melanomas, in this case it was possible to achieve an accuracy of up to 87.82% with the network designed with the best performance.Magister en Ingeniería ElectrónicaMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución 2.5 ColombiaAtribución 2.5 ColombiaAtribución 2.5 Colombiahttp://creativecommons.org/licenses/by/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionalesConvolutionConvolutional Neural NetworksDermoscopyMelanoma DetectionMedicinaProcesamiento de imagenesIngeniería eléctricaConvoluciónRedes Neuronales ConvolucionalesDermoscopiaDetección de MelanomasTesis de maestríainfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA BogotáF. L. Marqués, «Clinic cloud,» [En línea]. Available: https://clinic cloud.com/blog/aplicaciones-de-la-tecnologia-en-la-salud/. [Último acceso: 15 04 2022].C. TI, «Canales TI,» 10 06 2020. [En línea]. Available: https://itcomunicacion.com.mx/el uso-de-la-tecnologia-en-la-medicina/. [Último acceso: 15 04 2022].S. Lee, H. Huang y M. Zelen, «Early detection of disease and scheduling of screening examinations,» Statistical Methods in Medical Research, vol. 13, nº 6, pp. 443-456, 2004.O. T. Jones, C. K. Ranmuthu, P. N. Hall, G. Funston y F. M. Walter, «Recognising Skin Cancer in Primary Care,» Advances in Therapy, vol. 37, nº 1, p. 603–616, 2020.C. Garbe, K. Peris, A. Hauschild, P. Saiag, M. Middleton, L. Bastholt, J.-J. Grob, J. Malvehy, J. Newton-Bishop, A. J. Stratigos, H. Pehamberger y A. M. Eggermont, «Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline – Update 2016,» European Journal of Cancer, vol. 63, pp. 201-217, 2016.I. P. Santos, R. van Doorn y P. Caspers, «Improving clinical diagnosis of early-stage cutaneous melanoma based on Raman spectroscopy,» British Journal of Cancer, vol. 119, p. 1339–1346, 2018.The International Skin Imaging Collaboration, «ISIC,» [En línea]. Available: https://www.isic-archive.com/#!/topWithHeader/onlyHeaderTop/gallery. [Último acceso: January 2020].Biblioteca Nacional de Medicina de EE. UU. , «Lunar | Nevos | MedlinePlus en español,» [En línea]. Available: https://medlineplus.gov/spanish/moles.html. [Último acceso: 08 09 2021].American Cancer Society, «Estadísticas importantes sobre el cáncer de piel tipo melanoma,» [En línea]. Available: https://www.cancer.org/es/cancer/cancer-de-piel-tipo melanoma/acerca/estadisticas-clave.html. [Último acceso: 09 09 2021].Biblioteca Nacional de Medicina de EE. UU. , «Melanoma: MedlinePlus en español,» [En línea]. Available: https://medlineplus.gov/spanish/melanoma.html. [Último acceso: 08 09 2021].American Cancer Society, «Etapas del cáncer de piel tipo melanoma,» [En línea]. Available: https://www.cancer.org/es/cancer/cancer-de-piel-tipo-melanoma/deteccion diagnostico-clasificacion-por-etapas/clasificacion-por-etapas-el-cancer-de-piel-tipo melanoma.html. [Último acceso: 09 09 2021].J. A. Avilés‐Izquierdo, C. Ciudad‐Blanco, A. Sánchez‐Herrero, A. Mateos‐Mayo, L. M. Nieto‐Benito y E. Rodríguez‐Lomba, «Dermoscopy of cutaneous melanoma metastases: A color-based pattern classification,» Journal of Dermatology, vol. 46, nº 7, pp. 564-569, 2019.V. Teigens, Inteligencia Artificial General, Cambridge Stanford Books, 2000.V. Advany, «What is Artificial Intelligence? How does AI work, Types and Future of it?,» 19 Octubre 2021. [En línea]. Available: https://www.mygreatlearning.com/blog/what-is artificial-intelligence/#comments. [Último acceso: 25 Noviembre 2021].S. Khan, H. Rahmani, S. A. A. Shah y M. Bennamoun, A Guide to Convolutional Neural Networks for Computer Vision, Morgan & Claypool, 2018.A. Hintze, «goverment technology,» 14 11 2016. [En línea]. Available: https://www.govtech.com/computing/understanding-the-four-types-of-artificial intelligence.html#:~:text=2.