Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas

En la última década la contaminación por metales pesados en medios acuosos se ha convertido en un problema mundial que ha aumentado con la confluencia de las fuentes naturales y principalmente, las actividades antropogénicas (actividades industriales, actividades mineras, uso de plaguicidas, entre o...

Full description

Autores:
Peña Gonzalez, Paula Tatiana
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/32504
Acceso en línea:
http://hdl.handle.net/11634/32504
Palabra clave:
Nanomaterials
Contamination
Heavy metals
Bacterial cellulose
Chemosensors
Agua - Contenido de metales pesados
Contaminación del agua
Contaminación química
Metales pesados
Nanomateriales
Contaminación
Metales pesados
Celulosa bacteriana
Quimiosensores
Rights
closedAccess
License
Acceso cerrado
id SANTTOMAS2_46d335b386b4cc639ec781f4359f748b
oai_identifier_str oai:repository.usta.edu.co:11634/32504
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas
title Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas
spellingShingle Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas
Nanomaterials
Contamination
Heavy metals
Bacterial cellulose
Chemosensors
Agua - Contenido de metales pesados
Contaminación del agua
Contaminación química
Metales pesados
Nanomateriales
Contaminación
Metales pesados
Celulosa bacteriana
Quimiosensores
title_short Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas
title_full Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas
title_fullStr Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas
title_full_unstemmed Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas
title_sort Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas
dc.creator.fl_str_mv Peña Gonzalez, Paula Tatiana
dc.contributor.advisor.spa.fl_str_mv Martínez Bonilla, Carlos Andrés
dc.contributor.author.spa.fl_str_mv Peña Gonzalez, Paula Tatiana
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Nanomaterials
Contamination
Heavy metals
Bacterial cellulose
Chemosensors
topic Nanomaterials
Contamination
Heavy metals
Bacterial cellulose
Chemosensors
Agua - Contenido de metales pesados
Contaminación del agua
Contaminación química
Metales pesados
Nanomateriales
Contaminación
Metales pesados
Celulosa bacteriana
Quimiosensores
dc.subject.lemb.spa.fl_str_mv Agua - Contenido de metales pesados
Contaminación del agua
Contaminación química
Metales pesados
dc.subject.proposal.spa.fl_str_mv Nanomateriales
Contaminación
Metales pesados
Celulosa bacteriana
Quimiosensores
description En la última década la contaminación por metales pesados en medios acuosos se ha convertido en un problema mundial que ha aumentado con la confluencia de las fuentes naturales y principalmente, las actividades antropogénicas (actividades industriales, actividades mineras, uso de plaguicidas, entre otros). Esta condición ha generado un aumento en la concentración de metales pesados en los efluentes hídricos, generando como consecuencia un riesgo para la salud de cualquier sistema vivo. Los iones metálicos cuentan con la capacidad de bioacumularse y biomagnificarse en el organismo, provocando la alteración de numerosos procesos bioquímicos y fisiológicos en animales y plantas, desencadenando diversas patologías. Actualmente, la identificación y remoción de metales pesados de fuentes hídricas es un proceso costoso, lento y, en la mayoría de los casos, no se lleva a cabo adecuadamente debido a las complicadas técnicas instrumentales empleadas y sus límites de detección. En Colombia, por ejemplo, el monitoreo de estos metales en agua para consumo humano no se exige según el Capítulo V y VI de la Resolución 2115 de 2007, por lo tanto, no se lleva a cabo un control de este tipo de contaminantes en las fuentes hídricas del país. En la actualidad, la identificación y cuantificación de metales pesados se lleva a cabo mediante equipos y procedimientos de mediana/alta complejidad y elevado costo (técnicas como absorción atómica y espectrometría de masas). Esta situación es poco favorable frente a la necesidad - regional, nacional y mundial- de identificación y cuantificación rápida de este tipo iones. De modo que se pueda evidenciar la contaminación del efluente de manera eficiente. Hoy en día han surgido diversos métodos que pueden llevar a cabo la identificación y cuantificación de estos iones de forma rápida y selectiva. En este conjunto de métodos se destaca el uso de diversos nanomateriales que, debido a sus propiedades luminiscentes, se han convertido en quimiosensores de interés en este campo. Dentro de este tipo de nanomateriales los quantum dots o puntos cuánticos (QDs) responden a la presencia de ciertos metales pesados modificando su luminiscencia en función de la concentración del metal. Adicionalmente, el uso de estos nanomateriales en conjunto con un soporte de nanocelulosa (NC) permite potenciar sus propiedades, convirtiéndolos en un material prometedor en la identificación in situ de metales pesados en efluentes hídricos. Teniendo en cuenta el interés actual por técnicas de detección rápidas para metales pesados, en la presente investigación se llevó a cabo la síntesis acuosa coloidal, la producción de QDs de CdTe y CdTe/ZnS, los cuales cumplen su función como agentes sensibilizantes permitiendo llevar a cabo la generación del quimiosensor a base de su acoplamiento con la nanocelulosa bacteriana (NCB), evaluando diferentes relaciones de carga en el nanocomposito. Para el nanopapel o quimiosensor se evidenció que la carga de NCB óptima por unidad de área fue de 2.21 mg NCB/cm2, esta relación permitió obtener un nanopapel homogéneo y apropiado para la adsorción de los QDs. Adicionalmente, el quimiosensor y los elementos que lo constituyeron fueron caracterizados estructural y morfológicamente mediante técnicas como UV-vis, IR, DRX, fluorescencia, SEM y TEM que permitieron identificar el tamaño de partícula de los QDs (~ 2.4 nm), contando con un núcleo con estructura cristalina cúbica centrada en las caras (CCC) y ligandos orgánicos evidenciados mediante IR mostrando sus señales características. Finalmente, el quimiosensor mostró ser sensible a metales pesados tales como el cromo, la plata, el cobre, el mercurio y el plomo, encontrándose que el mercurio es el metal más influyente en la variación de la fluorescencia de los QDs generando una extinción casi total de la fluorescencia del quimiosensor en concentraciones sobre 1 µM.
publishDate 2021
dc.date.accessioned.spa.fl_str_mv 2021-03-16T18:33:12Z
dc.date.available.spa.fl_str_mv 2021-03-16T18:33:12Z
dc.date.issued.spa.fl_str_mv 2021-03-15
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Peña, P. T. (2021) Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana / Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas. [Tesis de pregrado] Universidad Santo Tomás, Bucaramanga, Colombia.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/32504
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Peña, P. T. (2021) Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana / Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas. [Tesis de pregrado] Universidad Santo Tomás, Bucaramanga, Colombia.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/32504
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abol-Fotouch, D., Hassan, M., Shokry, H., Roig, A., Azab, M., & Hady, A. (2020). Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Acientific Reports, 10(1), 3491. https://doi.org/10.1038/s41598-020-60315-9
Anderson, N., Hendricks, M., Choi, J., & Owen, J. (2013). Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding. American Chemical Society, 135, 18536–18548. https://doi.org/10.1021/ja4086758
Ansari, Z., Singha, S. S., Saha, A., & Sen, K. (2017). Hassle free synthesis of nanodimensional Ni, Cu and Zn sulfides for spectral sensing of Hg, Cd and Pb: A comparative study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176, 67–78. https://doi.org/10.1016/j.saa.2017.01.005
Anton-Sales, I., Beejmann, U., Laromaine, A., Roig, A., & Kralisch, D. (2019). Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Current Drug Targets, 20(8), 808–822. https://doi.org/10.2174/1389450120666181129092144
Arulraj, A. D., Devasenathipathy, R., Chen, S.-M., Vasantha, V. S., & Wang, S.-F. (2015). Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium. Sensing and Bio-Sensing Research, 6, 19–24. https://doi.org/10.1016/j.sbsr.2015.10.004
Ávila, J. A. (2019). Obtención Y Esterificación Sostenible De Nanocelulosa Bacteriana Para Usos Que Requieren Regular La Polaridad De Las Nanofibras. Instituto de tecnología en polímeros y nanotecnología.
Boonmee, C., Noipa, T., Tuntulani, T., & Ngeontae, W. (2016). Cysteamine capped CdS quantum dots as a fluorescence sensor for the determination of copper ion exploiting fluorescence enhancement and long-wave spectral shifts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 161–168. https://doi.org/10.1016/j.saa.2016.05.007
Borgohain, R., Boruah, P. K., & Baruah, S. (2016). Heavy-metal ion sensor using chitosan capped ZnS quantum dots. Sensors and Actuators B: Chemical, 226, 534–539. https://doi.org/10.1016/j.snb.2015.11.118
Cardona, S. (2020). Degradación fotocatalítica del 2,4 dinitrofenol con puntos cuánticos de CdSe/ZnS. Universidad Nacional de Colombia.
