Análisis Bibliométrico Acerca del Uso de Drones para Análisis y Detección de Inundaciones

Este análisis bibliométrico explora la literatura científica existente sobre el uso de drones en la predicción de inundaciones. El estudio tiene como objetivo proporcionar una visión general de la cantidad de publicaciones científicas, las tendencias temporales de investigación y los actores clave e...

Full description

Autores:
Cardenas Rodriguez, Arley Giovanni
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/52559
Acceso en línea:
http://hdl.handle.net/11634/52559
Palabra clave:
bibliometric analysis
drones
unmanned aerial vehicle (UAV)
floods
floods prevention
floods management
Ingeniería Ambiental
Literatura Científica
Publicaciones Científicas
Drones
análisis bibliométrico
drones; vehículo aéreo no tripulado (UAV)
inundaciones
prevención de inundaciones
manejo de inundaciones
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_33c7f3b7b3c2e37071a42fc02a6c3897
oai_identifier_str oai:repository.usta.edu.co:11634/52559
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Análisis Bibliométrico Acerca del Uso de Drones para Análisis y Detección de Inundaciones
title Análisis Bibliométrico Acerca del Uso de Drones para Análisis y Detección de Inundaciones
spellingShingle Análisis Bibliométrico Acerca del Uso de Drones para Análisis y Detección de Inundaciones
bibliometric analysis
drones
unmanned aerial vehicle (UAV)
floods
floods prevention
floods management
Ingeniería Ambiental
Literatura Científica
Publicaciones Científicas
Drones
análisis bibliométrico
drones; vehículo aéreo no tripulado (UAV)
inundaciones
prevención de inundaciones
manejo de inundaciones
title_short Análisis Bibliométrico Acerca del Uso de Drones para Análisis y Detección de Inundaciones
title_full Análisis Bibliométrico Acerca del Uso de Drones para Análisis y Detección de Inundaciones
title_fullStr Análisis Bibliométrico Acerca del Uso de Drones para Análisis y Detección de Inundaciones
title_full_unstemmed Análisis Bibliométrico Acerca del Uso de Drones para Análisis y Detección de Inundaciones
title_sort Análisis Bibliométrico Acerca del Uso de Drones para Análisis y Detección de Inundaciones
dc.creator.fl_str_mv Cardenas Rodriguez, Arley Giovanni
dc.contributor.advisor.none.fl_str_mv Sierra Parada, Ronal Jackson
dc.contributor.author.none.fl_str_mv Cardenas Rodriguez, Arley Giovanni
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-9206-5682
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?hl=es&user=0793qhcwBoMC
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001431760
dc.subject.keyword.spa.fl_str_mv bibliometric analysis
drones
unmanned aerial vehicle (UAV)
floods
floods prevention
floods management
topic bibliometric analysis
drones
unmanned aerial vehicle (UAV)
floods
floods prevention
floods management
Ingeniería Ambiental
Literatura Científica
Publicaciones Científicas
Drones
análisis bibliométrico
drones; vehículo aéreo no tripulado (UAV)
inundaciones
prevención de inundaciones
manejo de inundaciones
dc.subject.lemb.spa.fl_str_mv Ingeniería Ambiental
Literatura Científica
Publicaciones Científicas
Drones
dc.subject.proposal.spa.fl_str_mv análisis bibliométrico
drones; vehículo aéreo no tripulado (UAV)
inundaciones
prevención de inundaciones
manejo de inundaciones
description Este análisis bibliométrico explora la literatura científica existente sobre el uso de drones en la predicción de inundaciones. El estudio tiene como objetivo proporcionar una visión general de la cantidad de publicaciones científicas, las tendencias temporales de investigación y los actores clave en este campo. También examina las áreas temáticas comunes y los enfoques metodológicos utilizados en los estudios identificados. El análisis se realizó utilizando dos bases de datos académicas de renombre, ScienceDirect y Scopus. Los resultados revelan un interés creciente en el uso de drones