-,Limited%20memory,and%20monitoring%20them%20over% 20time.. [Último acceso: 10 04 2022].Google, «Google Trends,» [En línea]. Available: https://trends.google.es/trends/explore?date=all&q=Convolutional%20neural%20network, deep%20learning,machine%20learning. [Último acceso: Agosto 2021].R. Wason, «Deep learning: Evolution and expansion,» Cognitive Systems Research, vol. 52, pp. 701-708, 2018.W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu y F. Alsaadi, «A survey of deep neural network architectures and their applications,» Neurocomputing, vol. 234, pp. 11-26, 2017.Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu y M. S. Lew, «Deep learning for visual understanding: A review,» Neurocomputing, vol. 187, pp. 27-48, 2016.R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang y R. X. Gao, «Deep learning and its applications to machine health monitoring,» Mechanical Systems and Signal Processing, vol. 115, pp. 213-237, 2019.F. Ercal, A. Chawla, W. Stoecker, H.-C. Lee y R. Moss, «Neural Network Diagnosis of Malignant Melanoma From Color Images,» IEEE Transactions on Biomedical Engineering, vol. 41, nº 9, pp. 837-845, 1994.P. Vannoorenberghe, O. Colot y D. De Brucq, «Dempster-Shafer's theory as an aid to color information processing. Application to melanoma detection in dermatology,» de Proceedings 10th International Conference on Image Analysis and Processing, Venice, Italy, 1999.L. Yu, H. Chen, Q. Dou, J. Qin y P.-A. Heng, «Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks,» IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 36, nº 4, pp. 994-1004, 2017.Y. Yuan, M. Chao y Y.-C. Lo, «Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks with Jaccard Distance,» IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 36, pp. 1876-1886, 2017.N. Codella, Q.-B. Nguyen, S. Pankanti, D. Gutman, B. Helba, A. Halpern y J. R. Smith, «Deep learning ensembles for melanoma recognition in dermoscopy images,» IBM Journal of Research and Development, vol. 21, pp. 5:1-5:15, 2017.I. González-Díaz, «DermaKNet: Incorporating the knowledge of dermatologists to Convolutional Neural Networks for skin lesion diagnosis,» IEEE Journal of Biomedical and Health Informatics, vol. 23, nº 2, pp. 547-559, 2018.E. Nasr-Esfahani, S. Samavi, N. Karimi y S. Soroushmehr, «Melanoma Detection by Analysis of Clinical Images Using Convolutional Neural Network,» de 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, 2016.M. u. Rehman, S. H. Khan, S. M. D. Rizvi, Z. Abbas y A. Zafar, «Classification of Skin Lesion by Interference of Segmentation and Convolotion Neural Network,» de 2018 2nd International Conference on Engineering Innovation (ICEI), Bangkok, 2018.Z. Yu, D. Ni, S. Chen, J. Qin, S. Li, T. Wang y B. Lei, «Hybrid dermoscopy image classification framework based on deep convolutional neural network and Fisher vector,» de 