Chakraborty, S., & Hussain, S. A. (2020). Fluorescence resonance energy transfer (FRET) between acriflavine and CdTe quantum dot. Materials Today: Proceedings, 3–4. https://doi.org/10.1016/j.matpr.2020.02.757
Chandan, R., Schiffman, J. D., & Balakrishna, R. G. (2018). Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical, 258, 1191–1214. https://doi.org/10.1016/j.snb.2017.11.189
Chatzigoulas, A., Karathanou, K., Dellis, D., & Cournia, Z. (2018). NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit. Journal od Chemical Information and Modeling, 58(12), 2380–2386. https://doi.org/10.1021/acs.jcim.8b00269
Chen, J.-L., & Zhu, C.-Q. (2005). Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Analytica Chimica Acta, 546(2), 147–153. https://doi.org/10.1016/j.aca.2005.05.006
Chen, J., Zheng, A., Gao, Y., He, C., Wu, G., Chen, Y., Kai, X., & Zhu, C. (2008). Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3), 1044–1052. https://doi.org/10.1016/j.saa.2007.06.021
Chiodo, S., Russi, N., & Sicilia, E. (2006). LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107. https://doi.org/10.1063/1.2345197
Cortez, Y. (2018). Análisis de la eficiencia de nanotubos de TiO2 con puntos cuánticos CuInS2 en su estructura como fotocatalizadores para la degradación de fenol en solución acuosa. Escuela Politécnica Nacional.
Costas, I., Romero, V., Lavilla, I., & Bendicho, C. (2014). An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. Trends in Analytical Chemistry, 57, 64–72. https://doi.org/10.1016/j.trac.2014.02.004
Daud, J., & Lee, K.-Y. (2017). Surface Modification of Nanocellulose. En H. Kargarzadeh, I. Ahmad, S. Thomas, & A. Dufresne (Eds.), Handbook of Nanocellulose and Cellulose (pp. 101–122). Wiley-VCH. https://doi.org/10.1002/9783527689972.ch3
Devi, P., Rajput, P., Thakur, A., Kim, K.-H., & Kumar, P. (2019). Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC Trends in Analytical Chemistry, 114, 171–195. https://doi.org/10.1016/j.trac.2019.03.003
Dolez, P. I. (2015). Chapter 1.1 - Nanomaterials Definitions, Classifications, and Applications (P. I. Dolez (Ed.); pp. 3–40). Elsevier. https://doi.org/10.1016/B978-0-444-62747-6.00001-4
Dral, P. O., Wu, X., & Thiel, W. (2019). Semiempirical Quantum-Chemical Methods with Orthogonalization and Dispersion Corrections. Journal of Chemical Theory and Computation, 15(3), 1743–1760. https://doi.org/10.1021/acs.jctc.8b01265
Elmizadeh, H., Soleimani, M., Faridbod, F., & Bardajee, G. (2019). Fabrication of a nanomaterial-based fluorescence sensor constructed from ligand capped CdTe quantum dots for ultrasensitive and rapid detection of silver ions in aqueous samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211, 291–298. https://doi.org/10.1016/j.saa.2018.12.016
Eom, H., Hwang, J., Hassan, S. H. A., Joo, J. H., Hur, J. H., Chon, K., Jeon, B.-H., Song, Y.-C., Chae, K.-J., & Oh, S.-E. (2019). Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor. Journal of Microbiological Methods, 161, 35–42. https://doi.org/10.1016/j.mimet.2019.04.007
Filali, S., Pirot, F., & Miossec, P. (2019). Biological Applications and Toxicity Minimization of Semiconductor Quantum Dots. Trends in Biotechnology, 163–177. https://doi.org/10.1016/j.tibtech.2019.07.013
Friesner, R. A., & Jerome, S. V. (2017). Localized orbital corrections for density functional calculations on transition metal containing systems. Coordination Chemistry Reviews, 344, 205–213. https://doi.org/10.1016/j.ccr.2017.02.014
Gheshlaghi, N., Pisheh, H. S., Karim, M. R., Malkoc, D., & Ünlü, H. (2016). Interfacial strain effect on type-I and type-II core/shell quantum dots. Superlattices and Microstructures, 97, 489–494. https://doi.org/10.1016/j.spmi.2016.07.020
Ghosh, R., & Paria, S. (2011). Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 112(4), 2373–2433. https://doi.org/10.1021/cr100449n
Goyeneche, L. M. (2018). Determinación del tamaño de partícula mediante diracción de rayos X. Universidad de Cantabria.
Gui, R., An, X., Su, H., Shen, W., Chen, Z., & Wang, X. (2012). A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF–ON fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta, 94, 257–262. https://doi.org/10.1016/j.talanta.2012.03.036
Guyot, P. (2008). Colloidal quantum dots. Comptes Rendus Physique, 9(8), 777–787. https://doi.org/10.1016/j.crhy.2008.10.006
Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345–352. https://doi.org/10.1042/bj0580345
Hosseini, M., Ganjali, M. R., Vaezi, Z., Faridbod, F., Arabsorkhi, B., & Sheikhha, M. H. (2014). Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 116–120. https://doi.org/10.1016/j.saa.2013.10.074
Huang, X., Tong, X., & Wang, Z. (2020). Rational design of colloidal core/shell quantum dots for optoelectronic applications. Journal of Electronic Science and Technology, 100018. https://doi.org/10.1016/j.jnlest.2020.100018
IDEAM. (2019). Estudio Nacional del Agua 2018 (pp. 229–232). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023858/ENA_2018.pdf
IDEAM, & INVEMAR. (2018). Protocolo de Monitoreo del Agua (pp. 76–77).
Imran, M., Jawwad, M., Kuznetsov, A., Idrees, N., Iqbal, J., & Ali, A. (2019). Computational investigations into the structural and electronic properties of CdnTen (n=1–17) quantum dots. The Royal Society of Chemistry, 9, 5091–5099. https://doi.org/10.1039/c8ra09465a
Jaiswal, J. K., & Simon, S. M. (2004). Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends in Cell Biology, 14(9), 497–504. https://doi.org/10.1016/j.tcb.2004.07.012
Jang, Y., Shapiro, A., Isarov, M., Rubin-Brusilovski, A., Safran, A., Budniak, A., Horani, F., Dehnel, J., Sashchiuk, A., & Lifshitz, E. (2017). Interface control of electronic and optical properties in IV-VI and II-VI core/shell coloidal quantum dots: A review. Chemical Communications, 53(6), 1002–1024. https://doi.org/10.1039/C6CC08742F
Jiao, Z., Zhang, P., Chen, H., Li, C., Chen, L., Fan, H., & Cheng, F. (2019). Differentiation of heavy metal ions by fluorescent quantum dot sensor array in complicated samples. Sensors and Actuators B: Chemical, 295, 110–116. https://doi.org/10.1016/j.snb.2019.05.059
Jiménez-López, J., Rodrigues, S. S. M., Ribeiro, D. S. M., Ortega-Barrales, P., Ruiz-Medina, A., & Santos, J. L. M. (2019). Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 212, 246–254. https://doi.org/10.1016/j.saa.2019.01.005
Joseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198
Kamide, K. (2005). 1- Introduction. En K. Kamide (Ed.), Cellulose and Cellulose Derivatives (pp. 1–23). Elsevier Science. https://doi.org/10.1016/B978-044482254-3/50003-5
Kilina, S., Ivaniv, S., & Tretiak, S. (2009). Effect of Surface Ligands on Optical and Electronic Spectra of Semiconductor Nanoclusters. Journal of the American Chemical Society, 131(22), 7717–7726. https://doi.org/10.1021/ja9005749
Kilina, S., Tamukong, P., & Kilin, D. (2016). Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives. American Chemical Society, 49, 2127–2135. https://doi.org/10.1021/acs.accounts.6b00196
Kim, J., Oh, J. S., Park, K. C., Gupta, G., & Lee, C. Y. (2019). Colorimetric detection of heavy metal ions in water via metal-organic framework. Inorganica Chimica Acta, 486, 69–73. https://doi.org/10.1016/j.ica.2018.10.025
Kuang, Y., Wang, X., Tian, X., Yang, C., Li, Y., & Nie, Y. (2019). Silica-embedded CdTe quantum dots functionalized with rhodamine derivative for instant visual detection of ferric ions in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 372, 140–146. https://doi.org/10.1016/j.jphotochem.2018.12.015
Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Sidhu, G. P. S., Bali, A. S., Karaouzas, I., Bhardwaj, R., Thukral, A. K., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364
Kuznetsov, A., & Beratan, D. (2014). Structural and Electronic Properties of Bare and Capped Cd33Se33 and Cd33Te33 Quantum Dots. American Chemical Society, 118, 7094–7109. https://doi.org/10.1021/jp4007747
Labeb, M., Sakr, A.-H., Soliman, M., Abdel-Fattah, T. M., & Ebrahim, S. (2018). Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions. Optical Materials, 79, 331–335. https://doi.org/10.1016/j.optmat.2018.03.060
Lefebvre, P., Richard, T., Allègre, J., Mathieu, H., Pradel, A., Marc, J., Boudes, L., Granier, W., & Ribes, M. (1994). Sol-Gel preparation and optical characterization of sodium borosilicate glasses doped with II-VI semiconductor nanocrystals. Proceedings of SPIE - The International Society for Optical Engineering, 2288, 163–173. https://doi.org/10.1117/12.188948
Liu, J., Lv, G., Gu, W., Li, Z., Tang, A., & Mei, L. (2017). A novel luminescence probe based on layered double hydroxides loaded with quantum dots for simultaneous detection of heavy metal ions in water. Journal of Materials Chemistry C, 5(20), 5024–5030. https://doi.org/10.1039/c7tc00935f
Liu, S., Wang, Y.-M., & Han, J. (2017). Fluorescent chemosensors for copper(II) ion: Structure, mechanism and application. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 32, 78–103. https://doi.org/10.1016/j.jphotochemrev.2017.06.002
Liu, Z., Mo, Z., Niu, X., Yang, X., Jiang, Y., Zhao, P., Liu, N., & Guo, R. (2020). Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. Journal of Colloid and Interface Science, 566, 357–368. https://doi.org/10.1016/j.jcis.2020.01.092
Ma, Q., Ha, E., Yang, F., & Su, X. (2011). Synchronous determination of mercury (II) and copper (II) based on quantum dots-multilayer film. Analytica Chimica Acta, 701(1), 60–65. https://doi.org/10.1016/j.aca.2011.04.051
Marandi, M., Emrani, B., & Zare, H. (2017). Synthesis of highly luminescent CdTe / CdS core-shell nanocrystals by optimization of the core and shell growth parameters. Optical Materials, 69, 358–366. https://doi.org/10.1016/j.optmat.2017.04.058
Minambiente. (2020). Nomartiva Recurso Hídrico. https://www.minambiente.gov.co/index.php/gestion-integral-del-recurso-hidrico/normativa-recurso-hidrico
Mishra, R. K., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005
Modlitbová, P., Novotný, K., Pořízka, P., Klus, J., Lubal, P., Zlámalová-Gargošová, H., & Kaiser, J. (2018). Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotoxicology and Environmental Safety, 147, 334–341. https://doi.org/10.1016/j.ecoenv.2017.08.053
NANO-SME. (2007). Aplicaciones industriales de la nanotecnología (pp. 25–41). Tresalia Comunication.
Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). Chapter 1 - An Introduction to Nanotechnology (M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.); Vol. 28, pp. 1–7). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00001-8
Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). Chapter 4 - Applications of Nanotechnology in Daily Life (M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.); Vol. 28, pp. 113–143). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00004-3
Nguyen, K., Pachter, R., Jiang, J., & Day, P. N. (2018). Systematic Study of Structure, Stability, and Electronic Absorption of Tetrahedral CdSe Clusters with Carboxylate and Amine Ligands. The Journal of Pgysical Chemistry A, 122(33), 6704–6712. https://doi.org/10.1021/acs.jpca.8b02813
Oluwafemi, S., Revaprasadu, N., & Ramirez, A. (2008). A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. Journal of Crystal Growth, 310(13), 3230–3234. https://doi.org/10.1016/j.jcrysgro.2008.03.032
ONU. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019 (pp. 14–17). UNESCO.
Paramanik, B., Bhattacharyya, S., & ´Patra, A. (2013). Detection of Hg2+ and F- ions by using fluorescence switching of quantum dots in an Au-cluster-CdTe QD nanocomposite. Chemistry-A European Journal, 19(19), 5980–5987. https://doi.org/10.1002/chem.201203576
Patel, J., Jain, B., Singh, A. K., Susan, M. A. B. H., & Jean-Paul, L. (2020). Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchemical Journal, 155, 104755. https://doi.org/10.1016/j.microc.2020.104755
Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32–43. https://doi.org/10.1016/j.crcon.2018.05.004
Ploem, J. (1999). CHAPTER ONE - Fluorescence Microscopy (W. T. Mason (Ed.); pp. 3–13). Academic Press. https://doi.org/10.1016/B978-012447836-7/50003-8
Pooja, D., Saini, S., Thakur, A., Kumar, B., Tyagi, S., & Nayak, M. K. (2017). A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. Journal of Hazardous Materials, 328, 117–126. https://doi.org/10.1016/j.jhazmat.2017.01.015
Pradeep, T., & Anshup. (2009). Noble metal nanoparticles for water putification: A critical review. Thin Solid Films, 517(24), 6441–6478. https://doi.org/10.1016/j.tsf.2009.03.195
Ray, S., & Salehiyan, R. (2020). Chapter 2 - Fundamental definition and importance of nanomaterials, nanostructured, and bulk nanostructured materials (S. S. Ray & R. Salehiyan (Eds.); pp. 15–28). Elsevier. https://doi.org/10.1016/B978-0-12-816707-6.00002-X
Reshma, V. G., & Mohanan, P. V. (2019). Quantum dots: Applications and safety consequences. Journal of Luminescence, 205, 287–298. https://doi.org/10.1016/j.jlumin.2018.09.015
Resolución 2115 de 2007 (pp. 3–4). (2007). https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislación_del_agua/Resolución_2115.pdf
Resolución 631 de 2015 (Vol. 2015, pp. 13–15). (2015). https://rds.org.co/es/recursos/resolucion-631-de-2015-parametros-vertimientos
Rodrigues, S. S. M., Ribeiro, D. S. M., Soares, J. X., Passos, M. L. C., Saraiva, M. L. M. F. S., & Santos, J. L. M. (2017). Application of nanocrystalline CdTe quantum dots in chemical analysis: Implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation. Coordination Chemistry Reviews, 330, 127–143. https://doi.org/10.1016/j.ccr.2016.10.001
Rodríguez, C. (2019). Evolución de la calidad del río vetas relacionada con la minería aurifera practicada en la provincia de soto en Santander. Universidad de Manizales. http://ridum.umanizales.edu.co:8080/xmlui/bitstream/handle/6789/3413/documento maestria FINAL 18 MAYO %282%29.pdf?sequence=1&isAllowed=y
Ruiz, C., Soriano, L., & Valcárcel, M. (2017). Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC Trends in Analytical Chemistry, 87, 1–18. https://doi.org/j.trac.2016.11.007
Safari, M., Najafi, S., Arkan, E., Amani, S., & Shahlaei, M. (2019). Facile aqueous synthesis of Ni-doped CdTe quantum dots as fluorescent probes for detecting pyrazinamide in plasma. Microchemical Journal, 146, 293–299. https://doi.org/10.1016/j.microc.2019.01.019
Sánchez, A. (2016). Síntesis y caracterización de puntos cuánticos de PbSe con aplicaciones en celdas fotovoltaícas con configuración FTO/TiO2/CdS/PbSe/ZnS. Centro de Investigaciones en Óptica, A.C
SCOPUS. (2020a). Documents by country or territory (Vol. 2020, Número 3 de febrero de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=add34c41e8628b1a46cb5eecc94e8a9b&origin=resultslist&src=s&s=ALL%28%22nanomaterials%22+AND+%22pollution%22+AND+%22sensors%22+AND+%22cellulose%22+AND+%22heavy+metals%22%29&sort
SCOPUS. (2020b). Documents by country or territory (Vol. 2020, Número 13 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=bdefe875263a2cb84a74c9f21f346fde&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%28%22theoretical+calculations%22+OR+%22computational+chemistry%22%29+AND+%22quantum+dots%22%29&so
SCOPUS. (2020c). Documents by year (Vol. 2020, Número 12 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=add34c41e8628b1a46cb5eecc94e8a9b&origin=resultslist&src=s&s=ALL%28%22nanomaterials%22+AND+%22pollution%22+AND+%22sensors%22+AND+%22cellulose%22+AND+%22heavy+metals%22%29&sort
SCOPUS. (2020d). Documents by Year (Vol. 2020, Número 12 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=bdefe875263a2cb84a74c9f21f346fde&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%28%22theoretical+calculations%22+OR+%22computational+chemistry%22%29+AND+%22quantum+dots%22%29&so
Shang, Z. Bin, Wang, Y., & Jin, W. J. (2009). Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta, 78(2), 364–369. https://doi.org/10.1016/j.talanta.2008.11.025
Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., & Goswami, S. (2019). Commercial application of cellulose nano-composites – A review. Biotechnology Reports, 21, e00316. https://doi.org/10.1016/j.btre.2019.e00316
Smith, A., Duan, H., Rhyner, M., Ruan, G., & Nie, S. (2006). A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Physical Chemistry Chemical Physics, 8(33), 3895–3903. https://doi.org/10.1039/B606572B
Song, Z., Chen, X., Gong, X., Gao, X., Dai, Q., Nguyen, T. T., & Guo, M. (2020). Luminescent carbon quantum dots/nanofibrillated cellulose composite aerogel for monitoring adsorption of heavy metal ions in water. Optical Materials, 100, 109642. https://doi.org/10.1016/j.optmat.2019.109642
Speakman, S. (2008). Estimating Crystallite Size Using XRD (pp. 10–12). MIT Center for Materials Science and Engineering.
