La geoinformática en la gestión de cuencas hidrográficas.

La cuenca hidrográfica es entendida como “una parte de la tierra que recibe precipitaciones que fluyen hacia la misma dirección de salida debido a su topografía” (Asgari, 2021) por lo que es posible medir la cantidad de agua disponible de las precipitaciones, la cuenca se ha convertido en una unidad...

Full description

Autores:
Velasco Quitian, Laura Valentina
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/46042
Acceso en línea:
http://hdl.handle.net/11634/46042
Palabra clave:
Geoinformatics
River basin
Management
Ingeniería Ambiental
Ingeniería
Gestión del medio ambiente
Geoinformática
Cuenca hidrográfica
Gestión
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_429e5c2d83bdcfadf8f70bca642dd86e
oai_identifier_str oai:repository.usta.edu.co:11634/46042
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv La geoinformática en la gestión de cuencas hidrográficas.
title La geoinformática en la gestión de cuencas hidrográficas.
spellingShingle La geoinformática en la gestión de cuencas hidrográficas.
Geoinformatics
River basin
Management
Ingeniería Ambiental
Ingeniería
Gestión del medio ambiente
Geoinformática
Cuenca hidrográfica
Gestión
title_short La geoinformática en la gestión de cuencas hidrográficas.
title_full La geoinformática en la gestión de cuencas hidrográficas.
title_fullStr La geoinformática en la gestión de cuencas hidrográficas.
title_full_unstemmed La geoinformática en la gestión de cuencas hidrográficas.
title_sort La geoinformática en la gestión de cuencas hidrográficas.
dc.creator.fl_str_mv Velasco Quitian, Laura Valentina
dc.contributor.advisor.none.fl_str_mv Sierra Parada, Ronal Jackson
dc.contributor.author.none.fl_str_mv Velasco Quitian, Laura Valentina
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Geoinformatics
River basin
Management
topic Geoinformatics
River basin
Management
Ingeniería Ambiental
Ingeniería
Gestión del medio ambiente
Geoinformática
Cuenca hidrográfica
Gestión
dc.subject.lemb.spa.fl_str_mv Ingeniería Ambiental
Ingeniería
Gestión del medio ambiente
dc.subject.proposal.spa.fl_str_mv Geoinformática
Cuenca hidrográfica
Gestión
description La cuenca hidrográfica es entendida como “una parte de la tierra que recibe precipitaciones que fluyen hacia la misma dirección de salida debido a su topografía” (Asgari, 2021) por lo que es posible medir la cantidad de agua disponible de las precipitaciones, la cuenca se ha convertido en una unidad para la gestión del abastecimiento de agua (Asgari, 2021), funcionando como “una unidad básica para el análisis ambiental, ya que permite conocer y evaluar sus diversos componentes y los procesos e interacciones que en ella ocurren” (Braz et al., 2020) siendo objeto de ordenamiento y planificación ambiental y territorial. Existe una diversidad de aspectos que deben ser tratados en la organización y gestión de una cuenca hidrográfica, como el clima, la geología, geomorfología, hidrología superficial y subterránea, vegetación, fauna, paisaje, socioeconomía, etc., por lo cual es pertinente integrar la geoinformática debido a que es la “rama del conocimiento que se aboca al estudio de la naturaleza y estructura de los datos e información geográfica o espacial, al desarrollo y aplicación de procedimientos, métodos y técnicas para su captura o levantamiento, al almacenamiento, procesamiento, graficación y comunicación de la más diversa información espacial” (Universidad Autónoma de Ciudad Juárez). Por lo que es importante estudiar el uso de la geoinformática en la gestión de cuencas hidrográficas para la toma de decisiones que influyen a nivel económico, ambiental y social.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-25T15:42:03Z
dc.date.available.none.fl_str_mv 2022-07-25T15:42:03Z
dc.date.issued.none.fl_str_mv 2022-07-22
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Velasco Quitian, L. V. (2004). La geoinformática en la gestión de cuencas hidrográficas. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/46042
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Velasco Quitian, L. V. (2004). La geoinformática en la gestión de cuencas hidrográficas. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/46042
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abd El-Hamid, H. T., Caiyong, W., Yun, Z., & El-Zeiny, A. M. (2022). Environmental hazards of land use/land cover dynamics using data observation techniques and GIS: case study of Guyuan watershed, China. Arabian Journal of Geosciences, 15(5). https://doi.org/10.1007/s12517-022-09655-6
