Herramienta para la generación de texto basada en una interfaz cerebro-computador

En este trabajo se presenta el desarrollo de una herramienta que permite a las personas comunicarse, haciendo uso únicamente de sus parpadeos voluntarios. Esta herramienta brinda un medio de comunicación principalmente a las personas que tienen alguna discapacidad motora para comunicarse de forma ve...

Full description

Autores:
Reyes Fernandez, Andres Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/29868
Acceso en línea:
http://hdl.handle.net/11634/29868
Palabra clave:
Electroencephalogram
Brain-computer interfaces
Artificial neural networks
Long-Short Term Memory
Nervous system diseases -- Amyotrophic lateral sclerosis
Communication systems -- People -- Amyotrophic lateral sclerosis
Redes neuronales artificiales
Enfermedades del sistema nervioso -- Esclerosis lateral amiotrófica
Sistemas de comunicación -- Personas -- Esclerosis lateral amiotrófica
Electroencefalograma
Interfaces cerebro-computador
Redes neuronales artificiales
Long-Short Term Memory
Esclerosis lateral amiotrófica (ELA)
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_3a144769ae72270669470bbd928daf85
oai_identifier_str oai:repository.usta.edu.co:11634/29868
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Herramienta para la generación de texto basada en una interfaz cerebro-computador
title Herramienta para la generación de texto basada en una interfaz cerebro-computador
spellingShingle Herramienta para la generación de texto basada en una interfaz cerebro-computador
Electroencephalogram
Brain-computer interfaces
Artificial neural networks
Long-Short Term Memory
Nervous system diseases -- Amyotrophic lateral sclerosis
Communication systems -- People -- Amyotrophic lateral sclerosis
Redes neuronales artificiales
Enfermedades del sistema nervioso -- Esclerosis lateral amiotrófica
Sistemas de comunicación -- Personas -- Esclerosis lateral amiotrófica
Electroencefalograma
Interfaces cerebro-computador
Redes neuronales artificiales
Long-Short Term Memory
Esclerosis lateral amiotrófica (ELA)
title_short Herramienta para la generación de texto basada en una interfaz cerebro-computador
title_full Herramienta para la generación de texto basada en una interfaz cerebro-computador
title_fullStr Herramienta para la generación de texto basada en una interfaz cerebro-computador
title_full_unstemmed Herramienta para la generación de texto basada en una interfaz cerebro-computador
title_sort Herramienta para la generación de texto basada en una interfaz cerebro-computador
dc.creator.fl_str_mv Reyes Fernandez, Andres Felipe
dc.contributor.advisor.spa.fl_str_mv Camacho Poveda, Edgar Camilo
dc.contributor.author.spa.fl_str_mv Reyes Fernandez, Andres Felipe
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-6084-2512
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.es/citations?user=tJG988kAAAAJ&hl=es
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084
dc.subject.keyword.spa.fl_str_mv Electroencephalogram
Brain-computer interfaces
Artificial neural networks
Long-Short Term Memory
Nervous system diseases -- Amyotrophic lateral sclerosis
Communication systems -- People -- Amyotrophic lateral sclerosis
topic Electroencephalogram
Brain-computer interfaces
Artificial neural networks
Long-Short Term Memory
Nervous system diseases -- Amyotrophic lateral sclerosis
Communication systems -- People -- Amyotrophic lateral sclerosis
Redes neuronales artificiales
Enfermedades del sistema nervioso -- Esclerosis lateral amiotrófica
Sistemas de comunicación -- Personas -- Esclerosis lateral amiotrófica
Electroencefalograma
Interfaces cerebro-computador
Redes neuronales artificiales
Long-Short Term Memory
Esclerosis lateral amiotrófica (ELA)
dc.subject.lemb.spa.fl_str_mv Redes neuronales artificiales
Enfermedades del sistema nervioso -- Esclerosis lateral amiotrófica
Sistemas de comunicación -- Personas -- Esclerosis lateral amiotrófica
dc.subject.proposal.spa.fl_str_mv Electroencefalograma
Interfaces cerebro-computador
Redes neuronales artificiales
Long-Short Term Memory
Esclerosis lateral amiotrófica (ELA)