Tan, K., Heo, S., Foo, M., Chew, I. M., & Yoo, C. (2019). An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. Science of The Total Environment, 650(1), 1309–1326. https://doi.org/10.1016/j.scitotenv.2018.08.402
Tang, A., Liu, Y., Wang, Q., Chen, R., Liu, W., Fang, Z., & Wang, L. (2016). A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing. Carbohydrate Polymers, 148, 29–35. https://doi.org/10.1016/j.carbpol.2016.04.034
Tarantini, A., Wegner, K. D., Dussert, F., Sarret, G., Beal, D., Mattera, L., Lincheneau, C., Proux, O., Truffier-Boutry, D., Moriscot, C., Gallet, B., Jouneau, P.-H., Reiss, P., & Carrière, M. (2019). Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation. NanoImpact, 14, 100168. https://doi.org/10.1016/j.impact.2019.100168
Tomczak, N., Jańczewski, D., Han, M., & Vancso, G. J. (2009). Designer polymer-quantum dot architectures. Progress in Polymer Science, 34(5), 393–430. https://doi.org/10.1016/j.progpolymsci.2008.11.004
Tsay, J., Pflughoefft, M., Bentolila, L., & Weiss, S. (2004). Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals. Journal of the American Chemical Society, 126(7), 1926–1927. https://doi.org/10.1021/ja039227v
Ullah, N., Mansha, M., Khan, I., & Qurashi, A. (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trends in Analytical Chemistry, 100, 155–166. https://doi.org/10.1016/j.trac.2018.01.002
Vareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101–118. https://doi.org/10.1016/j.jenvman.2019.05.126
Vasudevan, D., Trinchi, A., Hardin, S. G., & Cole, I. S. (2015). Fluorescent heavy metal cation sensing with water dispersible 2MPA capped CdSe/ZnS quantum dots. Journal of Luminescence, 166, 88–92. https://doi.org/10.1016/j.jlumin.2015.04.043
Vázquez, M. (2016). Sondas fluorescentes acuosolubles para metales tóxicos. Universidad de Santiago de Compostela.
Wagner, A. M., Knipe, J. M., Orive, G., & Peppas, N. A. (2019). Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44–63. https://doi.org/10.1016/j.actbio.2019.05.022
Wang, L., Ma, W., Xu, L., Chen, W., Zhu, Y., Xu, C., & Kotov, N. A. (2010). Nanoparticle-based environmental sensors. Materials Science and Engineering: R: Reports, 70(3), 265–274. https://doi.org/10.1016/j.mser.2010.06.012
Wei, Q., Nagi, R., Sadeghi, K., Feng, S., Yan, E., Ki, S. J., Caire, R., Tseng, D., & Ozcan, A. (2014). Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano, 8(2), 1121–1129. https://doi.org/10.1021/nn406571t
Whitehead, P. G., Bussi, G., Peters, R., Hossain, M. A., Softley, L., Shawal, S., Jin, L., Rampley, C. P. N., Holdship, P., Hope, R., & Alabaster, G. (2019). Modelling heavy metals in the Buriganga River System, Dhaka, Bangladesh: Impacts of tannery pollution control. Science of The Total Environment, 697, 134090. https://doi.org/10.1016/j.scitotenv.2019.134090
Wu, Y., Sun, J., Zhang, Y., Pu, M., Zhang, G., He, N., & Zeng, X. (2017). Effective Integration of Targeted Tumor Imaging and Therapy Using Functionalized InP QDs with VEGFR2 Monoclonal Antibody and miR-92a Inhibitor. ACS Applied Materials & Interfaces, 9(15), 13068–13078. https://doi.org/10.1021/acsami.7b02641
Xiao, J.-W., Ma, S., Yu, S., Zhou, C., Liu, P., Chen, Y., Zhou, H., Li, Y., & Chen, Q. (2018). Ligand engineering on CdTe quantum dots in perovskite solar cells for suppressed hysteresis. Nano Energy, 46, 45–53. https://doi.org/10.1016/j.nanoen.2018.01.035
Xu, Q., Cai, W., Li, W., Sreeprasad, T. S., He, Z., Ong, W.-J., & Li, N. (2018). Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 10, 222–240. https://doi.org/10.1016/j.mtener.2018.09.005
Xue, S., Wang, P., & Chen, K. (2020). A novel fluorescent chemosensor for detection of mercury(II) ions based on dansyl-peptide and its application in real water samples and living LNcap cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117616. https://doi.org/10.1016/j.saa.2019.117616
Yang, Y., Jiang, J., Shen, G., & Yu, R. (2009). An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin. Analytica Chimica Acta, 636(1), 83–88. https://doi.org/10.1016/j.aca.2009.01.038
Yu, W. W., Qu, L., Guo, W., & Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15(14), 2854–2860. https://doi.org/10.1021/cm034081k
Zeiri, N., Naifar, A., Nasrallah, S. A.-B., & Said, M. (2019). Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots. Photonics and Nanostructures - Fundamentals and Applications, 36, 100725. https://doi.org/10.1016/j.photonics.2019.100725
Zhang, L., & Fang, M. (2010). Nanomaterials in pollution trace detection and environmental improvement. Nano Today, 5(2), 128–142. https://doi.org/10.1016/j.nantod.2010.03.002
Zhang, M., Zhu, G., Li, T., Lou, X., & Zhu, L. (2019). A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water. Optics Communications. https://doi.org/10.1016/j.optcom.2019.124750
Zhang, Q., Zhang, L., Wu, W., & Xiao, H. (2019). Methods and Applications of Nanocellulose Loaded with Inorganic Nanomaterials: A review. Carbohydrate Polymers, 115454. https://doi.org/10.1016/j.carbpol.2019.115454
Zhang, Ya-nan, Sun, Y., Cai, L., Gao, Y., & Cai, Y. (2020). Optical fiber sensors for measurement of heavy metal ion concentration: A review. Measurement, 107742. https://doi.org/10.1016/j.measurement.2020.107742
Zhang, Yonghong, Guo, Q., Huang, S., & Suo, F. (2016). The Adsorption of Ag on (CdTe)13 Core-Cage Nanocluster: A Computational Study. Journal of Cluster Science, 27(3), 1057–1066. https://doi.org/10.1007/s10876-016-0992-0
Zhao, Y., Xu, M., Liu, Q., Wang, Z., Zhao, L., & Chen, Y. (2018). Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: A case study of the Sheyang Estuary. Marine Pollution Bulletin, 137, 601–609. https://doi.org/10.1016/j.marpolbul.2018.10.044
Zheng, D., Zhao, P., & Zhu, L. (2019). Non-conjugated and π-conjugated functional ligands on semiconductive quantum dots. Composites Communications, 11, 21–26. https://doi.org/10.1016/j.coco.2018.10.008
Zheng, J., Gao, S., & Ying, J. (2007). Synthesis and Cell‐Imaging Applications of Glutathione‐Capped CdTe Quantum Dots. Advanced Materials, 19(3), 376–380. https://doi.org/10.1002/adma.200600342
Zhou, Z.-Q., Liao, Y.-P., Yang, J., Huang, S., Xiao, Q., Yang, L.-Y., & Liu, Y. (2020). Rapid ratiometric detection of Cd2+ based on the formation of ZnSe/CdS quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117795. https://doi.org/10.1016/j.saa.2019.117795
Zhu, C., Chen, Z., Gao, S., Goh, B. L., Samsudin, I. Bin, Lwe, K. W., Wu, Y., Wu, C., & Su, X. (2019). Recent advances in non-toxic quantum dots and their biomedical applications. Progress in Natural Science: Materials International, 29(6), 628–640. https://doi.org/10.1016/j.pnsc.2019.11.007
Zou, L., Gu, Z., & Sun, M. (2015). Review of the application of quantum dots in the heavy-metal detection. Toxicological & Environmental CHemistry, 97(3–4), 477–490. https://doi.org/10.1080/02772248.2015.1050201
dc.rights.local.spa.fl_str_mv Acceso cerrado
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Acceso cerrado
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bucaramanga
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Química Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Química Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/32504/4/license.txt
https://repository.usta.edu.co/bitstream/11634/32504/1/2021Pe%c3%b1aPaula.pdf
https://repository.usta.edu.co/bitstream/11634/32504/2/2021Pe%c3%b1aPaula1.pdf
https://repository.usta.edu.co/bitstream/11634/32504/3/2021Pe%c3%b1aPaula2.pdf
https://repository.usta.edu.co/bitstream/11634/32504/5/2021Pe%c3%b1aPaula.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/32504/6/2021Pe%c3%b1aPaula1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/32504/7/2021Pe%c3%b1aPaula2.pdf.jpg
bitstream.checksum.fl_str_mv aedeaf396fcd827b537c73d23464fc27
199d43ce30d5555431f7dd8c1ed44ca6
c5b32503aa0aa2f9ea7655888435122f
36416bf42caf9032affd5431f1594c8e
c665f0c5bdae7204cbe9b34775f1630a
5e7e3d7834d1dd2ac8ff68aef9740600
6bf2aa2fee43dbaab35ca33871b3c5bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026249524215808