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, 2017.S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka y H. C. Wulf, «Detection of skin cancer by classification of Raman spectra,» IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 51, nº 10, pp. 1784 - 1793, 2004.I. Pirnog, R. O. Preda, C. Oprea y C. Paleologu, «Automatic lesion segmentation for melanoma diagnostics in macroscopic images,» de 23rd European Signal Processing Conference (EUSIPCO), Nice, 2015.R. Kasmi y K. Mokrani, «Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule,» IET Image Processing, vol. 10, nº 6, pp. 448- 455, 2016.J. R. Varatharaj, N. J, P. R y A. K. L, «Detection of melanoma skin cancer using digital camera images,» ARPN Journal of Engineering and Applied Sciences, vol. 10, pp. 3082- 3085, 2015.K. Shimizu, H. Iyatomi, . M. E. Celebi, K.-A. Norton y M. Tanaka, «Four-Class Classification of Skin Lesions With Task Decomposition Strategy,» IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 62, nº 1, pp. 274 - 283, 2014.M. Sadeghi, T. K. Lee, D. McLean, H. Lui y M. S. Atkins, «Detection and Analysis of Irregular Streaks in Dermoscopic Images of Skin Lesions,» Detection and Analysis of Irregular Streaks in Dermoscopic Images of Skin Lesions, vol. 32, nº 5, pp. 849 - 861, 2013.Y. Gu, Z. Ge, C. P. Bonnington y J. Zhou, «Progressive Transfer Learning and Adversarial Domain Adaptation for Cross-Domain Skin Disease Classification,» IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFOMATICS, vol. 24, nº 5, pp. 1379 - 1393, 2020.Q. Zhou, Y. Shi, Z. Xu, R. Qu y G. Xu, «Classifying Melanoma Skin Lesions Using Convolutional Spiking Neural Networks With Unsupervised STDP Learning Rule,» IEEE Access, vol. 8, pp. 101309 - 101319, 2020.L. Wei, K. Ding y H. Hu, «Automatic Skin Cancer Detection in Dermoscopy Images based on Ensemble Lightweight Deep Learning Network,» IEEE Access, vol. 8, pp. 99633 - 99647, 2020.Q. Zhou, C. Ren y S. Qi, «An Imbalanced R-STDP Learning Rule in Spiking Neural Networks for Medical Image Classification,» IEEE Access , vol. 8, pp. 224162 - 224177, 2020.A. A. Adegun y S. Viriri, «Deep Learning-Based System for Automatic Melanoma Detection,» IEEE Access, vol. 8, pp. 7160 - 7172, 2019.S. Albahli, N. Nida, A. Irtaza, M. H. Yousaf y M. T. Mahmood, «Melanoma Lesion Detection and Segmentation Using YOLOv4-DarkNet and Active Contour,» IEEE Access, vol. 8, pp. 198403 - 198414, 2020.Q. Wang, L. Sun, Y. Wang, M. Zhou, M. Hu, J. Chen, Y. Wen y Q. Li, «Identification of Melanoma From Hyperspectral Pathology Image Using 3D Convolutional Networks,» IEEE Transactions on Medical Imaging , vol. 40, nº 1, pp. 218 - 227, 2021.K. Thurnhofer-Hemsi, E. López-Rubio, E. Domínguez y D. A. Elizondo , «Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting,» IEEE Access, vol. 9, pp. 112193 - 112205, 2021.M. Goyal, A. Oakley, P. Bansal, D. Dancey y M. H. Yap, «Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep Learning Methods,» IEEE Access, vol. 8, pp. 4171-4181, 2020.L. Ichim y D. Popescu, «Melanoma Detection Using an Objective System Based on Multiple Connected Neural Networks,» IEEE Access, vol. 8, pp. 179189-179202, 2020.L. Talavera-Martínez, P. Bibiloni y M. González-Hidalgo, «Hair Segmentation and Removal in Dermoscopic Images Using Deep Learning,» IEEE Access, vol. 9, pp. 2694- 2704, 2021.A. Gong, X. Yao y W. Lin, «Dermoscopy Image Classification Based on StyleGANs and Decision Fusion,» IEEE Access, vol. 8, pp. 70640-70650, 2020.T.