para la prevención y gestión de inundaciones, con un aumento constante en el número de publicaciones a lo largo de los años. Se identifican autores e instituciones destacados que contribuyen a la investigación, destacando sus áreas de especialización. El análisis también revela la naturaleza multidisciplinaria de la investigación, siendo la informática, la ingeniería y las ciencias terrestres y planetarias las áreas de estudio más destacadas. Además, el estudio examina la distribución geográfica de la investigación, con China a la cabeza en cuanto al número de publicaciones. Los hallazgos subrayan la participación y colaboración global en el uso de drones para la prevención y gestión de inundaciones. El análisis de los tipos de documentos revela que los artículos y las ponencias de congresos son los principales medios para compartir conocimientos en este campo. Además, el estudio identifica a los principales patrocinadores involucrados, lo que indica un importante apoyo financiero de diversas fuentes en todo el mundo. En general, este análisis bibliométrico proporciona información valiosa sobre el estado actual de la investigación sobre el uso de drones en la predicción y manejo de inundaciones, identificando lagunas de conocimiento y áreas que requieren mayor atención. Los resultados pueden guiar a los investigadores, profesionales y tomadores de decisiones a centrar sus esfuerzos en vías de investigación prometedoras y estrategias de mitigación y predicción de inundaciones más efectivas.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-03T13:17:20Z
dc.date.available.none.fl_str_mv 2023-10-03T13:17:20Z
dc.date.issued.none.fl_str_mv 2023-09-29
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Cárdenas Rodríguez, A, G. (2023). Análisis bibliométrico acerca del uso de drones para análisis y detección de inundaciones. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/52559
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Cárdenas Rodríguez, A, G. (2023). Análisis bibliométrico acerca del uso de drones para análisis y detección de inundaciones. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/52559
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Albort-Morant, G., & Ribeiro-Soriano, D. (2016). A bibliometric analysis of international impact of business incubators. Journal of Business Research, 69(5), 1775–1779. https://doi.org/10.1016/j.jbusres.2015.10.054
A-m, T. (2021). INTELLIGENT MONITORING OF DISEASED PLANTS USING DRONES. En Cadastre Series) (Vol. 51).
Apriliyanti, I. D., & Alon, I. (2017). Bibliometric analysis of absorptive capacity. International Business Review, 26(5), 896–907. https://doi.org/10.1016/j.ibusrev.2017.02.007
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/J.JOI.2017.08.007
Arshad, B., Ogie, R., Barthelemy, J., Pradhan, B., Verstaevel, N., & Perez, P. (2019). Computer vision and iot-based sensors in flood monitoring and mapping: A systematic review. Sensors (Switzerland), 19(22). https://doi.org/10.3390/s19225012
Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377–386. https://doi.org/10.1162/QSS_A_00019
Batra, S., Saini, M., & Yadav, M. (2023). Mapping the intellectual structure of corporate governance and ownership structure: a bibliometric analysis. International Journal of Law and Management, 65(4), 333–353. https://doi.org/10.1108/IJLMA-01-2023-0001
Burnham, J. F. (2006). Scopus database: A review. Biomedical Digital Libraries, 3. https://doi.org/10.1186/1742-5581-3-1
Bushnaq, O. M., Mishra, D., Natalizio, E., & Akyildiz, I. F. (2022). Unmanned aerial vehicles (UAVs) for disaster management. Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention, 159–188. https://doi.org/10.1016/B978-0-323-91166-5.00013-6
Castillo-Vergara, M., Alvarez-Marin, A., & Placencio-Hidalgo, D. (2018). A bibliometric analysis of creativity in the field of business economics. Journal of Business Research, 85, 1–9. https://doi.org/10.1016/j.jbusres.2017.12.011