description En este trabajo se presenta el desarrollo de una herramienta que permite a las personas comunicarse, haciendo uso únicamente de sus parpadeos voluntarios. Esta herramienta brinda un medio de comunicación principalmente a las personas que tienen alguna discapacidad motora para comunicarse de forma verbal o escrita. Para resolver el problema de la detección de los parpadeos voluntarios, en el presente trabajo se tomó como referencia el electroencefalograma (EEG), que en este caso fue registrado por el dispositivo Mindwave Mobile 2 de la empresa Neurosky, el cual cuenta con un canal de medición de EEG, que se ubica en la frente de la persona. Para el procesamiento digital del electroencefalograma (EEG) capturado por el dispositivo mencionado, se implementó una red neuronal artificial recurrente (RNN) del tipo Long-Short Term Memory (LSTM), ya que este tipo de redes son efectivas para el tratamiento de series de tiempo, como por ejemplo las señales electroencefalográficas (EEG). La red neuronal implementada en este trabajo clasifica la señal EEG en una de cinco clases posibles que son, sin parpadeos, un parpadeo, dos parpadeos, tres parpadeos, o acción diferente. El modelo implementado entregó como resultado en su entrenamiento un porcentaje de exactitud promedio de 92%. Finalmente, la red neuronal artificial se embebió en una aplicación móvil nativa de Android que se conecta vía bluetooth al dispositivo Mindwave Mobile 2, y que presenta un teclado virtual conformado por las 27 letras del abecedario de la lengua española, más los comandos “borrar”, “espacio”, y “enter”. Cada carácter del teclado puede ser seleccionado por el usuario únicamente mediante una serie determinada de parpadeos voluntarios. Cuando el usuario escribe una palabra y selecciona el comando “enter”, la palabra es presentada de forma audiovisual por la aplicación. La aplicación móvil fue desarrollada en los lenguajes Java y XML en el entorno integrado de desarrollo (IDE) Android Studio. Para verificar su funcionamiento, se realizó un experimento con ocho personas, que entregó como resultado una efectividad en la selección correcta de letras del 91,26% en promedio. Por otra parte, el modelo de la red neuronal fue diseñado e implementado con el lenguaje Python, mediante el uso de las librerías TensorFlow y Keras (librerías para aprendizaje de máquina), y su entrenamiento se llevó a cabo en el entorno de desarrollo Google Colab.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-09-17T18:19:41Z
dc.date.available.spa.fl_str_mv 2020-09-17T18:19:41Z
dc.date.issued.spa.fl_str_mv 2020-09-17
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Reyes Fernandez, A. F. (2020). Herramienta para la generación de texto basada en una interfaz cerebro-computador [Tesis de pregrado, Universidad Santo Tomas] Repositorio Institucional - Universidad Santo Tomas
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/29868
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Reyes Fernandez, A. F. (2020). Herramienta para la generación de texto basada en una interfaz cerebro-computador [Tesis de pregrado, Universidad Santo Tomas] Repositorio Institucional - Universidad Santo Tomas
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/29868
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alejandro Antonio Torres García, Dr. Carlos Alberto Reyes, Dr. Luis Villaseñor Pineda. Análisis y clasificación de electroencefalogramas (EEG) registrados durante el habla imaginada. Tesis doctoral del Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE). 2016.
Saha, S., Mamun, K.A., Ahmed, K.I., Mostafa, R., Naik, G.R., Khandoker, A.H., Darvishi, S., & Baumert, M. (2019). Progress in Brain Computer Interfaces: Challenges and Trends. ArXiv, abs/1901.03442.
Shurkhay, Vsevolod & Alexandrova, Evgenia & Goryaynov, Sergey & Potapov, Alexander. (2015). The Current State of the Brain-Computer Interface Problem.
Avinash Kumar Singh, Yu-Kai Wang, lun-Tai King, Chin-Teng Lin, and Li-Wei Ko. A Simple Communication System based on Brain Computer Interface. Tainan, Taiwan nov. 20-22, 2015.
Padfield, N., Zabalza, J., Zhao, H., Masero, V., & Ren, J. (2019). EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges. Sensors (Basel, Switzerland), 19(6), 1423. https://doi.org/10.3390/s19061423
Chin-Teng Lin, Chih-Sheng Huang, Wen-Yu Yang, Avinash Kumar Singh, Chun-Hsiang Chuang, and Yu-Kai Wang. Real-Time EEG Signal Enhancement Using Canonical Correlation Analysis and Gaussian Mixture Clustering. 2018.
M. Abo-Zahhad, Sabah M. Ahmed, Sherif N. Abbas. A New EEG Acquisition Protocol for Biometric Identification Using Eye Blinking Signals. I.J. Intelligent Systems and Applications, 2015, 06, 48-54.
Kaminer, Jaime & Powers, Alice & Horn, Kyle & Hui, Channing & Evinger, Craig. (2011). Characterizing The Spontaneous Blink Generator: An Animal Model. The Journal of neuroscience: the official journal of the Society for Neuroscience. 31. 11256-67. 10.1523/JNEUROSCI.6218-10.2011.
Mansor, Wahidah & Rani, Mohd & Wahy, Nurfatehah. (2011). Integrating Neural Signal and Embedded System for Controlling Small Motor. 10.5772/22210.