Aggarwal, M., Saravanan, S., Jacinth Jennifer, J., & Abijith, D. (2019). Delineation of groundwater potential zones for hard rock region in karnataka using AHP and GIS. En Advances in Remote Sensing and Geo Informatics Applications (pp. 315–317). Springer International Publishing
Asgari, M. (2021). A critical review on scale concept in GIS-based watershed management studies. Spatial Information Research, 29(3), 417–425. https://doi.org/10.1007/s41324-020-00361-7
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., & Thinh, N. X. (2018). Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213, 34–50. https://doi.org/10.1016/j.atmosres.2018.05.011
Balasubramani, K., Gomathi, M., Bhaskaran, G., & Kumaraswamy, K. (2019). GIS-based spatial multi-criteria approach for characterization and prioritization of micro-watersheds: a case study of semi-arid watershed, South India. Applied Geomatics, 11(3), 289–307. https://doi.org/10.1007/s12518-019-00261-y
Balasubramani, K., Veena, M., Kumaraswamy, K., & Saravanabavan, V. (2015). Estimation of soil erosion in a semi-arid watershed of Tamil Nadu (India) using revised universal soil loss equation (RUSLE) model through GIS. Modeling Earth Systems and Environment, 1(3). https://doi.org/10.1007/s40808-015-0015-4
Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H. G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C., Salinas, J., Széles, B., Viglione, A., Aksoy, H., … Zhang, Y. (2019). Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 64(10), 1141–1158. https://doi.org/10.1080/02626667.2019.1620507
Brito, C. S. de, Silva, R. M. da, Santos, C. A. G., Brasil Neto, R. M., & Coelho, V. H. R. (2021). Monitoring meteorological drought in a semiarid region using two long-term satellite-estimated rainfall datasets: A case study of the Piranhas River basin, northeastern Brazil. Atmospheric Research, 250. https://doi.org/10.1016/j.atmosres.2020.105380
Braz, A. M., Garcia, P. H. M., Pinto, A. L., Chávez, E. S., & Oliveira, I. J. de. (2020). Manejo integrado de cuencas hidrográficas: posibilidades y avances en los análisis de uso y cobertura de la tierra. Cuadernos de Geografía Revista Colombiana de Geografía, 29(1), 69–85. https://doi.org/10.15446/rcdg.v29n1.76232
Camici, S., Ciabatta, L., Massari, C., & Brocca, L. (2018). How reliable are satellite precipitation estimates for driving hydrological models: A verification study over the Mediterranean area. Journal of Hydrology, 563, 950–961. https://doi.org/10.1016/j.jhydrol.2018.06.067
Chim, K., Tunnicliffe, J., Shamseldin, A. Y., & Bun, H. (2021). Assessment of land use and climate change effects on hydrology in the upper Siem Reap River and Angkor Temple Complex, Cambodia. Environmental Development, 39. https://doi.org/10.1016/j.envdev.2021.100615
Chowdhury, M., Hasan, M. E., & Abdullah-Al-Mamun, M. M. (2020). Land use/land cover change assessment of Halda watershed using remote sensing and GIS. Egyptian Journal of Remote Sensing and Space Sciences, 23(1), 63–75. https://doi.org/10.1016/j.ejrs.2018.11.003
Das, S., & Pardeshi, S. D. (2018). Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Applied Water Science, 8(7). https://doi.org/10.1007/s13201-018-0848-x
Dutal, H., & Reis, M. (2020). Determining the effects of land use on soil erodibility in the Mediterranean highland regions of Turkey: a case study of the Korsulu stream watershed. Environmental Monitoring and Assessment, 192(3), 192. https://doi.org/10.1007/s10661-020-8155-z
Elgamal, A., Reggiani, P., & Jonoski, A. (2017). Impact analysis of satellite rainfall products on flow simulations in the Magdalena River Basin, Colombia. Journal of hydrology. Regional studies, 9, 85–103. https://doi.org/10.1016/j.ejrh.2016.09.001
El-Zeiny, A. M., & Effat, H. A. (2017). Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sensing Applications Society and Environment, 8, 266–277. https://doi.org/10.1016/j.rsase.2017.10.003
Eniyew, S., Teshome, M., Sisay, E., & Bezabih, T. (2021). Integrating RUSLE model with remote sensing and GIS for evaluation soil erosion in Telkwonz Watershed, Northwestern Ethiopia. Remote Sensing Applications Society and Environment, 24. https://doi.org/10.1016/j.rsase.2021.100623
Faridzad, M., Yang, T., Hsu, K., Sorooshian, S., & Xiao, C. (2018). Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information. Journal of Hydrology, 563, 123–142. https://doi.org/10.1016/j.jhydrol.2018.05.071
Gobierno de España. (s.f). Teledetección. Obtenido de Instituto Geográfico Nacional: https://www.ign.es/web/resources/docs/IGNCnig/OBS-Teledeteccion.pdf#:~:text=La%20teledetecci%C3%B3n%20es%20la%20t%C3%A9cnica,informaci%C3%B3n%20interpretable%20de%20la%20Tierra.