Danvila Del Valle, I., & Sastre Castillo, M. A. (2009). Human capital and sustainable competitive advantage: An analysis of the relationship between training and performance. International Entrepreneurship and Management Journal, 5(2), 139–163. https://doi.org/10.1007/S11365-008-0090-3
Delery, J. E., & Doty, D. H. (1996). Modes of theorizing in strategic human resource management: Tests of universalistic, contingency, and configurational performance predictions. Academy of Management Journal, 39(4), 802–835. https://doi.org/10.2307/256713
Donthu, N., Kumar, S., Pandey, N., & Gupta, P. (2021). Forty years of the International Journal of Information Management: A bibliometric analysis. International Journal of Information Management, 57. https://doi.org/10.1016/j.ijinfomgt.2020.102307
Dwivedi, R., Nerur, S., & Balijepally, V. (2023). Exploring artificial intelligence and big data scholarship in information systems: A citation, bibliographic coupling, and co-word analysis. International Journal of Information Management Data Insights, 3(2). https://doi.org/10.1016/j.jjimei.2023.100185
Dzikowski, P. (2018). A bibliometric analysis of born global firms. Journal of Business Research, 85, 281–294. https://doi.org/10.1016/j.jbusres.2017.12.054
Etemad, H., & Lee, Y. (2003). The Knowledge Network of International Entrepreneurship: Theory and Evidence. Small Business Economics, 20(1), 5–23. https://doi.org/10.1023/A:1020240303332
Gagolewski, M. (2011). Bibliometric impact assessment with R and the CITAN package. Journal of Informetrics, 5(4), 678–692. https://doi.org/10.1016/j.joi.2011.06.006
Garrigos-Simon, F. J., Narangajavana-Kaosiri, Y., & Lengua-Lengua, I. (2018). Tourism and sustainability: A bibliometric and visualization analysis. Sustainability (Switzerland), 10(6). https://doi.org/10.3390/su10061976
Giannitsopoulos, M. L., Leinster, P., Butler, D., Smith, M., & Casado, M. R. (2022a). Towards the coordinated and fit-for-purpose deployment of Unmanned Aerial Systems (UASs) for flood risk management in England. Aqua Water Infrastructure, Ecosystems and Society, 71(8), 879–895. https://doi.org/10.2166/aqua.2022.101
Giannitsopoulos, M. L., Leinster, P., Butler, D., Smith, M., & Casado, M. R. (2022b). Towards the coordinated and fit-for-purpose deployment of Unmanned Aerial Systems (UASs) for flood risk management in England. Aqua Water Infrastructure, Ecosystems and Society, 71(8), 879–895. https://doi.org/10.2166/aqua.2022.101
Goerlandt, F., Li, J., & Reniers, G. (2020). The landscape of risk communication research: A scientometric analysis. International Journal of Environmental Research and Public Health, 17(9). https://doi.org/10.3390/ijerph17093255
González-Alcaide, G. (2021). Bibliometric studies outside the information science and library science field: uncontainable or uncontrollable? Scientometrics, 126(8), 6837–6870. https://doi.org/10.1007/S11192-021-04061-3
Guler, A. T., Waaijer, C. J. F., & Palmblad, M. (2016). Scientific workflows for bibliometrics. Scientometrics, 107(2), 385–398. https://doi.org/10.1007/S11192-016-1885-6
Haak, L. L., Fenner, M., Paglione, L., Pentz, E., & Ratner, H. (2012). ORCID: A system to uniquely identify researchers. Learned Publishing, 25(4), 259–264. https://doi.org/10.1087/20120404
Hooker, H., Dance, S. L., Mason, D. C., Bevington, J., & Shelton, K. (2022). Spatial scale evaluation of forecast flood inundation maps. Journal of Hydrology, 612, 128170. https://doi.org/10.1016/J.JHYDROL.2022.128170
IEEE Xplore. Version 1.3. (2002). Online Information Review, 26(4), 285. https://doi.org/10.1108/OIR.2002.26.4.285.12
Iqbal, U., Perez, P., Li, W., & Barthelemy, J. (2021). How computer vision can facilitate flood management: A systematic review. En International Journal of Disaster Risk Reduction (Vol. 53). Elsevier Ltd. https://doi.org/10.1016/j.ijdrr.2020.102030