Michael Varela, Department of Computer Engineering, ITCR, Cartago, Costa Rica. 2015. Raw EEG Signal Processing for BCI Control Based on Voluntary Eye Blinks. Proceedings of the 2015 IEEE thirty fifth central American and Panama convention (Concapan XXXV).
Merquil Stiven Rodriguez Alvarez, Edwin Eduardo Millan Rojas. Diseño de una interfaz neuronal para personas con discapacidad motora. Universidad Distrital Francisco José de Caldas.
Paula Brandão Furlan, Almir Kimura Junior, Charles Luiz Silva de Melo, Giovanni Ribeiro Caldeira, Rayza Araújo Bezerra. Portable communication system for disabled speech people controlled by Electroencephalographic signals. 2016.
Alex Larson, Joshua Herrera, Kiran George and Aaron Matthews. Electrooculography based Electronic Communication Device for Individuals with ALS. 2017.
Lic. Ricardo A. Koon, Lic. María Eugenia de la Vega. El Impacto Tecnológico En Las Personas Con Discapacidad.
Naciones Unidas. Objetivos de Desarrollo del Milenio. https://www.un.org/es
Unidad Proyeccion Social. Universidad Santo Tomás. Documento Marco Proyección Social. 2015.
Zeki Oralhan. A New Paradigm for Region-Based P300 Speller in Brain Computer Interface. Received July 13, 2019, accepted July 31, 2019.
J Utama and G Palada. Prosthetic arm Controller Based on Brainwaves Spectrum EEG Sensor. 2019 IOP Conf. Ser.: Mater. Sci. Eng. 662 052017.
Salma Alhagry, Aly Aly Fahmy, Reda A. El-Khoribi. Emotion Recognition based on EEG using LSTM Recurrent Neural Network. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 10, 2017.
Alexander Craik. Deep learning for electroencephalogram (EEG) classification tasks: a review. et al 2019 J. Neural Eng. 16 031001.
Sarah N. AbdulkaderAyman AtiaMostafa-Sami M. Mostafa. Brain computer interfacing: Applicationsand challenges. HCI-LAB, Department of Computer Science, Faculty of Computers and Information, Helwan University, Cairo, Egypt. 2015.
Rahib H. Abiyev, Nurullah Akkaya, Ersin Aytac Irfan Günsel, and Ahmet Çagman. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks. 2016.
Ewelina Sobotnicka, Aleksander Sobotnicki. BCI interface – new opportunities and hopes for the disabled. An overview of available solutions. Institute of Medical Technology and Equipment ITAM Zabrze 118 Roosevelt St., 41-800 Zabrze, Poland.
Junhua Li, Member, IEEE, Gong Chen, Pavithra Thangavel, Haoyong Yu, Nitish Thakor, Fellow IEEE, Anastasios Bezerianos, Senior Member, IEEE, and Yu SUN, Member, IEEE. A robotic knee exoskeleton for walking assistance and connectivity topology exploration in EEG signal. 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore.
Electroencephalogram. Alexander J. Casson, Mohammed Abdulaal, Meera Dulabh, Siddharth Kohli, Sammy Krachunov, and Eleanor Trimble. Springer International Publishing AG 2018 EEG.
Luis, Luis & Gómez-Gil, Jaime. (2012). Brain Computer Interfaces, a Review. Sensors (Basel, Switzerland). 12. 1211-79. 10.3390/s120201211.
Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Published 2014 by Cambridge University Press.
Juri Fedjaev. Decoding EEG Brain Signals using Recurrent Neural Networks. MASTER THESIS. Technische Universitat Munchen. 2017.
Du, K.-L & Swamy, M.N.s. (2014). Recurrent Neural Networks. 10.1007/978-1-4471-5571-3_11.
Staudemeyer, Ralf & Morris, Eric. (2019). Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks.
Miguel A. Sovierzoski, Fernanda I. M. Argoud, and Fernando M. de Azevedo. Identifying Eye Blinks in EEG Signal Analysis. Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine. Shenzhen, China, May 30-31, 2008.
Brijil Chambayil, Rajesh Singla, R. Jha. EEG Eye Blink Classification Using Neural Network. WCE 2010, June 30 - July 2, 2010, London, U.K.
Mohit Agarwal, Raghupathy Sivakumar. Blink: A Fully Automated Unsupervised Algorithm for Eye-Blink Detection in EEG Signals. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton) Allerton Park and Retreat Center Monticello, IL, USA, September 24-27, 2019.
Diego V. Escamilla, Cristywelina Escamilla, Ciro A. Rodríguez. Eye Blink Detection Using a Support Vector Machine Classifier. Centro de Innovación en Diseño y Tecnología. Tecnológico de Monterrey. Monterrey N.L., México.