-C. Pham, A. Doucet, C.-M. Luong, C.-T. Tran y V.-D. Hoang, «Improving Skin-Disease Classification Based on Customized Loss Function Combined With Balanced Mini-Batch Logic and Real-Time Image Augmentation,» IEEE Access, vol. 8, pp. 150725-150737, 2020.B. Zhang, Z. Wang, J. Gao, C. Rutjes, K. Nufer, D. Tao, D. D. Feng y S. W. Menzies, «Short-Term Lesion Change Detection for Melanoma Screening With Novel Siamese Neural Network,» IEEE Transactions on Medical Imaging, vol. 40, nº 3, pp. 840-851, 2021.H. Arab, L. Chioukh, M. Dashti Ardakani, S. Dufour y S. O. Tatu, «Early-Stage Detection of Melanoma Skin Cancer Using Contactless Millimeter-Wave Sensors,» IEEE Sensors Journal, vol. 20, nº 13, pp. 7310-7317, 2020.L. Song, J. Lin, Z. J. Wang y H. Wang, «An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis,» IEEE Journal of Biomedical and Health Informatics, vol. 24, nº 10, pp. 2912-2921, 2020.R. Rastghalam, H. Danyali, M. S. Helfroush, M. E. Celebi y M. Mokhtari, «Skin Melanoma Detection in Microscopic Images Using HMM-Based Asymmetric Analysis and Expectation Maximization,» IEEE Journal of Biomedical and Health Informatics, vol. 25, nº 9, pp. 3486-3497, 2021.M. A. Khan, K. Muhammad, M. Sharif, T. Akram y V. H. C. d. Albuquerque, «Multi-Class Skin Lesion Detection and Classification via Teledermatology,» IEEE Journal of Biomedical and Health Informatics, vol. 25, nº 12, pp. 4267-4275, 2021.novaderma, «novaderma CLINICA DERMATOLOGICA,» [En línea]. Available: https://www.clinicanovaderma.com/la-dermatoscopia-digital/. [Último acceso: 08 2021].E. Galán y D. Puerto, Manual para la detección temprana del cancer de piel y recomendaciones para la disminución de exposición a radiación ultravioleta, Bogotá: Instituto Nacional de Cancerología ESE, 2015.A. Karpathy , F.-F. Li, J. Johnson y S. Yeung, «CS231n: Convolutional Neural Networks for Visual Recognition.,» Stanford CS class, 2016-2019. [En línea]. Available: http://cs231n.github.io/. [Último acceso: January 2020].T. Guo, J. Dong, H. Li y Y. Gao, «Simple convolutional neural network on image classification,» de IEEE 2nd International Conference on Big Data Analysis (ICBDA)(, Beijing, 2017.S. ALBAWI, T. A. MOHAMMED y S. AL-ZAWI, «Understanding of a convolutional neural network,» de International Conference on Engineering and Technology (ICET), Antalya, 2017.R. Sarkar, C. C. Chatterjee y A. Hazra, «Diagnosis of melanoma from dermoscopic images using a deep depthwise separable residual convolutional network,» IET Image Processing, vol. 13, 2019.M. A. Khan, M. Sharif, M. Raza, A. Anjum, T. Saba y S. A. Shad, «Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection,» Expert Systems, 2019.Z. Yu, X. Jiang, F. Zhou, J. Qin, D. Ni, S. Chen, B. Lei y T. Wang, «Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features,» IEEE Transactions on Biomedical Engineering, vol. 66, nº 4, pp. 1006-1016, 2019.K. Jayapriya y I. J. Jacob, «Hybrid fully convolutional networks-based skin lesion segmentation and melanoma detection using deep feature,» International Journal of Imaging Systems and Technology, 2019.A. Namozov y