Iqbal, U., Riaz, M. Z. Bin, Barthelemy, J., Hutchison, N., & Perez, P. (2022). Floodborne Objects Type Recognition Using Computer Vision to Mitigate Blockage Originated Floods. Water (Switzerland), 14(17). https://doi.org/10.3390/w14172605
Islam, M. A., Rashid, S. I., Hossain, N. U. I., Fleming, R., & Sokolov, A. (2023). An integrated convolutional neural network and sorting algorithm for image classification for efficient flood disaster management. Decision Analytics Journal, 7. https://doi.org/10.1016/j.dajour.2023.100225
Ivanova, S., Prosekov, A., & Kaledin, A. (2022). A Survey on Monitoring of Wild Animals during Fires Using Drones. Fire, 5(3). https://doi.org/10.3390/fire5030060
Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Ontiveros-Capurata, R. E., & Marcial-Pablo, M. de J. (2020). Rapid urban flood damage assessment using high resolution remote sensing data and an object-based approach. Geomatics, Natural Hazards, and Risk, 11(1), 906–927. https://doi.org/10.1080/19475705.2020.1760360
Khasseh, A. A., Soheili, F., Moghaddam, H. S., & Chelak, A. M. (2017). Intellectual structure of knowledge in iMetrics: A co-word analysis. Information Processing and Management, 53(3), 705–720. https://doi.org/10.1016/j.ipm.2017.02.001
Liu, X. (2013). Full-Text Citation Analysis: A New Method to Enhance. Journal of the American Society for Information Science and Technology, 64(July), 1852–1863. https://doi.org/10.1002/ASI
Michael Griffin, S., Shaw, I. H., & Dresner, S. M. (2002). Early complications after Ivor Lewis subtotal esophagectomy with two-field lymphadenectomy: Risk factors and management. Journal of the American College of Surgeons, 194(3), 285–297. https://doi.org/10.1016/S1072-7515(01)01177-2
Mohd Daud, S. M. S., Mohd Yusof, M. Y. P., Heo, C. C., Khoo, L. S., Chainchel Singh, M. K., Mahmood, M. S., & Nawawi, H. (2022a). Applications of drone in disaster management: A scoping review. Science & Justice, 62(1), 30–42. https://doi.org/10.1016/J.SCIJUS.2021.11.002
Mohd Daud, S. M. S., Mohd Yusof, M. Y. P., Heo, C. C., Khoo, L. S., Chainchel Singh, M. K., Mahmood, M. S., & Nawawi, H. (2022b). Applications of drone in disaster management: A scoping review. En Science and Justice (Vol. 62, Número 1, pp. 30–42). Forensic Science Society. https://doi.org/10.1016/j.scijus.2021.11.002
Mondal, S. H., & Mondal, S. (2019). Jàmbá-Journal of Disaster Risk Studies. https://doi.org/10.4102/jamba
Moreira Furlan, L., Moreira, C. A., de Alencar, P. G., & Rosolen, V. (2021). Environmental monitoring and hydrological simulations of a natural wetland based on high-resolution unmanned aerial vehicle data (Paulista Peripheral Depression, Brazil). Environmental Challenges, 4. https://doi.org/10.1016/j.envc.2021.100146
Pothula, S. B., & Singh, A. K. (s/f). Precision Irrigation Water Management-Current Status, Scope and Challenges Carbon Sequestration and Sustainable Agriculture and Carbon Balance View project Modelling groundwater Nitrate pollution at IARI farm View project. https://www.researchgate.net/publication/360119350
Roiha, J., Heinaro, E., & Holopainen, M. (2021). The hidden cairns—a case study of drone-based als as an archaeological site survey method. Remote Sensing, 13(10). https://doi.org/10.3390/rs13102010
Şimşek, E. K., & Kalıpçı, M. B. (2023). A bibliometric study on higher tourism education and curriculum. Journal of Hospitality, Leisure, Sport, and Tourism Education, 33. https://doi.org/10.1016/j.jhlste.2023.100442
Thümler, N. (2023). AGILITY IN MARKETING: A BIBLIOMETRIC ANALYSIS. Business: Theory and Practice, 24(1), 173–182. https://doi.org/10.3846/BTP.2023.17090
Velez-Estevez, A., Perez, I. J., García-Sánchez, P., Moral-Munoz, J. A., & Cobo, M. J. (2023). Current trends in bibliometric APIs: A comparative analysis. Information Processing & Management, 60(4), 103385. https://doi.org/10.1016/J.IPM.2023.103385