spelling Martínez Bonilla, Carlos AndrésPeña Gonzalez, Paula TatianaUniversidad Santo Tomás2021-03-16T18:33:12Z2021-03-16T18:33:12Z2021-03-15Peña, P. T. (2021) Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana / Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas. [Tesis de pregrado] Universidad Santo Tomás, Bucaramanga, Colombia.http://hdl.handle.net/11634/32504reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn la última década la contaminación por metales pesados en medios acuosos se ha convertido en un problema mundial que ha aumentado con la confluencia de las fuentes naturales y principalmente, las actividades antropogénicas (actividades industriales, actividades mineras, uso de plaguicidas, entre otros). Esta condición ha generado un aumento en la concentración de metales pesados en los efluentes hídricos, generando como consecuencia un riesgo para la salud de cualquier sistema vivo. Los iones metálicos cuentan con la capacidad de bioacumularse y biomagnificarse en el organismo, provocando la alteración de numerosos procesos bioquímicos y fisiológicos en animales y plantas, desencadenando diversas patologías. Actualmente, la identificación y remoción de metales pesados de fuentes hídricas es un proceso costoso, lento y, en la mayoría de los casos, no se lleva a cabo adecuadamente debido a las complicadas técnicas instrumentales empleadas y sus límites de detección. En Colombia, por ejemplo, el monitoreo de estos metales en agua para consumo humano no se exige según el Capítulo V y VI de la Resolución 2115 de 2007, por lo tanto, no se lleva a cabo un control de este tipo de contaminantes en las fuentes hídricas del país. En la actualidad, la identificación y cuantificación de metales pesados se lleva a cabo mediante equipos y procedimientos de mediana/alta complejidad y elevado costo (técnicas como absorción atómica y espectrometría de masas). Esta situación es poco favorable frente a la necesidad - regional, nacional y mundial- de identificación y cuantificación rápida de este tipo iones. De modo que se pueda evidenciar la contaminación del efluente de manera eficiente. Hoy en día han surgido diversos métodos que pueden llevar a cabo la identificación y cuantificación de estos iones de forma rápida y selectiva. En este conjunto de métodos se destaca el uso de diversos nanomateriales que, debido a sus propiedades luminiscentes, se han convertido en quimiosensores de interés en este campo. Dentro de este tipo de nanomateriales los quantum dots o puntos cuánticos (QDs) responden a la presencia de ciertos metales pesados modificando su luminiscencia en función de la concentración del metal. Adicionalmente, el uso de estos nanomateriales en conjunto con un soporte de nanocelulosa (NC) permite potenciar sus propiedades, convirtiéndolos en un material prometedor en la identificación in situ de metales pesados en efluentes hídricos. Teniendo en cuenta el interés actual por técnicas de detección rápidas para metales pesados, en la presente investigación se llevó a cabo la síntesis acuosa coloidal, la producción de QDs de CdTe y CdTe/ZnS, los cuales cumplen su función como agentes sensibilizantes permitiendo llevar a cabo la generación del quimiosensor a base de su acoplamiento con la nanocelulosa bacteriana (NCB), evaluando diferentes relaciones de carga en el nanocomposito. Para el nanopapel o quimiosensor se evidenció que la carga de NCB óptima por unidad de área fue de 2.21 mg NCB/cm2, esta relación permitió obtener un nanopapel homogéneo y apropiado para la adsorción de los QDs. Adicionalmente, el quimiosensor y los elementos que lo constituyeron fueron caracterizados estructural y morfológicamente mediante técnicas como UV-vis, IR, DRX, fluorescencia, SEM y TEM que permitieron identificar el tamaño de partícula de los QDs (~ 2.4 nm), contando con un núcleo con estructura cristalina cúbica centrada en las caras (CCC) y ligandos orgánicos evidenciados mediante IR mostrando sus señales características. Finalmente, el quimiosensor mostró ser sensible a metales pesados tales como el cromo, la plata, el cobre, el mercurio y el plomo, encontrándose que el mercurio es el metal más influyente en la variación de la fluorescencia de los QDs generando una extinción casi total de la fluorescencia del quimiosensor en concentraciones sobre 1 µM.In the last decade, contamination by heavy metals in aqueous media has become a global problem that has increased with the confluence of natural sources and, mainly, anthropogenic activities (industrial activities, mining activities, use of pesticides, among others). This condition has generated an increase in the concentration of heavy metals in water effluents, generating therefore a risk for the health of any living system. Metal ions have the capacity to bioaccumulate and biomagnifies in the organism, causing the alteration of numerous biochemical and physiological processes in animals and plants, triggering various pathologies. Currently, the identification and removal of heavy metals from water sources is a costly and slow process and, in most cases, it is not carried out adequately due to the complicated instrumental techniques used and their detection limits. In Colombia, for example, the monitoring of these metals in water for human consumption is not required according to Chapter V and VI of Resolution 2115 of 2007, therefore, there is no control of this type of contaminants in the country's water sources. Currently, the identification and quantification of heavy metals is carried out using medium/high complexity and high-cost equipment and procedures (techniques such as atomic absorption and mass spectrometry). This situation is unfavorable in view of the regional, national, and global need for rapid identification and quantification of this type of ions. So that the contamination of the effluent can be evidenced in an efficient manner. Nowadays, several methods have emerged that can carry out the identification and quantification of these ions in a fast and selective way. Within this set of methods, the use of various nanomaterials stands out, which, due to their luminescent properties, have become chemosensors of interest in this field. Within this type of nanomaterials, quantum dots (QDs) respond to the presence of certain heavy metals by modifying their luminescence depending on the concentration of the metal. Additionally, the use of these nanomaterials in conjunction with a nanocellulose (NC) support enhances their properties, making them a promising material for the in-situ identification of heavy metals in water effluents. Considering the current interest in rapid detection techniques for heavy metals, in the present work, the production of CdTe and CdTe/ZnS QDs was carried out by colloidal aqueous synthesis, which fulfill their function as sensitizing agents allowing the generation of the chemosensor based on their coupling with bacterial nanocellulose (NCB), evaluating different charge ratios in the nanocomposite. For the nano paper or chemosensor, it was evidenced that the optimal NCB loading per unit area was 2.21 mg NCB/cm2, this ratio allowed obtaining a homogeneous and appropriate nano paper for the adsorption of QDs. Additionally, the chemosensor and its constituent elements were structurally and morphologically characterized by UV-vis, IR, XRD, fluorescence, SEM and TEM techniques that allowed identifying the particle size of the QDs (~ 2.4 nm), having a core with a face-centered cubic crystalline structure (CCC) and organic ligands evidenced by IR showing their characteristic signals. Finally, the chemosensor was shown to be sensitive to heavy metals such as chromium, silver, copper, mercury, and lead, finding that mercury is the most influential metal in the variation of the fluorescence of the QDs generating an almost total quenching of the fluorescence of the chemosensor at concentrations above 1 µM.Químico Ambientalhttp://www.ustabuca.edu.co/ustabmanga/presentacionPregradoapplication/pdfspaUniversidad Santo TomásPregrado Química AmbientalFacultad de Química AmbientalGeneración de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras AcuosasNanomaterialsContaminationHeavy metalsBacterial celluloseChemosensorsAgua - Contenido de metales pesadosContaminación del aguaContaminación químicaMetales pesadosNanomaterialesContaminaciónMetales pesadosCelulosa bacterianaQuimiosensoresTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisAcceso cerradoinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCRAI-USTA BucaramangaAbol-Fotouch, D., Hassan, M., Shokry, H., Roig, A., Azab, M., & Hady, A. (2020). Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Acientific Reports, 10(1), 3491. https://doi.org/10.1038/s41598-020-60315-9Anderson, N., Hendricks, M., Choi, J., & Owen, J. (2013). Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding. American Chemical Society, 135, 18536–18548. https://doi.org/10.1021/ja4086758Ansari, Z., Singha, S. S., Saha, A., & Sen, K. (2017). Hassle free synthesis of nanodimensional Ni, Cu and Zn sulfides for spectral sensing of Hg, Cd and Pb: A comparative study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176, 67–78. https://doi.org/10.1016/j.saa.2017.01.005Anton-Sales, I., Beejmann, U., Laromaine, A., Roig, A., & Kralisch, D. (2019). Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Current Drug Targets, 20(8), 808–822. https://doi.org/10.2174/1389450120666181129092144Arulraj, A. D., Devasenathipathy, R., Chen, S.-M., Vasantha, V. S., & Wang, S.-F. (2015). Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium. Sensing and Bio-Sensing Research, 6, 19–24. https://doi.org/10.1016/j.sbsr.2015.10.004Ávila, J. A. (2019). Obtención Y Esterificación Sostenible De Nanocelulosa Bacteriana Para Usos Que Requieren Regular La Polaridad De Las Nanofibras. Instituto de tecnología en polímeros y nanotecnología.Boonmee, C., Noipa, T., Tuntulani, T., & Ngeontae, W. (2016). Cysteamine capped CdS quantum dots as a fluorescence sensor for the determination of copper ion exploiting fluorescence enhancement and long-wave spectral shifts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 161–168. https://doi.org/10.1016/j.saa.2016.05.007Borgohain, R., Boruah, P. K., & Baruah, S. (2016). Heavy-metal ion sensor using chitosan capped ZnS quantum dots. Sensors and Actuators B: Chemical, 226, 534–539. https://doi.org/10.1016/j.snb.2015.11.118Cardona, S. (2020). Degradación fotocatalítica del 2,4 dinitrofenol con puntos cuánticos de CdSe/ZnS. Universidad Nacional de Colombia.Chakraborty, S., & Hussain, S. A. (2020). Fluorescence resonance energy transfer (FRET) between acriflavine and CdTe quantum dot. Materials Today: Proceedings, 3–4. https://doi.org/10.1016/j.matpr.2020.02.757Chandan, R., Schiffman, J. D., & Balakrishna, R. G. (2018). Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical, 258, 1191–1214. https://doi.org/10.1016/j.snb.2017.11.189Chatzigoulas, A., Karathanou, K., Dellis, D., & Cournia, Z. (2018). NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit. Journal od Chemical Information and Modeling, 58(12), 2380–2386. https://doi.org/10.1021/acs.jcim.8b00269Chen, J.-L., & Zhu, C.-Q. (2005). Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Analytica Chimica Acta, 546(2), 147–153. https://doi.org/10.1016/j.aca.2005.05.006Chen, J., Zheng, A., Gao, Y., He, C., Wu, G., Chen, Y., Kai, X., & Zhu, C. (2008). Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3), 1044–1052. https://doi.org/10.1016/j.saa.2007.06.021Chiodo, S., Russi, N., & Sicilia, E. (2006). LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107. https://doi.org/10.1063/1.2345197Cortez, Y. (2018). Análisis de la eficiencia de nanotubos de TiO2 con puntos cuánticos CuInS2 en su estructura como fotocatalizadores para la degradación de fenol en solución acuosa. Escuela Politécnica Nacional.Costas, I., Romero, V., Lavilla, I., & Bendicho, C. (2014). An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. Trends in Analytical Chemistry, 57, 64–72. https://doi.org/10.1016/j.trac.2014.02.004Daud, J., & Lee, K.-Y. (2017). Surface Modification of Nanocellulose. En H. Kargarzadeh, I. Ahmad, S. Thomas, & A. Dufresne (Eds.), Handbook of Nanocellulose and Cellulose (pp. 101–122). Wiley-VCH. https://doi.org/10.1002/9783527689972.ch3Devi, P., Rajput, P., Thakur, A., Kim, K.-H., & Kumar, P. (2019). Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC Trends in Analytical Chemistry, 114, 171–195. https://doi.org/10.1016/j.trac.2019.03.003Dolez, P. I. (2015). Chapter 1.1 - Nanomaterials Definitions, Classifications, and Applications (P. I. Dolez (Ed.); pp. 3–40). Elsevier. https://doi.org/10.1016/B978-0-444-62747-6.00001-4Dral, P. O., Wu, X., & Thiel, W. (2019). Semiempirical Quantum-Chemical Methods with Orthogonalization and Dispersion Corrections. Journal of Chemical Theory and Computation, 15(3), 1743–1760. https://doi.org/10.1021/acs.jctc.8b01265Elmizadeh, H., Soleimani, M., Faridbod, F., & Bardajee, G. (2019). Fabrication of a nanomaterial-based fluorescence sensor constructed from ligand capped CdTe quantum dots for ultrasensitive and rapid detection of silver ions in aqueous samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211, 291–298. https://doi.org/10.1016/j.saa.2018.12.016Eom, H., Hwang, J., Hassan, S. H. A., Joo, J. H., Hur, J. H., Chon, K., Jeon, B.-H., Song, Y.-C., Chae, K.-J., & Oh, S.-E. (2019). Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor. Journal of Microbiological Methods, 161, 35–42. https://doi.org/10.1016/j.mimet.2019.04.007Filali, S., Pirot, F., & Miossec, P. (2019). Biological Applications and Toxicity Minimization of Semiconductor Quantum Dots. Trends in Biotechnology, 163–177. https://doi.org/10.1016/j.tibtech.2019.07.013Friesner, R. A., & Jerome, S. V. (2017). Localized orbital corrections for density functional calculations on transition metal containing systems. Coordination Chemistry Reviews, 344, 205–213. https://doi.org/10.1016/j.ccr.2017.02.014Gheshlaghi, N., Pisheh, H. S., Karim, M. R., Malkoc, D., & Ünlü, H. (2016). Interfacial strain effect on type-I and type-II core/shell quantum dots. Superlattices and Microstructures, 97, 489–494. https://doi.org/10.1016/j.spmi.2016.07.020Ghosh, R., & Paria, S. (2011). Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 112(4), 2373–2433. https://doi.org/10.1021/cr100449nGoyeneche, L. M. (2018). Determinación del tamaño de partícula mediante diracción de rayos X. Universidad de Cantabria.Gui, R., An, X., Su, H., Shen, W., Chen, Z., & Wang, X. (2012). A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF–ON fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta, 94, 257–262. https://doi.org/10.1016/j.talanta.2012.03.036Guyot, P. (2008). Colloidal quantum dots. Comptes Rendus Physique, 9(8), 777–787. https://doi.org/10.1016/j.crhy.2008.10.006Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345–352. https://doi.org/10.1042/bj0580345Hosseini, M., Ganjali, M. R., Vaezi, Z., Faridbod, F., Arabsorkhi, B., & Sheikhha, M. H. (2014). Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 116–120. https://doi.org/10.1016/j.saa.2013.10.074Huang, X., Tong, X., & Wang, Z. (2020). Rational design of colloidal core/shell quantum dots for optoelectronic applications. Journal of Electronic Science and Technology, 100018. https://doi.org/10.1016/j.jnlest.2020.100018IDEAM. (2019). Estudio Nacional del Agua 2018 (pp. 229–232). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023858/ENA_2018.pdfIDEAM, & INVEMAR. (2018). Protocolo de Monitoreo del Agua (pp. 76–77).Imran, M., Jawwad, M., Kuznetsov, A., Idrees, N., Iqbal, J., & Ali, A. (2019). Computational investigations into the structural and electronic properties of CdnTen (n=1–17) quantum dots. The Royal Society of Chemistry, 9, 5091–5099. https://doi.org/10.1039/c8ra09465aJaiswal, J. K., & Simon, S. M. (2004). Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends in Cell Biology, 14(9), 497–504. https://doi.org/10.1016/j.tcb.2004.07.012Jang, Y., Shapiro, A., Isarov, M., Rubin-Brusilovski, A., Safran, A., Budniak, A., Horani, F., Dehnel, J., Sashchiuk, A., & Lifshitz, E. (2017). Interface control of electronic and optical properties in IV-VI and II-VI core/shell coloidal quantum dots: A review. Chemical Communications, 53(6), 1002–1024. https://doi.org/10.1039/C6CC08742FJiao, Z., Zhang, P., Chen, H., Li, C., Chen, L., Fan, H., & Cheng, F. (2019). Differentiation of heavy metal ions by fluorescent quantum dot sensor array in complicated samples. Sensors and Actuators B: Chemical, 295, 110–116. https://doi.org/10.1016/j.snb.2019.05.059Jiménez-López, J., Rodrigues, S. S. M., Ribeiro, D. S. M., Ortega-Barrales, P., Ruiz-Medina, A., & Santos, J. L. M. (2019). Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 212, 246–254. https://doi.org/10.1016/j.saa.2019.01.005Joseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198Kamide, K. (2005). 1- Introduction. En K. Kamide (Ed.), Cellulose and Cellulose Derivatives (pp. 1–23). Elsevier Science. https://doi.org/10.1016/B978-044482254-3/50003-5Kilina, S., Ivaniv, S., & Tretiak, S. (2009). Effect of Surface Ligands on Optical and Electronic Spectra of Semiconductor Nanoclusters. Journal of the American Chemical Society, 131(22), 7717–7726. https://doi.org/10.1021/ja9005749Kilina, S., Tamukong, P., & Kilin, D. (2016). Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives. American Chemical Society, 49, 2127–2135. https://doi.org/10.1021/acs.accounts.6b00196Kim, J., Oh, J. S., Park, K. C., Gupta, G., & Lee, C. Y. (2019). Colorimetric detection of heavy metal ions in water via metal-organic framework. Inorganica Chimica Acta, 486, 69–73. https://doi.org/10.1016/j.ica.2018.10.025Kuang, Y., Wang, X., Tian, X., Yang, C., Li, Y., & Nie, Y. (2019). Silica-embedded CdTe quantum dots functionalized with rhodamine derivative for instant visual detection of ferric ions in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 372, 140–146. https://doi.org/10.1016/j.jphotochem.2018.12.015Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Sidhu, G. P. S., Bali, A. S., Karaouzas, I., Bhardwaj, R., Thukral, A. K., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364Kuznetsov, A., & Beratan, D. (2014). Structural and Electronic Properties of Bare and Capped Cd33Se33 and Cd33Te33 Quantum Dots. American Chemical Society, 118, 7094–7109. https://doi.org/10.1021/jp4007747Labeb, M., Sakr, A.