Gürtekin, E., & Gökçe, O. (2021). Estimation of erosion risk of Harebakayiş sub-watershed, Elazig, Turkey, using GIS based RUSLE model. Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100315
Hu, Q., Willson, G. D., Chen, X., & Akyuz, A. (2005). Effects of climate and landcover change on stream discharge in the Ozark Highlands, USA. Environmental Modeling and Assessment, 10(1), 9–19. https://doi.org/10.1007/s10666-004-4266-0
Huo, A., & Li, H. (2013). Assessment of climate change impact on the stream-flow in a typical debris flow watershed of Jianzhuangcuan catchment in Shaanxi Province, China. Environmental Earth Sciences, 69(6), 1931–1938. https://doi.org/10.1007/s12665-012-2025-0
Jaiswal, R. K., Ghosh, N. C., Galkate, R. V., & Thomas, T. (2015). Multi criteria decision analysis (MCDA) for watershed prioritization. Aquatic procedia, 4, 1553–1560. https://doi.org/10.1016/j.aqpro.2015.02.201
Javed, A., Khanday, M. Y., & Ahmed, R. (2009). Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 37(2), 261–274. https://doi.org/10.1007/s12524-009-0016-8
Kulkarni, A. T., Mohanty, J., Eldho, T. I., Rao, E. P., & Mohan, B. K. (2014). A web GIS based integrated flood assessment modeling tool for coastal urban watersheds. Computers & Geosciences, 64, 7–14. https://doi.org/10.1016/j.cageo.2013.11.002
Liu, B.-W., Wang, M.-H., Chen, T.-L., Tseng, P.-C., Sun, Y., Chiang, A., & Chiang, P.-C. (2020). Establishment and implementation of green infrastructure practice for healthy watershed management: Challenges and perspectives. Water-Energy Nexus, 3, 186–197. https://doi.org/10.1016/j.wen.2020.05.003
Mishra, S. K., & Singh, V. P. (2003). Soil conservation service curve number (SCS-CN) methodology (2003a ed.). Springer.
Moreno-Madriñán, M. J., Rickman, D. L., Ogashawara, I., Irwin, D. E., Ye, J., & Al-Hamdan, M. Z. (2015). Using remote sensing to monitor the influence of river discharge on watershed outlets and adjacent coral Reefs: Magdalena River and Rosario Islands, Colombia. ITC journal, 38, 204–215. https://doi.org/10.1016/j.jag.2015.01.008
Navarro, L., Camacho, R., López, J. E., & Saldarriaga, J. F. (2021). Assessment of the potential risk of leaching pesticides in agricultural soils: study case Tibasosa, Boyacá, Colombia. Heliyon, 7(11). https://doi.org/10.1016/j.heliyon.2021.e08301
Noori, A., Bonakdari, H., Hassaninia, M., Morovati, K., Khorshidi, I., Noori, A., & Gharabaghi, B. (2022). A reliable GIS-based FAHP-FTOPSIS model to prioritize urban water supply management scenarios: A case study in semi-arid climate. Sustainable Cities and Society, 81. https://doi.org/10.1016/j.scs.2022.103846
Oeurng, C., Cochrane, T., Chung, S., Kondolf, M., Piman, T., & Arias, M. (2019). Assessing climate change impacts on river flows in the Tonle Sap Lake basin, Cambodia. Water, 11(3), 618. https://doi.org/10.3390/w11030618
Patil, J. P., Sarangi, A., Singh, A. K., & Ahmad, T. (2008). Evaluation of modified CN methods for watershed runoff estimation using a GIS-based interface. Biosystems Engineering, 100(1), 137–146. https://doi.org/10.1016/j.biosystemseng.2008.02.001
Rao, K. N., Narendra, K., & Latha, P. S. (2010). An integrated study of geospatial information technologies for surface runoff estimation in an agricultural watershed, India. Journal of the Indian Society of Remote Sensing, 38(2), 255–267. https://doi.org/10.1007/s12524-010-0032-8
Rodrigues, M. V. C., Guimarães, D. V., Galvão, R. B., Patrick, E., & Fernandes, F. (2022). Urban watershed management prioritization using the rapid impact assessment matrix (RIAM-UWMAP), GIS and field survey. Environmental Impact Assessment Review, 94. https://doi.org/10.1016/j.eiar.2022.106759
Ruijsch, J., Verstegen, J. A., Sutanudjaja, E. H., & Karssenberg, D. (2021). Systemic change in the Rhine-Meuse basin: Quantifying and explaining parameters trends in the PCR-GLOBWB global hydrological model. Advances in Water Resources, 155. https://doi.org/10.1016/j.advwatres.2021.104013
Saaty, T. L., & Vargas, L. G. (2012). The seven pillars of the analytic hierarchy process. En International Series in Operations Research & Management Science (pp. 23–40). Springer US.
Sáenz Saavedra, N. (1992). Los sistemas de información geográfica (SIG) una herramienta poderosa para la toma de decisiones. Ingeniería e Investigación, 28, 31–40. https://doi.org/10.15446/ing.investig.n28.20790
Sánchez, P. (2012). La teledetección enfocada a la obtención de mapas digitales. Universidad de Cuenca, Cuenca.