Verma, K., & Malhotra, K. (2023). A bibliometric analysis of sport utility vehicle segment in the automobile industry: two decades study based on web of science database. International Journal of Business and Emerging Markets, 15(2), 135–156. https://doi.org/10.1504/IJBEM.2023.130476
Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391. https://doi.org/10.1016/j.joi.2016.02.007
Wei, W., & Jiang, Z. (2023). A bibliometrix-based visualization analysis of international studies on conversations of people with aphasia: Present and prospects. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16839
White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163–171. https://doi.org/10.1002/ASI.4630320302
World Wildlife Fund, & Agencia de los Estados Unidos para el Desarrollo Internacional. (2018). GUÍA VERDE PARA INUNDACIONES. https://wwflac.awsassets.panda.org/downloads/flood_green_guide_espanol_revisado_armado.pdf
Zupic, I., & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado de Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/52559/1/2023ArleyCardenas.pdf
https://repository.usta.edu.co/bitstream/11634/52559/2/Carta_aprobacion_facultad_2021%20-%20CARDENAS%20RODRIGUEZ%20ARLEY%20GIOVANNI.pdf
https://repository.usta.edu.co/bitstream/11634/52559/3/1Carta_autorizacion_autoarchivo_autor_2021.pdf
https://repository.usta.edu.co/bitstream/11634/52559/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/52559/5/license.txt
https://repository.usta.edu.co/bitstream/11634/52559/6/2023ArleyCardenas.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/52559/7/Carta_aprobacion_facultad_2021%20-%20CARDENAS%20RODRIGUEZ%20ARLEY%20GIOVANNI.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/52559/8/1Carta_autorizacion_autoarchivo_autor_2021.pdf.jpg
bitstream.checksum.fl_str_mv a22996ed923c573b135f8ef6f286eb5a
5f8a04ec2e50d8927cf53c3a99b9c6e1
a35867793ace721b01e4719aefe55b5e
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
64d98d50baa4a6e0940be3b6d49399ab
45bd3fe9ab7a625263e0d0d9b8cc1861
775c791ca38e92510108d4dbccad0d67
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv noreply@usta.edu.co
_version_ 1782026358450290688
spelling Sierra Parada, Ronal JacksonCardenas Rodriguez, Arley Giovannihttps://orcid.org/0000-0002-9206-5682https://scholar.google.com/citations?hl=es&user=0793qhcwBoMChttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00014317602023-10-03T13:17:20Z2023-10-03T13:17:20Z2023-09-29Cárdenas Rodríguez, A, G. (2023). Análisis bibliométrico acerca del uso de drones para análisis y detección de inundaciones. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.http://hdl.handle.net/11634/52559reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEste análisis bibliométrico explora la literatura científica existente sobre el uso de drones en la predicción de inundaciones. El estudio tiene como objetivo proporcionar una visión general de la cantidad de publicaciones científicas, las tendencias temporales de investigación y los actores clave en este campo. También examina las áreas temáticas comunes y los enfoques metodológicos utilizados en los estudios identificados. El análisis se realizó utilizando dos bases de datos académicas de renombre, ScienceDirect y Scopus. Los resultados revelan un interés creciente en el uso de drones para la prevención y gestión de inundaciones, con un aumento constante en el número de publicaciones a lo largo de los años. Se identifican autores e instituciones destacados que contribuyen a la investigación, destacando sus áreas de especialización. El análisis también revela la naturaleza multidisciplinaria de la investigación, siendo la informática, la ingeniería y las ciencias terrestres y planetarias las áreas de estudio más destacadas. Además, el estudio examina la distribución geográfica de la investigación, con China a la cabeza en cuanto al número de publicaciones. Los hallazgos subrayan la participación y colaboración global en el uso de drones para la prevención