Dalin Yang and Keum-Shik Hong. Quadcopter Control via Onset Eye Blink Signals: A BCI Study. 2019 19th International Conference on Control, Automation and Systems (ICCAS 2019) Oct. 15~18, 2019; ICC Jeju, Jeju, Korea.
Mohd Shaifulrizal b Abd Rani, Wahidah bt. Mansor. DETECTION OF EYE BLINKS FROM EEG SIGNALS FOR HOME LIGHTING SYSTEM ACTIVATION. Proceeding of the 6th International Symposium on Mechatronics and its Applications (ISMA09), Sharjah, UAE, March 24-26,2009.
Won-Du Chang a, Ho-Seung Chaa, Kiwoong Kimb, Chang-Hwan Ima. Detection of eye blink artifacts from single prefrontal channel electroencephalogram. Computer methods and programs in biomedicine I24 (2016) 19-30.
Roy, Raphaëlle N. and Charbonnier, Sylvie and Bonnet, Stéphane Eye blink characterization from frontal EEG electrodes using source separation and pattern recognition algorithms. (2014) Biomedical Signal Processing and Control, 14. 256-264. ISSN 1746-8094.
Zoran Tiganj, Mamadou Mboup, Christophe Pouzat, Bouchra Lotfi. An algebraic method for eye blink artifacts detection in single channel EEG recordings. 17TH INTERNATIONAL CONFERENCE ON BIOMAGNETISM ADVANCES IN BIOMAGNETISM – BIOMAG2010, Mar 2010, Dubrovnik, Croatia. pp.175-178, ff10.1007/978-3-642-12197-5_38ff. ffhal-00518627ff.
L. Ramya Stephygraph, N. Arunkumar, and V. Venkatraman. Wireless Mobile Robot Control through Human Machine Interface using Brain Signals. 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, T.N., India. 6 - 8 May 2015. pp.596-603.
Paula Ivone Rodriguez, Jose Mejia, Boris Mederos, Nayeli Edith Moreno, and Victor Manuel Mendoza. Acquisition, analysis and classification of EEG signals for control design. Universidad Autónoma de Ciudad Juárez.
Xiaotong Gu, Zehong Cao, Alireza Jolfaei, Peng Xu, Dongrui Wu, Tzyy-Ping Jung, and Chin-Teng Lin. EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications. 2020.
Aasim Raheel, Syed M. Anwar, Muhammad Majid, Bilal Khan, Ehatisham-ul-Haq. Real Time Text Speller based on Eye Movement Classification Using Wearable EEG Sensors. SAI Computing Conference 2016.
Trung-Hau Nguyen, Da-Lin Yang, and Wan-Young Chung. A High-Rate BCI Speller Based on Eye-Closed EEG Signal. Received May 10, 2018, accepted June 11, 2018.
Atish Udayashankar, Amit R Kowshik, Chandramouli S, H S Prashanth. ASSISTANCE FOR THE PARALYZED USING EYE BLINK DETECTION. 2012 Fourth International Conference on Digital Home.
Mohammad H. Alomari, Ayman AbuBaker, Aiman Turani, Ali M. Baniyounes, Adnan Manasreh. EEG Mouse:A Machine Learning-Based Brain Computer Interface. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 5, No. 4, 2014.
Mr. Ramesh C R, Prof. Lyla B Das. Brain Computer Interface Device for Speech Impediments. 2015 International Conference on Control, Communication & Computing India (ICCC) 19-21 November 2015 Trivandrum.
Brain Wave Signal (EEG) of NeuroSky, Inc. December 15, 2009.
Brijil Chambayil, Rajesh Singla, R. Jha. Virtual Keyboard BCI using Eye blinks in EEG. 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications.
Suneth Pathirana, David Asirvatham, Md Gapar Md Johar. Designing Virtual Keyboards for Brain-Computer Interfaces. 2018.
Khalil Ullah, Mohsin Ali, Muhammad Rizwan, Muhammad Imran. Low-Cost Single-Channel EEG Based Communication System for People with Lock-in Syndrome. 2011.
Lucas B. Coffey. Assessing Ratio-Based Fatigue Indexes Using a Single Channel EEG. University of North Florida. 2018.
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. 15(56): 1929-1958, 2014.