-H., Soliman, M., Abdel-Fattah, T. M., & Ebrahim, S. (2018). Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions. Optical Materials, 79, 331–335. https://doi.org/10.1016/j.optmat.2018.03.060Lefebvre, P., Richard, T., Allègre, J., Mathieu, H., Pradel, A., Marc, J., Boudes, L., Granier, W., & Ribes, M. (1994). Sol-Gel preparation and optical characterization of sodium borosilicate glasses doped with II-VI semiconductor nanocrystals. Proceedings of SPIE - The International Society for Optical Engineering, 2288, 163–173. https://doi.org/10.1117/12.188948Liu, J., Lv, G., Gu, W., Li, Z., Tang, A., & Mei, L. (2017). A novel luminescence probe based on layered double hydroxides loaded with quantum dots for simultaneous detection of heavy metal ions in water. Journal of Materials Chemistry C, 5(20), 5024–5030. https://doi.org/10.1039/c7tc00935fLiu, S., Wang, Y.-M., & Han, J. (2017). Fluorescent chemosensors for copper(II) ion: Structure, mechanism and application. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 32, 78–103. https://doi.org/10.1016/j.jphotochemrev.2017.06.002Liu, Z., Mo, Z., Niu, X., Yang, X., Jiang, Y., Zhao, P., Liu, N., & Guo, R. (2020). Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. Journal of Colloid and Interface Science, 566, 357–368. https://doi.org/10.1016/j.jcis.2020.01.092Ma, Q., Ha, E., Yang, F., & Su, X. (2011). Synchronous determination of mercury (II) and copper (II) based on quantum dots-multilayer film. Analytica Chimica Acta, 701(1), 60–65. https://doi.org/10.1016/j.aca.2011.04.051Marandi, M., Emrani, B., & Zare, H. (2017). Synthesis of highly luminescent CdTe / CdS core-shell nanocrystals by optimization of the core and shell growth parameters. Optical Materials, 69, 358–366. https://doi.org/10.1016/j.optmat.2017.04.058Minambiente. (2020). Nomartiva Recurso Hídrico. https://www.minambiente.gov.co/index.php/gestion-integral-del-recurso-hidrico/normativa-recurso-hidricoMishra, R. K., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005Modlitbová, P., Novotný, K., Pořízka, P., Klus, J., Lubal, P., Zlámalová-Gargošová, H., & Kaiser, J. (2018). Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotoxicology and Environmental Safety, 147, 334–341. https://doi.org/10.1016/j.ecoenv.2017.08.053NANO-SME. (2007). Aplicaciones industriales de la nanotecnología (pp. 25–41). Tresalia Comunication.Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). Chapter 1 - An Introduction to Nanotechnology (M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.); Vol. 28, pp. 1–7). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00001-8Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). Chapter 4 - Applications of Nanotechnology in Daily Life (M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.); Vol. 28, pp. 113–143). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00004-3Nguyen, K., Pachter, R., Jiang, J., & Day, P. N. (2018). Systematic Study of Structure, Stability, and Electronic Absorption of Tetrahedral CdSe Clusters with Carboxylate and Amine Ligands. The Journal of Pgysical Chemistry A, 122(33), 6704–6712. https://doi.org/10.1021/acs.jpca.8b02813Oluwafemi, S., Revaprasadu, N., & Ramirez, A. (2008). A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. Journal of Crystal Growth, 310(13), 3230–3234. https://doi.org/10.1016/j.jcrysgro.2008.03.032ONU. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019 (pp. 14–17). UNESCO.Paramanik, B., Bhattacharyya, S., & ´Patra, A. (2013). Detection of Hg2+ and F- ions by using fluorescence switching of quantum dots in an Au-cluster-CdTe QD nanocomposite. Chemistry-A European Journal, 19(19), 5980–5987. https://doi.org/10.1002/chem.201203576Patel, J., Jain, B., Singh, A. K., Susan, M. A. B. H., & Jean-Paul, L. (2020). Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchemical Journal, 155, 104755. https://doi.org/10.1016/j.microc.2020.104755Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32–43. https://doi.org/10.1016/j.crcon.2018.05.004Ploem, J. (1999). CHAPTER ONE - Fluorescence Microscopy (W. T. Mason (Ed.); pp. 3–13). Academic Press. https://doi.org/10.1016/B978-012447836-7/50003-8Pooja, D., Saini, S., Thakur, A., Kumar, B., Tyagi, S., & Nayak, M. K. (2017). A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. Journal of Hazardous Materials, 328, 117–126. https://doi.org/10.1016/j.jhazmat.2017.01.015Pradeep, T., & Anshup. (2009). Noble metal nanoparticles for water putification: A critical review. Thin Solid Films, 517(24), 6441–6478. https://doi.org/10.1016/j.tsf.2009.03.195Ray, S., & Salehiyan, R. (2020). Chapter 2 - Fundamental definition and importance of nanomaterials, nanostructured, and bulk nanostructured materials (S. S. Ray & R. Salehiyan (Eds.); pp. 15–28). Elsevier. https://doi.org/10.1016/B978-0-12-816707-6.00002-XReshma, V. G., & Mohanan, P. V. (2019). Quantum dots: Applications and safety consequences. Journal of Luminescence, 205, 287–298. https://doi.org/10.1016/j.jlumin.2018.09.015Resolución 2115 de 2007 (pp. 3–4). (2007). https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislación_del_agua/Resolución_2115.pdfResolución 631 de 2015 (Vol. 2015, pp. 13–15). (2015). https://rds.org.co/es/recursos/resolucion-631-de-2015-parametros-vertimientosRodrigues, S. S. M., Ribeiro, D. S. M., Soares, J. X., Passos, M. L. C., Saraiva, M. L. M. F. S., & Santos, J. L. M. (2017). Application of nanocrystalline CdTe quantum dots in chemical analysis: Implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation. Coordination Chemistry Reviews, 330, 127–143. https://doi.org/10.1016/j.ccr.2016.10.001Rodríguez, C. (2019). Evolución de la calidad del río vetas relacionada con la minería aurifera practicada en la provincia de soto en Santander. Universidad de Manizales. http://ridum.umanizales.edu.co:8080/xmlui/bitstream/handle/6789/3413/documento maestria FINAL 18 MAYO %282%29.pdf?sequence=1&isAllowed=yRuiz, C., Soriano, L., & Valcárcel, M. (2017). Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC Trends in Analytical Chemistry, 87, 1–18. https://doi.org/j.trac.2016.11.007Safari, M., Najafi, S., Arkan, E., Amani, S., & Shahlaei, M. (2019). Facile aqueous synthesis of Ni-doped CdTe quantum dots as fluorescent probes for detecting pyrazinamide in plasma. Microchemical Journal, 146, 293–299. https://doi.org/10.1016/j.microc.2019.01.019Sánchez, A. (2016). Síntesis y caracterización de puntos cuánticos de PbSe con aplicaciones en celdas fotovoltaícas con configuración FTO/TiO2/CdS/PbSe/ZnS. Centro de Investigaciones en Óptica, A.CSCOPUS. (2020a). Documents by country or territory (Vol. 2020, Número 3 de febrero de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=add34c41e8628b1a46cb5eecc94e8a9b&origin=resultslist&src=s&s=ALL%28%22nanomaterials%22+AND+%22pollution%22+AND+%22sensors%22+AND+%22cellulose%22+AND+%22heavy+metals%22%29&sortSCOPUS. (2020b). Documents by country or territory (Vol. 2020, Número 13 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=bdefe875263a2cb84a74c9f21f346fde&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%28%22theoretical+calculations%22+OR+%22computational+chemistry%22%29+AND+%22quantum+dots%22%29&soSCOPUS. (2020c). Documents by year (Vol. 2020, Número 12 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=add34c41e8628b1a46cb5eecc94e8a9b&origin=resultslist&src=s&s=ALL%28%22nanomaterials%22+AND+%22pollution%22+AND+%22sensors%22+AND+%22cellulose%22+AND+%22heavy+metals%22%29&sortSCOPUS. (2020d). Documents by Year (Vol. 2020, Número 12 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=bdefe875263a2cb84a74c9f21f346fde&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%28%22theoretical+calculations%22+OR+%22computational+chemistry%22%29+AND+%22quantum+dots%22%29&soShang, Z. Bin, Wang, Y., & Jin, W. J. (2009). Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta, 78(2), 364–369. https://doi.org/10.1016/j.talanta.2008.11.025Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., & Goswami, S. (2019). Commercial application of cellulose nano-composites – A review. Biotechnology Reports, 21, e00316. https://doi.org/10.1016/j.btre.2019.e00316Smith, A., Duan, H., Rhyner, M., Ruan, G., & Nie, S. (2006). A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Physical Chemistry Chemical Physics, 8(33), 3895–3903. https://doi.org/10.1039/B606572BSong, Z., Chen, X., Gong, X., Gao, X., Dai, Q., Nguyen, T. T., & Guo, M. (2020). Luminescent carbon quantum dots/nanofibrillated cellulose composite aerogel for monitoring adsorption of heavy metal ions in water. Optical Materials, 100, 109642. https://doi.org/10.1016/j.optmat.2019.109642Speakman, S. (2008). Estimating Crystallite Size Using XRD (pp. 10–12). MIT Center for Materials Science and Engineering.Tan, K., Heo, S., Foo, M., Chew, I. M., & Yoo, C. (2019). An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. Science of The Total Environment, 650(1), 1309–1326. https://doi.org/10.1016/j.scitotenv.2018.08.402Tang, A., Liu, Y., Wang, Q., Chen, R., Liu, W., Fang, Z., & Wang, L. (2016). A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing. Carbohydrate Polymers, 148, 29–35. https://doi.org/10.1016/j.carbpol.2016.04.034Tarantini, A., Wegner, K. D., Dussert, F., Sarret, G., Beal, D., Mattera, L., Lincheneau, C., Proux, O., Truffier-Boutry, D., Moriscot, C., Gallet, B., Jouneau, P.-H., Reiss, P., & Carrière, M. (2019). Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation. NanoImpact, 14, 100168. https://doi.org/10.1016/j.impact.2019.100168Tomczak, N., Jańczewski, D., Han, M., & Vancso, G. J. (2009). Designer polymer-quantum dot architectures. Progress in Polymer Science, 34(5), 393–430. https://doi.org/10.1016/j.progpolymsci.2008.11.004Tsay, J., Pflughoefft, M., Bentolila, L., & Weiss, S. (2004). Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals. Journal of the American Chemical Society, 126(7), 1926–1927. https://doi.org/10.1021/ja039227vUllah, N., Mansha, M., Khan, I., & Qurashi, A. (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trends in Analytical Chemistry, 100, 155–166. https://doi.org/10.1016/j.trac.2018.01.002Vareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101–118. https://doi.org/10.1016/j.jenvman.2019.05.126Vasudevan, D., Trinchi, A., Hardin, S. G., & Cole, I. S. (2015). Fluorescent heavy metal cation sensing with water dispersible 2MPA capped CdSe/ZnS quantum dots. Journal of Luminescence, 166, 88–92. https://doi.org/10.1016/j.jlumin.2015.04.043Vázquez, M. (2016). Sondas fluorescentes acuosolubles para metales tóxicos. Universidad de Santiago de Compostela.Wagner, A. M., Knipe, J. M., Orive, G., & Peppas, N. A. (2019). Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44–63. https://doi.org/10.1016/j.actbio.2019.05.022Wang, L., Ma, W., Xu, L., Chen, W., Zhu, Y., Xu, C., & Kotov, N. A. (2010). Nanoparticle-based environmental sensors. Materials Science and Engineering: R: Reports, 70(3), 265–274. https://doi.org/10.1016/j.mser.2010.06.012Wei, Q., Nagi, R., Sadeghi, K., Feng, S., Yan, E., Ki, S. J., Caire, R., Tseng, D., & Ozcan, A. (2014). Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano, 8(2), 1121–1129. https://doi.org/10.1021/nn406571tWhitehead, P. G., Bussi, G., Peters, R., Hossain, M. A., Softley, L., Shawal, S., Jin, L., Rampley, C. P. N., Holdship, P., Hope, R., & Alabaster, G. (2019). Modelling heavy metals in the Buriganga River System, Dhaka, Bangladesh: Impacts of tannery pollution control. Science of The Total Environment, 697, 134090. https://doi.org/10.1016/j.scitotenv.2019.134090Wu, Y., Sun, J., Zhang, Y., Pu, M., Zhang, G., He, N., & Zeng, X. (2017). Effective Integration of Targeted Tumor Imaging and Therapy Using Functionalized InP QDs with VEGFR2 Monoclonal Antibody and miR-92a Inhibitor. ACS Applied Materials & Interfaces, 9(15), 13068–13078. https://doi.org/10.1021/acsami.7b02641Xiao, J.-W., Ma, S., Yu, S., Zhou, C., Liu, P., Chen, Y., Zhou, H., Li, Y., & Chen, Q. (2018). Ligand engineering on CdTe quantum dots in perovskite solar cells for suppressed hysteresis. Nano Energy, 46, 45–53. https://doi.org/10.1016/j.nanoen.2018.01.035Xu, Q., Cai, W., Li, W., Sreeprasad, T. S., He, Z., Ong, W.-J., & Li, N. (2018). Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 10, 222–240. https://doi.org/10.1016/j.mtener.2018.09.005Xue, S., Wang, P., & Chen, K. (2020). A novel fluorescent chemosensor for detection of mercury(II) ions based on dansyl-peptide and its application in real water samples and living LNcap cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117616. https://doi.org/10.1016/j.saa.2019.117616Yang, Y., Jiang, J., Shen, G., & Yu, R. (2009). An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin. Analytica Chimica Acta, 636(1), 83–88. https://doi.org/10.1016/j.aca.2009.01.038Yu, W. W., Qu, L., Guo, W., & Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15(14), 2854–2860. https://doi.org/10.1021/cm034081kZeiri, N., Naifar, A., Nasrallah, S. A.-B., & Said, M. (2019). Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots. Photonics and Nanostructures - Fundamentals and Applications, 36, 100725. https://doi.org/10.1016/j.photonics.2019.100725Zhang, L., & Fang, M. (2010). Nanomaterials in pollution trace detection and environmental improvement. Nano Today, 5(2), 128–142. https://doi.org/10.1016/j.nantod.2010.03.002Zhang, M., Zhu, G., Li, T., Lou, X., & Zhu, L. (2019). A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water. Optics Communications. https://doi.org/10.1016/j.optcom.2019.124750Zhang, Q., Zhang, L., Wu, W., & Xiao, H. (2019). Methods and Applications of Nanocellulose Loaded with Inorganic Nanomaterials: A review. Carbohydrate Polymers, 115454. https://doi.org/10.1016/j.carbpol.2019.115454Zhang, Ya-nan, Sun, Y., Cai, L., Gao, Y., & Cai, Y. (2020). Optical fiber sensors for measurement of heavy metal ion concentration: A review. Measurement, 107742. https://doi.org/10.1016/j.measurement.2020.107742Zhang, Yonghong, Guo, Q., Huang, S., & Suo, F. (2016). The Adsorption of Ag on (CdTe)13 Core-Cage Nanocluster: A Computational Study. Journal of Cluster Science, 27(3), 1057–1066. https://doi.org/10.1007/s10876-016-0992-0Zhao, Y., Xu, M., Liu, Q., Wang, Z., Zhao, L., & Chen, Y. (2018). Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: A case study of the Sheyang Estuary. Marine Pollution Bulletin, 137, 601–609. https://doi.org/10.1016/j.marpolbul.2018.10.044Zheng, D., Zhao, P., & Zhu, L. (2019). Non-conjugated and π-conjugated functional ligands on semiconductive quantum dots. Composites Communications, 11, 21–26. https://doi.org/10.1016/j.coco.2018.10.008Zheng, J., Gao, S., & Ying, J. (2007). Synthesis and Cell‐Imaging Applications of Glutathione‐Capped CdTe Quantum Dots. Advanced Materials, 19(3), 376–380. https://doi.org/10.1002/adma.200600342Zhou, Z.-Q., Liao, Y.-P., Yang, J., Huang, S., Xiao, Q., Yang, L.-Y., & Liu, Y. (2020). Rapid ratiometric detection of Cd2+ based on the formation of ZnSe/CdS quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117795. https://doi.org/10.1016/j.saa.2019.117795Zhu, C., Chen, Z., Gao, S., Goh, B. L., Samsudin, I. Bin, Lwe, K. W., Wu, Y., Wu, C., & Su, X. (2019). Recent advances in non-toxic quantum dots and their biomedical applications. Progress in Natural Science: Materials International, 29(6), 628–640. https://doi.org/10.1016/j.pnsc.2019.11.007Zou, L., Gu, Z., & Sun, M. (2015). Review of the application of quantum dots in the heavy-metal detection. Toxicological & Environmental CHemistry, 97(3–4), 477–490. https://doi.org/10.1080/02772248.2015.1050201LICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/32504/4/license.txtaedeaf396fcd827b537c73d23464fc27MD54open accessORIGINAL2021PeñaPaula.pdf2021PeñaPaula.pdfTrabajo de gradoapplication/pdf6404967https://repository.usta.edu.co/bitstream/11634/32504/1/2021Pe%c3%b1aPaula.pdf199d43ce30d5555431f7dd8c1ed44ca6MD51metadata only access2021PeñaPaula1.pdf2021PeñaPaula1.pdfAprobación Facultadapplication/pdf131618https://repository.usta.edu.co/bitstream/11634/32504/2/2021Pe%c3%b1aPaula1.pdfc5b32503aa0aa2f9ea7655888435122fMD52metadata only access2021PeñaPaula2.pdf2021PeñaPaula2.pdfAcuerdo de Confidencialidadapplication/pdf169358https://repository.usta.edu.co/bitstream/11634/32504/3/2021Pe%c3%b1aPaula2.pdf36416bf42caf9032affd5431f1594c8eMD53metadata only accessTHUMBNAIL2021PeñaPaula.pdf.jpg2021PeñaPaula.pdf.jpgIM Thumbnailimage/jpeg5289https://repository.usta.edu.co/bitstream/11634/32504/5/2021Pe%c3%b1aPaula.pdf.jpgc665f0c5bdae7204cbe9b34775f1630aMD55open access2021PeñaPaula1.pdf.jpg2021PeñaPaula1.pdf.jpgIM Thumbnailimage/jpeg8353https://repository.usta.edu.co/bitstream/11634/32504/6/2021Pe%c3%b1aPaula1.pdf.jpg5e7e3d7834d1dd2ac8ff68aef9740600MD56open access2021PeñaPaula2.pdf.jpg2021PeñaPaula2.pdf.jpgIM Thumbnailimage/jpeg11114https://repository.usta.edu.co/bitstream/11634/32504/7/2021Pe%c3%b1aPaula2.pdf.jpg6bf2aa2fee43dbaab35ca33871b3c5bfMD57open access11634/32504oai:repository.usta.edu.co:11634/325042022-10-30 03:07:08.517metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K