y gestión de inundaciones. El análisis de los tipos de documentos revela que los artículos y las ponencias de congresos son los principales medios para compartir conocimientos en este campo. Además, el estudio identifica a los principales patrocinadores involucrados, lo que indica un importante apoyo financiero de diversas fuentes en todo el mundo. En general, este análisis bibliométrico proporciona información valiosa sobre el estado actual de la investigación sobre el uso de drones en la predicción y manejo de inundaciones, identificando lagunas de conocimiento y áreas que requieren mayor atención. Los resultados pueden guiar a los investigadores, profesionales y tomadores de decisiones a centrar sus esfuerzos en vías de investigación prometedoras y estrategias de mitigación y predicción de inundaciones más efectivas.This bibliometric analysis explores the existing scientific literature on the use of drones in flood prediction. The study aims to provide an overview of the quantity of scientific publications, temporal research trends, and key players in this field. It also examines the common thematic areas and methodological approaches used in the identified studies. The analysis was conducted using two renowned academic databases, ScienceDirect and Scopus. The results reveal a growing interest in the use of drones for flood prevention and management, with a steady increase in the number of publications over the years. Prominent authors and institutions contributing to the research are identified, highlighting their areas of expertise. The analysis also uncovers the multidisciplinary nature of the research, with computer science, engineering, and earth and planetary sciences being the most prominent areas of study. Additionally, the study examines the geographic distribution of research, with China leading in terms of the number of publications. The findings underscore the global participation and collaboration in using drones for flood prevention and management. The analysis of document types reveals that articles and conference papers are the primary means of sharing knowledge in this field. Furthermore, the study identifies the major sponsors involved, indicating substantial financial support from various sources worldwide. Overall, this bibliometric analysis provides valuable insights into the current state of research on the use of drones in flood prediction, identifying knowledge gaps and areas requiring further attention. The results can guide researchers, professionals, and decision-makers in focusing their efforts on promising research avenues and more effective flood prediction and mitigation strategies.Ingeniero AmbientalPregradoapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Análisis Bibliométrico Acerca del Uso de Drones para Análisis y Detección de Inundacionesbibliometric analysisdronesunmanned aerial vehicle (UAV)floodsfloods preventionfloods managementIngeniería AmbientalLiteratura CientíficaPublicaciones CientíficasDronesanálisis bibliométricodrones; vehículo aéreo no tripulado (UAV)inundacionesprevención de inundacionesmanejo de inundacionesTrabajo de Gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáAlbort-Morant, G., & Ribeiro-Soriano, D. (2016). A bibliometric analysis of international impact of business incubators. Journal of Business Research, 69(5), 1775–1779. https://doi.org/10.1016/j.jbusres.2015.10.054A-m, T. (2021). INTELLIGENT MONITORING OF DISEASED PLANTS USING DRONES. En Cadastre Series) (Vol. 51).Apriliyanti, I. D., & Alon, I. (2017). Bibliometric analysis of absorptive capacity. International Business Review, 26(5), 896–907. https://doi.org/10.1016/j.ibusrev.2017.02.007Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/J.JOI.2017.08.007Arshad, B., Ogie, R., Barthelemy, J., Pradhan, B., Verstaevel, N., & Perez, P. (2019). Computer vision and iot-based sensors in flood monitoring and mapping: A