Swagata Das, Devashree Tripathy, Jagdish Lal Raheja. Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG. Springer Singapore, 2018.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/29868/6/2020andresreyes.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/29868/7/cartafacultad.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/29868/8/cartaderechosautor.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/29868/1/2020andresreyes.pdf
https://repository.usta.edu.co/bitstream/11634/29868/2/cartafacultad.pdf
https://repository.usta.edu.co/bitstream/11634/29868/3/cartaderechosautor.pdf
https://repository.usta.edu.co/bitstream/11634/29868/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/29868/5/license.txt
bitstream.checksum.fl_str_mv 07c81c542867d4a2f7211efe07335c15
f35ac17aaa8861348fe3d0dcdfe1796f
d1ea321780582f9ff80670927b4e094e
11268d1fa4db8c155b759ffc47a88b7e
ae44fe66857b001ee67aef78f9944766
5b96dd54d516ba4eb747e308264c821b
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026295099523072
spelling Camacho Poveda, Edgar CamiloReyes Fernandez, Andres Felipehttps://orcid.org/0000-0002-6084-2512https://scholar.google.es/citations?user=tJG988kAAAAJ&hl=eshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00016300842020-09-17T18:19:41Z2020-09-17T18:19:41Z2020-09-17Reyes Fernandez, A. F. (2020). Herramienta para la generación de texto basada en una interfaz cerebro-computador [Tesis de pregrado, Universidad Santo Tomas] Repositorio Institucional - Universidad Santo Tomashttp://hdl.handle.net/11634/29868reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn este trabajo se presenta el desarrollo de una herramienta que permite a las personas comunicarse, haciendo uso únicamente de sus parpadeos voluntarios. Esta herramienta brinda un medio de comunicación principalmente a las personas que tienen alguna discapacidad motora para comunicarse de forma verbal o escrita. Para resolver el problema de la detección de los parpadeos voluntarios, en el presente trabajo se tomó como referencia el electroencefalograma (EEG), que en este caso fue registrado por el dispositivo Mindwave Mobile 2 de la empresa Neurosky, el cual cuenta con un canal de medición de EEG, que se ubica en la frente de la persona. Para el procesamiento digital del electroencefalograma (EEG) capturado por el dispositivo mencionado, se implementó una red neuronal artificial recurrente (RNN) del tipo Long-Short Term Memory (LSTM), ya que este tipo de redes son efectivas para el tratamiento de series de tiempo, como por ejemplo las señales electroencefalográficas (EEG). La red neuronal implementada en este trabajo clasifica la señal EEG en una de cinco clases posibles que son, sin parpadeos, un parpadeo, dos parpadeos, tres parpadeos, o acción diferente. El modelo implementado entregó como resultado en su entrenamiento un porcentaje de exactitud promedio de 92%. Finalmente, la red neuronal artificial se embebió en una aplicación móvil nativa de Android que se conecta vía bluetooth al dispositivo Mindwave Mobile 2, y que presenta un teclado virtual conformado por las 27 letras del abecedario de la lengua española, más los comandos “borrar”, “espacio”, y “enter”. Cada carácter del teclado puede ser seleccionado por el usuario únicamente mediante una serie determinada de parpadeos voluntarios. Cuando el usuario escribe una palabra y selecciona el comando “enter”, la palabra es presentada de forma audiovisual por la aplicación. La aplicación móvil fue desarrollada en los lenguajes Java y XML en el entorno integrado de desarrollo (IDE) Android Studio. Para verificar su funcionamiento, se realizó un experimento con ocho personas, que entregó como resultado una efectividad en la selección correcta de letras del 91,26% en promedio. Por otra parte, el modelo de la red neuronal fue diseñado e implementado con el lenguaje Python, mediante el uso de las librerías TensorFlow y Keras (librerías para aprendizaje de máquina), y su entrenamiento se llevó a cabo en el entorno de desarrollo Google Colab.The purpose of the present work is about the development of a tool that allows people to communicate, only through their voluntary blinks. This tool provides a communication link mainly for people with motor disabilities, who cannot communicate through voice or text. This work takes the electroencephalogram (EEG) as the source of information to solve the problem of detecting the voluntary blinks. In this case, the EEG is recorded by the Mindwave Mobile 2 headset (from