Y. I. Cho, «Convolutional Neural Network Algorithm with Parameterized Activation Function for Melanoma Classification,» de 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), 2018.J. Yang, F. Xie, H. Fan, Z. Jiang y J. Liu, «Classification for Dermoscopy Images Using Convolutional Neural Networks Based on Region Average Pooling,» IEEE Access, vol. 6, pp. 65130-65138, 2018.Y. Li y L. Shen, «Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network,» Sensors, vol. 18, nº 2, p. 556, 2018.P. Tang, Q. Liang, X. Yan, S. Xiang y D. Zhang, «GP-CNN-DTEL: Global-Part CNN Model With Data-Transformed Ensemble Learning for Skin Lesion Classification,» IEEE Journal of Biomedical and Health Informatics, vol. 24, nº 10, pp. 2870 - 2882, 2020.R. Ashraf, S. Afzal, A. U. Rehman, S. Gul, J. Baber, M. Bakhtyar, I. Mehmood, O.-Y. Song y M. Maqsood, «Region-of-Interest Based Transfer Learning Assisted Framework for Skin Cancer Detection,» IEEE Access, vol. 8, pp. 147858 - 147871, 2020.H. Wu, J. Pan, Z. Li, Z. Wen y J. Qin, «Automated Skin Lesion Segmentation Via an Adaptive Dual Attention Module,» IEEE Transactions on Medical Imaging, vol. 40, nº 1, pp. 357-370, 2021.Y. Jiang, S. Cao, S. Tao y H. Zhang, «Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network,» IEEE Access, vol. 8, pp. 122811-122825, 2020.A. Gong, X. Yao y W. Lin, «Classification for Dermoscopy Images Using Convolutional Neural Networks Based on the Ensemble of Individual Advantage and Group Decision,» IEEE Access, vol. 8, p. 2020, 2020.J. Zhang, Y. Xie, Y. Xia y C. Shen, «Attention Residual Learning for Skin Lesion Classification,» IEEE Transactions on Medical Imaging, vol. 38, nº 9, pp. 2092-2103, 2019.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repository.usta.edu.co/bitstream/11634/45517/4/license_rdf1608e658af296c3febc577e957e919bfMD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/45517/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessORIGINAL2022sebastianriaño.pdf2022sebastianriaño.pdfapplication/pdf1347785https://repository.usta.edu.co/bitstream/11634/45517/1/2022sebastianria%c3%b1o.pdfdcfe84b112e529a9bcff7c6fd02251c7MD51open accesscarta de derechos.pdfcarta de derechos.pdfapplication/pdf509698https://repository.usta.edu.co/bitstream/11634/45517/2/carta%20de%20derechos.pdf9ff57ac06f0af90e855db6551d4e3285MD52metadata only accesscarta de facultad.pdfcarta de facultad.pdfapplication/pdf170728https://repository.usta.edu.co/bitstream/11634/45517/3/carta%20de%20facultad.pdfaa13ad2f3ba52e5157355e70e0478fe3MD53metadata only accessTHUMBNAIL2022sebastianriaño.pdf.jpg2022sebastianriaño.pdf.jpgIM Thumbnailimage/jpeg4370https://repository.usta.edu.co/bitstream/11634/45517/6/2022sebastianria%c3%b1o.pdf.jpgfadf2b8293dd37ea77d94894c51abf79MD56open accesscarta de derechos.pdf.jpgcarta de derechos.pdf.jpgIM Thumbnailimage/jpeg6512https://repository.usta.edu.co/bitstream/11634/45517/7/carta%20de%20derechos.pdf.jpgae5a9c2e574994e06f0bbe0beec48fdeMD57open accesscarta de facultad.pdf.jpgcarta de facultad.pdf.jpgIM Thumbnailimage/jpeg6989https://repository.usta.edu.co/bitstream/11634/45517/8/carta%20de%20facultad.pdf.jpg1a3f7ae3ce606757b5356d8e52ad5f16MD58open access11634/45517oai:repository.usta.edu.co:11634/455172022-12-05 03:14:47.615open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K