Saravanan, S., Saranya, T., Abijith, D., Jacinth, J. J., & Singh, L. (2021). Delineation of groundwater potential zones for Arkavathi sub-watershed, Karnataka, India using remote sensing and GIS. Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100380
Sharma, S., & Mahajan, A. K. (2020). GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India. Applied Water Science, 10(7). https://doi.org/10.1007/s13201-020-01243-x
Shiferaw, A., & Singh, K. L. (2011). Evaluating the land use and land cover dynamics in Borena Woreda South Wollo Highlands, Ethiopia. The Ethiopian Journal of Business and Economics, 2(1). https://doi.org/10.4314/ejbe.v2i1
Singh, V. P., & Woolhiser, D. A. (2002). Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 7(4), 270–292. https://doi.org/10.1061/(asce)1084-0699(2002)7:4(270)
Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America bulletin, 63(11)
Swain, S. S., Mishra, A., Sahoo, B., & Chatterjee, C. (2020). Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. Journal of Hydrology, 590. https://doi.org/10.1016/j.jhydrol.2020.125260
Universidad Autónoma de Ciudad Juárez. (s.f.). Geoinformática. Obtenido de Universidad Autónoma de Ciudad Juárez: http://www3.uacj.mx/SC/Paginas/La-Geoinform%C3%A1tica-es.aspx#:~:text=La%20Geoinform%C3%A1tica%2C%20si%20se%20prefiere,su%20captura%20o%20levantamiento%2C%20al
Vélez-Otálvaro, M., Ortiz-Pimienta, C., & Vargas-Quintero, M. (s.f.). Las aguas subterráneas - Un enfoque práctico. Instituto Colombiano de Geología y Minería.
Wang, C., Si, J., Zhao, C., Jia, B., Celestin, S., Li, D., He, X., Zhou, D., Qin, J., & Zhu, X. (2022). Adequacy of satellite derived data for streamflow simulation in three Hexi inland river basins, Northwest China. Atmospheric Research, 274. https://doi.org/10.1016/j.atmosres.2022.106203
Wang, G., Mang, S., Cai, H., Liu, S., Zhang, Z., Wang, L., & Innes, J. L. (2016). Integrated watershed management: evolution, development and emerging trends. Journal of Forestry Research, 27(5), 967–994. https://doi.org/10.1007/s11676-016-0293-3
Wilson, C., & Tisdell, C. (2001). Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecological Economics: The Journal of the International Society for Ecological Economics, 39(3), 449–462. https://doi.org/10.1016/s0921-8009(01)00238-5
Wischmeier, W. H., Smith, D. D., United States. Science and Education Administration, & Purdue University. Agricultural Experiment Station. (1978). Predicting rainfall erosion losses: A guide to conservation planning. Department of Agriculture, Science and Education Administration
Yousif, M. (2019). Hydrogeological inferences from remote sensing data and geoinformatic applications to assess the groundwater conditions: El-Kubanyia basin, Western Desert, Egypt. Journal of African Earth Sciences (Oxford, England: 1994), 152, 197–214. https://doi.org/10.1016/j.jafrearsci.2019.02.003
Yuan, S., Quiring, S. M., Kalcic, M. M., Apostel, A. M., Evenson, G. R., & Kujawa, H. A. (2020). Optimizing climate model selection for hydrological modeling: A case study in the Maumee River basin using the SWAT. Journal of Hydrology, 588. https://doi.org/10.1016/j.jhydrol.2020.125064
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado de Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/46042/1/2022lauravelasco.pdf
https://repository.usta.edu.co/bitstream/11634/46042/2/Carta_Aprobacion_Facultad_IngAmb%202022%20-%20VELASCO%20QUITIAN%20LAURA%20VALENTINA.pdf
https://repository.usta.edu.co/bitstream/11634/46042/3/Carta_autorizacion_autoarchivo_autor_2022.pdf
https://repository.usta.edu.co/bitstream/11634/46042/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/46042/5/license.txt
https://repository.usta.edu.co/bitstream/11634/46042/6/2022lauravelasco.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/46042/7/Carta_Aprobacion_Facultad_IngAmb%202022%20-%20VELASCO%20QUITIAN%20LAURA%20VALENTINA.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/46042/8/Carta_autorizacion_autoarchivo_autor_2022.pdf.jpg
bitstream.checksum.fl_str_mv c4c7fa9b35e230197bc9efda2b494341
37f9f8d50aa47bd65aee68afe046f83e
e9784f46a01f92e092a1ae4e9e214d19
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
fd7f9d6d0cc478ffedc3c17a05c6a953
5180920e37fcb970abbcbeec3cb19abd
76436460240eb84f8b88f5a2735192b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026158204780544