Neurosky company), which counts on one EEG channel, located in the frontal lobe of the scalp. In order to perform the digital processing of the EEG signal, a recurrent neural network (RNN) was implemented, more specifically a Long-Short Term Memory (LSTM), as these types of networks are effective for time series applications, for instance, EEG signals. The neural network implemented in this work, classifies the EEG signal in one of 5 possible classes, named: No blink, One blink, Two blinks, Three blinks, Other. The results of the trained model were an average accuracy percentage of 92%. Finally, the neural network was embedded in a native Android mobile application, that connects via Bluetooth to the Mindwave Mobile 2, and shows a virtual keyboard consisting of the 27 letters of the spanish alphabet, plus three characters are the commands “delete”, “space”, and “enter”. Each character can be selected by the user only through a determined number of voluntary blinks executed at certain times. When the user types a word and selects the “enter” command, the word is presented audio visually by the application. The mobile application was developed in Java and XML languages in the Android Studio IDE (integrated development environment). In order to verify its performance, an experiment with eight people was executed, that achieved an average spelling precision of 91,26%. On the other hand, the neural network model was designed and implemented in Python language using the TensorFlow and Keras libraries (machine learning libraries), and it was trained in the Google Colab software development environment.Ingeniero Electronicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Herramienta para la generación de texto basada en una interfaz cerebro-computadorElectroencephalogramBrain-computer interfacesArtificial neural networksLong-Short Term MemoryNervous system diseases -- Amyotrophic lateral sclerosisCommunication systems -- People -- Amyotrophic lateral sclerosisRedes neuronales artificialesEnfermedades del sistema nervioso -- Esclerosis lateral amiotróficaSistemas de comunicación -- Personas -- Esclerosis lateral amiotróficaElectroencefalogramaInterfaces cerebro-computadorRedes neuronales artificialesLong-Short Term MemoryEsclerosis lateral amiotrófica (ELA)Trabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáAlejandro Antonio Torres García, Dr. Carlos Alberto Reyes, Dr. Luis Villaseñor Pineda. Análisis y clasificación de electroencefalogramas (EEG) registrados durante el habla imaginada. Tesis doctoral del Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE). 2016.Saha, S., Mamun, K.A., Ahmed, K.I., Mostafa, R., Naik, G.R., Khandoker, A.H., Darvishi, S., & Baumert, M. (2019). Progress in Brain Computer Interfaces: Challenges and Trends. ArXiv, abs/1901.03442.Shurkhay, Vsevolod & Alexandrova, Evgenia & Goryaynov, Sergey & Potapov, Alexander. (2015). The Current State of the Brain-Computer Interface Problem.Avinash Kumar Singh, Yu-Kai Wang, lun-Tai King, Chin-Teng Lin, and Li-Wei Ko. A Simple Communication System based on Brain Computer Interface. Tainan, Taiwan nov. 20-22, 2015.Padfield, N., Zabalza, J., Zhao, H., Masero, V., & Ren, J. (2019). EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges. Sensors (Basel, Switzerland), 19(6), 1423. https://doi.org/10.3390/s19061423Chin-Teng Lin, Chih-Sheng Huang, Wen-Yu Yang, Avinash Kumar Singh, Chun-Hsiang Chuang, and Yu-Kai Wang. Real-Time EEG Signal Enhancement Using Canonical Correlation Analysis and Gaussian Mixture Clustering. 2018.M. Abo-Zahhad, Sabah M. Ahmed, Sherif N. Abbas. A New EEG Acquisition Protocol for Biometric Identification Using Eye Blinking Signals. I.J. Intelligent Systems and Applications, 2015, 06, 48-54.Kaminer, Jaime & Powers, Alice & Horn, Kyle & Hui, Channing & Evinger, Craig. (2011). Characterizing The Spontaneous Blink Generator: An Animal Model. The Journal of neuroscience: the official journal of the Society for Neuroscience. 31. 11256-67. 10.1523/JNEUROSCI.6218-10.2011.Mansor, Wahidah & Rani, Mohd & Wahy, Nurfatehah. (2011). Integrating Neural Signal and Embedded System for Controlling Small Motor. 10.5772/22210.Michael Varela, Department of Computer Engineering, ITCR, Cartago, Costa Rica. 2015. Raw EEG Signal Processing for BCI Control Based on Voluntary Eye Blinks. Proceedings of the 2015 IEEE thirty fifth central American and Panama convention (Concapan XXXV).Merquil Stiven Rodriguez Alvarez, Edwin Eduardo Millan Rojas. Diseño de una interfaz neuronal para personas con discapacidad motora. Universidad Distrital Francisco José de Caldas.Paula Brandão Furlan, Almir Kimura Junior, Charles Luiz Silva de Melo, Giovanni Ribeiro Caldeira, Rayza Araújo Bezerra. Portable communication system for disabled speech people controlled by Electroencephalographic signals. 2016.Alex Larson, Joshua Herrera, Kiran George and Aaron Matthews. Electrooculography based Electronic Communication Device for Individuals with ALS. 2017.Lic. Ricardo A. Koon, Lic. María Eugenia de la Vega. El Impacto Tecnológico En Las Personas Con Discapacidad.Naciones Unidas. Objetivos de Desarrollo del Milenio. https://www.un.org/esUnidad Proyeccion Social. Universidad Santo Tomás. Documento Marco Proyección Social. 2015.Zeki Oralhan. A New Paradigm for Region-Based P300 Speller in Brain Computer Interface. Received July 13, 2019, accepted July 31, 2019.J Utama and G Palada. Prosthetic arm Controller Based on Brainwaves Spectrum EEG Sensor. 2019 IOP Conf. Ser.: Mater. Sci. Eng. 662 052017.Salma Alhagry, Aly Aly Fahmy, Reda A. El-Khoribi. Emotion Recognition based on EEG using LSTM Recurrent Neural Network. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 10, 2017.Alexander Craik. Deep learning for electroencephalogram (EEG) classification tasks: a review. et al 2019 J. Neural Eng. 16 031001.Sarah N. AbdulkaderAyman AtiaMostafa-Sami M. Mostafa. Brain computer interfacing: Applicationsand challenges. HCI-LAB, Department of Computer Science, Faculty of Computers and Information, Helwan University, Cairo, Egypt. 2015.Rahib H. Abiyev, Nurullah Akkaya, Ersin Aytac Irfan Günsel, and Ahmet Çagman. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks. 2016.Ewelina Sobotnicka, Aleksander Sobotnicki. BCI interface – new opportunities and hopes for the disabled. An overview of available solutions. Institute of Medical Technology and Equipment ITAM Zabrze 118 Roosevelt St., 41-800 Zabrze, Poland.Junhua Li, Member, IEEE, Gong Chen, Pavithra Thangavel, Haoyong Yu, Nitish Thakor, Fellow IEEE, Anastasios Bezerianos, Senior Member, IEEE, and Yu SUN, Member, IEEE. A robotic knee exoskeleton for walking assistance and connectivity topology exploration in EEG signal. 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore.Electroencephalogram. Alexander J. Casson, Mohammed Abdulaal, Meera Dulabh, Siddharth Kohli, Sammy Krachunov, and Eleanor Trimble. Springer International Publishing AG 2018 EEG.Luis, Luis & Gómez-Gil, Jaime. (2012). Brain Computer Interfaces, a Review. Sensors (Basel, Switzerland). 12. 1211-79. 10.3390/s120201211.Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Published 2014 by Cambridge University Press.Juri Fedjaev. Decoding EEG Brain Signals using Recurrent Neural Networks. MASTER THESIS. Technische Universitat Munchen. 2017.Du, K.-L & Swamy, M.N.s. (2014). Recurrent Neural Networks. 10.1007/978-1-4471-5571-3_11.Staudemeyer, Ralf & Morris, Eric. (2019). Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks.Miguel A. Sovierzoski, Fernanda I. M. Argoud, and Fernando M. de Azevedo. Identifying Eye Blinks in EEG Signal Analysis. Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine. Shenzhen, China, May 30-31, 2008.Brijil Chambayil, Rajesh Singla, R. Jha. EEG Eye Blink Classification Using Neural Network. WCE 2010, June 30 - July 2, 2010, London, U.K.Mohit Agarwal, Raghupathy Sivakumar. Blink: A Fully Automated Unsupervised Algorithm for Eye-Blink Detection in EEG Signals. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton) Allerton Park and Retreat Center Monticello, IL, USA, September 24-27, 2019.Diego V. Escamilla, Cristywelina Escamilla, Ciro A. Rodríguez. Eye Blink Detection Using a Support Vector Machine Classifier. Centro de Innovación en Diseño y Tecnología. Tecnológico de Monterrey. Monterrey N.L., México.Dalin Yang and Keum-Shik Hong. Quadcopter Control via Onset Eye Blink Signals: A BCI Study. 2019 19th International Conference on Control, Automation and Systems (ICCAS 2019) Oct. 15~18, 2019; ICC Jeju, Jeju, Korea.Mohd Shaifulrizal b Abd Rani, Wahidah bt. Mansor. DETECTION OF EYE BLINKS FROM EEG SIGNALS FOR HOME LIGHTING SYSTEM ACTIVATION. Proceeding of the 6th International Symposium on Mechatronics and its Applications (ISMA09), Sharjah, UAE, March 24-26,2009.Won-Du Chang a, Ho-Seung Chaa, Kiwoong Kimb, Chang-Hwan Ima. Detection of eye blink artifacts from single prefrontal channel electroencephalogram. Computer methods and programs in biomedicine I24 (2016) 19-30.Roy, Raphaëlle N. and Charbonnier, Sylvie and Bonnet, Stéphane Eye blink characterization from frontal EEG electrodes using source separation and pattern recognition algorithms. (2014) Biomedical Signal Processing and Control, 14. 