spelling Sierra Parada, Ronal JacksonVelasco Quitian, Laura ValentinaUniversidad Santo Tomás2022-07-25T15:42:03Z2022-07-25T15:42:03Z2022-07-22Velasco Quitian, L. V. (2004). La geoinformática en la gestión de cuencas hidrográficas. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.http://hdl.handle.net/11634/46042reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coLa cuenca hidrográfica es entendida como “una parte de la tierra que recibe precipitaciones que fluyen hacia la misma dirección de salida debido a su topografía” (Asgari, 2021) por lo que es posible medir la cantidad de agua disponible de las precipitaciones, la cuenca se ha convertido en una unidad para la gestión del abastecimiento de agua (Asgari, 2021), funcionando como “una unidad básica para el análisis ambiental, ya que permite conocer y evaluar sus diversos componentes y los procesos e interacciones que en ella ocurren” (Braz et al., 2020) siendo objeto de ordenamiento y planificación ambiental y territorial. Existe una diversidad de aspectos que deben ser tratados en la organización y gestión de una cuenca hidrográfica, como el clima, la geología, geomorfología, hidrología superficial y subterránea, vegetación, fauna, paisaje, socioeconomía, etc., por lo cual es pertinente integrar la geoinformática debido a que es la “rama del conocimiento que se aboca al estudio de la naturaleza y estructura de los datos e información geográfica o espacial, al desarrollo y aplicación de procedimientos, métodos y técnicas para su captura o levantamiento, al almacenamiento, procesamiento, graficación y comunicación de la más diversa información espacial” (Universidad Autónoma de Ciudad Juárez). Por lo que es importante estudiar el uso de la geoinformática en la gestión de cuencas hidrográficas para la toma de decisiones que influyen a nivel económico, ambiental y social.The watershed is understood as "a part of the land that receives precipitation that flows towards the same direction of exit due to its topography" (Asgari, 2021) so it is possible to measure the amount of water available from precipitation, the watershed has become a unit for the management of water supply (Asgari, 2021), functioning as "a basic unit for environmental analysis, since it allows to know and evaluate its various components and the processes and interactions that occur in it" (Braz et al., 2020) and is the object of environmental and territorial planning. There is a diversity of aspects that must be addressed in the organization and management of a river basin, such as climate, geology, geomorphology, surface and subway hydrology, vegetation, fauna, landscape, socioeconomics, etc., It is therefore pertinent to integrate geoinformatics because it is the "branch of knowledge that focuses on the study of the nature and structure of geographic or spatial data and information, the development and application of procedures, methods and techniques for their capture or survey, storage, processing, graphing and communication of the most diverse spatial information" (Universidad Autónoma de Ciudad Juárez). Therefore, it is important to study the use of geoinformatics in watershed management for making decisions that influence the economic, environmental and social levels.Ingeniero AmbientalPregradoapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2La geoinformática en la gestión de cuencas hidrográficas.GeoinformaticsRiver basinManagementIngeniería AmbientalIngenieríaGestión del medio ambienteGeoinformáticaCuenca hidrográficaGestiónTrabajo de Gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáAbd El-Hamid, H. T., Caiyong, W., Yun, Z., & El-Zeiny, A. M. (2022). Environmental hazards of land use/land cover dynamics using data observation techniques and GIS: case study of Guyuan watershed, China. Arabian Journal of Geosciences, 15(5). https://doi.org/10.1007/s12517-022-09655-6Aggarwal, M., Saravanan, S., Jacinth Jennifer, J., & Abijith, D. (2019). Delineation of groundwater potential zones for hard rock region in karnataka using AHP and GIS. En Advances in Remote Sensing and Geo Informatics Applications (pp. 315–317). Springer International PublishingAsgari, M. (2021). A critical review on scale concept in GIS-based watershed management studies. Spatial Information Research, 29(3), 417–425. https://doi.org/10.1007/s41324-020-00361-7Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., & Thinh, N. X. (2018). Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213, 34–50. https://doi.org/10.1016/j.atmosres.2018.05.011Balasubramani, K., Gomathi, M., Bhaskaran, G., & Kumaraswamy, K. (2019). GIS-based spatial multi-criteria approach for characterization and prioritization of micro-watersheds: a case study of semi-arid watershed, South India. Applied Geomatics, 11(3), 289–307. https://doi.org/10.1007/s12518-019-00261-yBalasubramani, K., Veena, M., Kumaraswamy, K., & Saravanabavan, V. (2015). Estimation of soil erosion in a semi-arid watershed of Tamil Nadu (India) using revised universal soil loss equation (RUSLE) model through GIS. Modeling Earth Systems and Environment, 1(3). https://doi.org/10.1007/s40808-015-0015-4Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H. G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C., Salinas, J., Széles, B., Viglione, A., Aksoy, H., … Zhang, Y. (2019). Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 64(10), 1141–1158. https://doi.org/10.1080/02626667.2019.1620507Brito, C. S. de, Silva, R. M. da, Santos, C. A. G., Brasil Neto, R. M., & Coelho, V. H. R. (2021). Monitoring meteorological drought in a semiarid region using two long-term satellite-estimated rainfall datasets: A case study of the Piranhas River basin, northeastern Brazil. Atmospheric Research, 250. https://doi.org/10.1016/j.atmosres.2020.105380Braz, A. M., Garcia, P. H. M., Pinto, A. L., Chávez, E. S., & Oliveira, I. J. de. (2020). Manejo integrado de cuencas hidrográficas: posibilidades y avances en los análisis de uso y cobertura de la tierra. Cuadernos de Geografía Revista Colombiana de Geografía, 29(1), 69–85. https://doi.org/10.15446/rcdg.v29n1.76232Camici, S., Ciabatta, L., Massari, C., & Brocca, L. (2018). How reliable are satellite precipitation estimates for driving hydrological models: A verification study over the Mediterranean area. Journal of Hydrology, 563, 950–961. https://doi.org/10.1016/j.jhydrol.2018.06.067Chim, K., Tunnicliffe, J., Shamseldin, A. Y., & Bun, H. (2021). Assessment of land use and climate change effects on hydrology in the upper Siem Reap River and Angkor Temple Complex, Cambodia. Environmental Development, 39. https://doi.org/10.1016/j.envdev.2021.100615Chowdhury, M., Hasan, M. E., & Abdullah-Al-Mamun, M. M. (2020). Land use/land cover change assessment of Halda watershed using remote sensing and GIS. Egyptian Journal of Remote Sensing and Space Sciences, 23(1), 63–75. https://doi.org/10.1016/j.ejrs.2018.11.003Das, S., & Pardeshi, S. D. (2018). Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Applied Water Science, 8(7). https://doi.org/10.1007/s13201-018-0848-xDutal, H., & Reis, M. (2020). Determining the effects of land use on soil erodibility in the Mediterranean highland regions of Turkey: a case study of the Korsulu stream watershed. Environmental Monitoring and Assessment, 192(3), 192. https://doi.org/10.1007/s10661-020-8155-zElgamal, A., Reggiani, P., & Jonoski, A. (2017). Impact analysis of satellite rainfall products on flow simulations in the Magdalena River Basin, Colombia. Journal of hydrology. Regional studies, 9, 85–103. https://doi.org/10.1016/j.ejrh.2016.09.001El-Zeiny, A. M., & Effat, H. A. (2017). Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sensing Applications Society and Environment, 8, 266–277. https://doi.org/10.1016/j.rsase.2017.10.003Eniyew, S., Teshome, M., Sisay, E., & Bezabih, T. (2021). Integrating RUSLE model with remote sensing and GIS for evaluation soil erosion in Telkwonz Watershed, Northwestern Ethiopia. Remote Sensing Applications Society and Environment, 24. https://doi.org/10.1016/j.rsase.2021.100623Faridzad, M., Yang, T., Hsu, K., Sorooshian, S., & Xiao, C. (2018). Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information. Journal of Hydrology, 563, 123–142. https://doi.org/10.1016/j.jhydrol.2018.05.071Gobierno de España. (s.f). Teledetección. Obtenido de Instituto Geográfico Nacional: https://www.ign.es/web/resources/docs/IGNCnig/OBS-Teledeteccion.pdf#:~:text=La%20teledetecci%C3%B3n%20es%20la%20t%C3%A9cnica,informaci%C3%B3n%20interpretable%20de%20la%20Tierra.Gürtekin, E., & Gökçe, O. (2021). Estimation of erosion risk of Harebakayiş sub-watershed, Elazig, Turkey, using GIS based RUSLE model. Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100315Hu, Q., Willson, G. D., Chen, X., & Akyuz, A. (2005). Effects of climate and landcover change on stream discharge in the Ozark Highlands, USA. Environmental Modeling and Assessment, 10(1), 9–19. https://doi.org/10.1007/s10666-004-4266-0Huo, A., & Li, H. (2013). Assessment of climate change impact on the stream-flow in a typical debris flow watershed of Jianzhuangcuan catchment in Shaanxi Province, China. Environmental Earth Sciences, 69(6), 1931–1938. https://doi.org/10.1007/s12665-012-2025-0Jaiswal, R. K., Ghosh, N. C., Galkate, R. V., & Thomas, T. (2015). Multi criteria decision analysis (MCDA) for watershed prioritization. Aquatic procedia, 4, 1553–1560. https://doi.org/10.1016/j.aqpro.2015.02.201Javed, A., Khanday, M. Y., & Ahmed, R. (2009). Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 37(2), 261–274. https://doi.org/10.1007/s12524-009-0016-8Kulkarni, A. T., Mohanty, J., Eldho, T. I., Rao, E. P., & Mohan, B. K. (2014). A web GIS based integrated flood assessment modeling tool for coastal urban watersheds. Computers & Geosciences, 64, 7–14. https://doi.org/10.1016/j.cageo.2013.11.002Liu, B.-W., Wang, M.-H., Chen, T.-L., Tseng, P.-C., Sun, Y., Chiang, A., & Chiang, P.-C. (2020). Establishment and implementation of green infrastructure practice for healthy watershed management: Challenges and perspectives. Water-Energy Nexus, 3, 186–197. https://doi.org/10.1016/j.wen.2020.05.003Mishra, S. K., & Singh, V. P. (2003). Soil conservation service curve number (SCS-CN) methodology (2003a ed.). Springer.Moreno-Madriñán, M. J., Rickman, D. L., Ogashawara, I., Irwin, D. E., Ye, J., & Al-Hamdan, M. Z. (2015). Using remote sensing to monitor the influence of river discharge on watershed outlets and adjacent coral Reefs: Magdalena River and Rosario Islands, Colombia. ITC journal, 38, 204–215. https://doi.org/10.1016/j.jag.2015.01.008Navarro, L., Camacho, R., López, J. E., & Saldarriaga, J. F. (2021). Assessment of the potential risk of leaching pesticides in agricultural soils: study case Tibasosa, Boyacá, Colombia. Heliyon, 7(11). https://doi.org/10.1016/j.heliyon.2021.e08301Noori, A., Bonakdari, H., Hassaninia, M., Morovati, K., Khorshidi, I., Noori, A., & Gharabaghi, B. (2022). A reliable GIS-based FAHP-FTOPSIS model to prioritize urban water supply management scenarios: A case study in semi-arid climate. Sustainable Cities and Society, 81. https://doi.org/10.1016/j.scs.2022.103846Oeurng, C., Cochrane, T., Chung, S., Kondolf, M., Piman, T., & Arias, M. (2019). Assessing climate change impacts on river flows in the Tonle Sap Lake basin, Cambodia. Water, 11(3), 618. https://doi.org/10.3390/w11030618Patil, J. P., Sarangi, A., Singh, A. K., & Ahmad, T. (2008). Evaluation of modified CN methods for watershed runoff estimation using a GIS-based interface. Biosystems Engineering, 100(1), 137–146. https://doi.org/10.1016/j.biosystemseng.2008.02.001Rao, K. N., Narendra, K., & Latha, P. S. (2010). An integrated study of geospatial information technologies for surface runoff estimation in an agricultural watershed, India. Journal of the Indian Society of Remote Sensing, 38(2), 255–267. https://doi.org/10.1007/s12524-010-0032-8Rodrigues, M. V. C., Guimarães, D. V., Galvão, R. B., Patrick, E., & Fernandes, F. (2022). Urban watershed management prioritization using the rapid impact assessment matrix (RIAM-UWMAP), GIS and field survey. Environmental Impact Assessment Review, 94. https://doi.org/10.1016/j.eiar.2022.106759Ruijsch, J., Verstegen, J. A., Sutanudjaja, E. H., & Karssenberg, D. (2021). Systemic change in the Rhine-Meuse basin: Quantifying and explaining parameters trends in the PCR-GLOBWB global hydrological model. Advances in Water Resources, 155. https://doi.org/10.1016/j.advwatres.2021.104013Saaty, T. L., & Vargas, L. G. (2012). The seven pillars of the analytic hierarchy process. En International Series in Operations Research & Management Science (pp. 23–40). Springer US.Sáenz Saavedra, N. (1992). Los sistemas de información geográfica (SIG) una herramienta poderosa para la toma de decisiones. Ingeniería e Investigación, 28, 31–40. https://doi.org/10.15446/ing.investig.n28.20790Sánchez, P. (2012). La teledetección enfocada a la obtención de mapas digitales. Universidad de Cuenca, Cuenca.Saravanan, S., Saranya, T., Abijith, D., Jacinth, J. J., & Singh, L. (2021). Delineation of groundwater potential zones for Arkavathi sub-watershed, Karnataka, India using remote sensing and GIS. Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100380Sharma, S., & Mahajan, A. K. (2020). GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India. Applied Water Science, 10(7). https://doi.org/10.1007/s13201-020-01243-xShiferaw, A., & Singh, K. L. (2011). Evaluating the land use and land cover dynamics in Borena Woreda South Wollo Highlands, Ethiopia. The Ethiopian Journal of Business and Economics, 2(1). https://doi.org/10.4314/ejbe.v2i1Singh, V. P., & Woolhiser, D. A. (2002). Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 7(4), 270–292. https://doi.org/10.1061/(asce)1084-0699(2002)7:4(270)Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America bulletin, 63(11)Swain, S. S., Mishra, A., Sahoo, B., & Chatterjee, C. (2020). Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. Journal of Hydrology, 590. https://doi.org/10.1016/j.jhydrol.2020.125260Universidad Autónoma de Ciudad Juárez. (s.f.). Geoinformática. Obtenido de Universidad Autónoma de Ciudad Juárez: http://www3.uacj.mx/SC/Paginas/La-Geoinform%C3%A1tica-es.aspx#:~:text=La%20Geoinform%C3%A1tica%2C%20si%20se%20prefiere,su%20captura%20o%20levantamiento%2C%20alVélez-Otálvaro, M., Ortiz-Pimienta, C., & Vargas-Quintero, M. (s.f.). Las aguas subterráneas - Un enfoque práctico. Instituto Colombiano de Geología y Minería.Wang, C., Si, J., Zhao, C., Jia, B., Celestin, S., Li, D., He, X., Zhou, D., Qin, J., & Zhu, X. (2022). Adequacy of satellite derived data for streamflow simulation in three Hexi inland river basins, Northwest China. Atmospheric Research, 274. https://doi.org/10.1016/j.atmosres.2022.106203Wang, G., Mang, S., Cai, H., Liu, S., Zhang, Z., Wang, L., & Innes, J. L. (2016). Integrated watershed management: evolution, development and emerging trends. Journal of Forestry Research, 27(5), 967–994. https://doi.org/10.1007/s11676-016-0293-3Wilson, C., & Tisdell, C. (2001). Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecological Economics: The Journal of the International Society for Ecological Economics, 39(3), 449–462. https://doi.org/10.1016/s0921-8009(01)00238-5Wischmeier, W. H., Smith, D. D., United States. Science and Education Administration, & Purdue University. Agricultural Experiment Station. (1978). Predicting rainfall erosion losses: A guide to conservation planning. Department of Agriculture, Science and Education AdministrationYousif, M. (2019). Hydrogeological inferences from remote sensing data and geoinformatic applications to assess the groundwater conditions: El-Kubanyia basin, Western Desert, Egypt. Journal of African Earth Sciences (Oxford, England: 1994), 152, 197–214. https://doi.org/10.1016/j.jafrearsci.2019.02.003Yuan, S., Quiring, S. M., Kalcic, M. M., Apostel, A. M., Evenson, G. R., & Kujawa, H. A. (2020). Optimizing climate model selection for hydrological modeling: A case study in the Maumee River basin using the SWAT. Journal of Hydrology, 588. https://doi.org/10.1016/j.jhydrol.2020.125064ORIGINAL2022lauravelasco.pdf2022lauravelasco.pdfTrabajo de gradoapplication/pdf149083https://repository.usta.edu.co/bitstream/11634/46042/1/2022lauravelasco.pdfc4c7fa9b35e230197bc9efda2b494341MD51open accessCarta_Aprobacion_Facultad_IngAmb 2022 - VELASCO QUITIAN LAURA VALENTINA.pdfCarta_Aprobacion_Facultad_IngAmb 2022 - VELASCO QUITIAN LAURA VALENTINA.pdfCarta aprobación facultadapplication/pdf843476https://repository.usta.edu.co/bitstream/11634/46042/2/Carta_Aprobacion_Facultad_IngAmb%202022%20-%20VELASCO%20QUITIAN%20LAURA%20VALENTINA.pdf37f9f8d50aa47bd65aee68afe046f83eMD52metadata only accessCarta_autorizacion_autoarchivo_autor_2022.pdfCarta_autorizacion_autoarchivo_autor_2022.pdfCarta derechos de autorapplication/pdf928085https://repository.usta.edu.co/bitstream/11634/46042/3/Carta_autorizacion_autoarchivo_autor_2022.pdfe9784f46a01f92e092a1ae4e9e214d19MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/46042/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/46042/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2022lauravelasco.pdf.jpg2022lauravelasco.pdf.jpgIM Thumbnailimage/jpeg4330https://repository.usta.edu.co/bitstream/11634/46042/6/2022lauravelasco.pdf.jpgfd7f9d6d0cc478ffedc3c17a05c6a953MD56open accessCarta_Aprobacion_Facultad_IngAmb 2022 - VELASCO QUITIAN LAURA VALENTINA.pdf.jpgCarta_Aprobacion_Facultad_IngAmb 2022 - VELASCO QUITIAN LAURA VALENTINA.pdf.jpgIM Thumbnailimage/jpeg6431https://repository.usta.edu.co/bitstream/11634/46042/7/Carta_Aprobacion_Facultad_IngAmb%202022%20-%20VELASCO%20QUITIAN%20LAURA%20VALENTINA.pdf.jpg5180920e37fcb970abbcbeec3cb19abdMD57open accessCarta_autorizacion_autoarchivo_autor_2022.pdf.jpgCarta_autorizacion_autoarchivo_autor_2022.pdf.jpgIM Thumbnailimage/jpeg7640https://repository.usta.edu.co/bitstream/11634/46042/8/Carta_autorizacion_autoarchivo_autor_2022.pdf.jpg76436460240eb84f8b88f5a2735192b6MD58open access11634/46042oai:repository.usta.edu.co:11634/460422022-10-10 15:48:50.232open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K