256-264. ISSN 1746-8094.Zoran Tiganj, Mamadou Mboup, Christophe Pouzat, Bouchra Lotfi. An algebraic method for eye blink artifacts detection in single channel EEG recordings. 17TH INTERNATIONAL CONFERENCE ON BIOMAGNETISM ADVANCES IN BIOMAGNETISM – BIOMAG2010, Mar 2010, Dubrovnik, Croatia. pp.175-178, ff10.1007/978-3-642-12197-5_38ff. ffhal-00518627ff.L. Ramya Stephygraph, N. Arunkumar, and V. Venkatraman. Wireless Mobile Robot Control through Human Machine Interface using Brain Signals. 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, T.N., India. 6 - 8 May 2015. pp.596-603.Paula Ivone Rodriguez, Jose Mejia, Boris Mederos, Nayeli Edith Moreno, and Victor Manuel Mendoza. Acquisition, analysis and classification of EEG signals for control design. Universidad Autónoma de Ciudad Juárez.Xiaotong Gu, Zehong Cao, Alireza Jolfaei, Peng Xu, Dongrui Wu, Tzyy-Ping Jung, and Chin-Teng Lin. EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications. 2020.Aasim Raheel, Syed M. Anwar, Muhammad Majid, Bilal Khan, Ehatisham-ul-Haq. Real Time Text Speller based on Eye Movement Classification Using Wearable EEG Sensors. SAI Computing Conference 2016.Trung-Hau Nguyen, Da-Lin Yang, and Wan-Young Chung. A High-Rate BCI Speller Based on Eye-Closed EEG Signal. Received May 10, 2018, accepted June 11, 2018.Atish Udayashankar, Amit R Kowshik, Chandramouli S, H S Prashanth. ASSISTANCE FOR THE PARALYZED USING EYE BLINK DETECTION. 2012 Fourth International Conference on Digital Home.Mohammad H. Alomari, Ayman AbuBaker, Aiman Turani, Ali M. Baniyounes, Adnan Manasreh. EEG Mouse:A Machine Learning-Based Brain Computer Interface. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 5, No. 4, 2014.Mr. Ramesh C R, Prof. Lyla B Das. Brain Computer Interface Device for Speech Impediments. 2015 International Conference on Control, Communication & Computing India (ICCC) 19-21 November 2015 Trivandrum.Brain Wave Signal (EEG) of NeuroSky, Inc. December 15, 2009.Brijil Chambayil, Rajesh Singla, R. Jha. Virtual Keyboard BCI using Eye blinks in EEG. 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications.Suneth Pathirana, David Asirvatham, Md Gapar Md Johar. Designing Virtual Keyboards for Brain-Computer Interfaces. 2018.Khalil Ullah, Mohsin Ali, Muhammad Rizwan, Muhammad Imran. Low-Cost Single-Channel EEG Based Communication System for People with Lock-in Syndrome. 2011.Lucas B. Coffey. Assessing Ratio-Based Fatigue Indexes Using a Single Channel EEG. University of North Florida. 2018.Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. 15(56): 1929-1958, 2014.Swagata Das, Devashree Tripathy, Jagdish Lal Raheja. Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG. Springer Singapore, 2018.THUMBNAIL2020andresreyes.pdf.jpg2020andresreyes.pdf.jpgGenerated Thumbnailimage/jpeg2413https://repository.usta.edu.co/bitstream/11634/29868/6/2020andresreyes.pdf.jpg07c81c542867d4a2f7211efe07335c15MD56open accesscartafacultad.pdf.jpgcartafacultad.pdf.jpgGenerated Thumbnailimage/jpeg3395https://repository.usta.edu.co/bitstream/11634/29868/7/cartafacultad.pdf.jpgf35ac17aaa8861348fe3d0dcdfe1796fMD57metadata only accesscartaderechosautor.pdf.jpgcartaderechosautor.pdf.jpgGenerated Thumbnailimage/jpeg3660https://repository.usta.edu.co/bitstream/11634/29868/8/cartaderechosautor.pdf.jpgd1ea321780582f9ff80670927b4e094eMD58metadata only accessORIGINAL2020andresreyes.pdf2020andresreyes.pdfTrabajo de Gradoapplication/pdf1109127https://repository.usta.edu.co/bitstream/11634/29868/1/2020andresreyes.pdf11268d1fa4db8c155b759ffc47a88b7eMD51open accesscartafacultad.pdfcartafacultad.pdfCarta aprobación facultadapplication/pdf124682https://repository.usta.edu.co/bitstream/11634/29868/2/cartafacultad.pdfae44fe66857b001ee67aef78f9944766MD52metadata only accesscartaderechosautor.pdfcartaderechosautor.pdfCarta Derechos de autorapplication/pdf107936https://repository.usta.edu.co/bitstream/11634/29868/3/cartaderechosautor.pdf5b96dd54d516ba4eb747e308264c821bMD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/29868/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/29868/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open access11634/29868oai:repository.usta.edu.co:11634/298682022-10-10 16:08:01.782open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K