systematic review. Sensors (Switzerland), 19(22). https://doi.org/10.3390/s19225012Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377–386. https://doi.org/10.1162/QSS_A_00019Batra, S., Saini, M., & Yadav, M. (2023). Mapping the intellectual structure of corporate governance and ownership structure: a bibliometric analysis. International Journal of Law and Management, 65(4), 333–353. https://doi.org/10.1108/IJLMA-01-2023-0001Burnham, J. F. (2006). Scopus database: A review. Biomedical Digital Libraries, 3. https://doi.org/10.1186/1742-5581-3-1Bushnaq, O. M., Mishra, D., Natalizio, E., & Akyildiz, I. F. (2022). Unmanned aerial vehicles (UAVs) for disaster management. Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention, 159–188. https://doi.org/10.1016/B978-0-323-91166-5.00013-6Castillo-Vergara, M., Alvarez-Marin, A., & Placencio-Hidalgo, D. (2018). A bibliometric analysis of creativity in the field of business economics. Journal of Business Research, 85, 1–9. https://doi.org/10.1016/j.jbusres.2017.12.011Danvila Del Valle, I., & Sastre Castillo, M. A. (2009). Human capital and sustainable competitive advantage: An analysis of the relationship between training and performance. International Entrepreneurship and Management Journal, 5(2), 139–163. https://doi.org/10.1007/S11365-008-0090-3Delery, J. E., & Doty, D. H. (1996). Modes of theorizing in strategic human resource management: Tests of universalistic, contingency, and configurational performance predictions. Academy of Management Journal, 39(4), 802–835. https://doi.org/10.2307/256713Donthu, N., Kumar, S., Pandey, N., & Gupta, P. (2021). Forty years of the International Journal of Information Management: A bibliometric analysis. International Journal of Information Management, 57. https://doi.org/10.1016/j.ijinfomgt.2020.102307Dwivedi, R., Nerur, S., & Balijepally, V. (2023). Exploring artificial intelligence and big data scholarship in information systems: A citation, bibliographic coupling, and co-word analysis. International Journal of Information Management Data Insights, 3(2). https://doi.org/10.1016/j.jjimei.2023.100185Dzikowski, P. (2018). A bibliometric analysis of born global firms. Journal of Business Research, 85, 281–294. https://doi.org/10.1016/j.jbusres.2017.12.054Etemad, H., & Lee, Y. (2003). The Knowledge Network of International Entrepreneurship: Theory and Evidence. Small Business Economics, 20(1), 5–23. https://doi.org/10.1023/A:1020240303332Gagolewski, M. (2011). Bibliometric impact assessment with R and the CITAN package. Journal of Informetrics, 5(4), 678–692. https://doi.org/10.1016/j.joi.2011.06.006Garrigos-Simon, F. J., Narangajavana-Kaosiri, Y., & Lengua-Lengua, I. (2018). Tourism and sustainability: A bibliometric and visualization analysis. Sustainability (Switzerland), 10(6). https://doi.org/10.3390/su10061976Giannitsopoulos, M. L., Leinster, P., Butler, D., Smith, M., & Casado, M. R. (2022a). Towards the coordinated and fit-for-purpose deployment of Unmanned Aerial Systems (UASs) for flood risk management in England. Aqua Water Infrastructure, Ecosystems and Society, 71(8), 879–895. https://doi.org/10.2166/aqua.2022.101Giannitsopoulos, M. L., Leinster, P., Butler, D., Smith, M., & Casado, M. R. (2022b). Towards the coordinated and fit-for-purpose deployment of Unmanned Aerial Systems (UASs) for flood risk management in England. Aqua Water Infrastructure, Ecosystems and Society, 71(8), 879–895. https://doi.org/10.2166/aqua.2022.101Goerlandt, F., Li, J., & Reniers, G. (2020). The landscape of risk communication research: A scientometric analysis. International Journal of Environmental Research and Public Health, 17(9). https://doi.org/10.3390/ijerph17093255González-Alcaide, G. (2021). Bibliometric studies outside the information science and library science field: uncontainable or uncontrollable? Scientometrics, 126(8), 6837–6870. https://doi.org/10.1007/S11192-021-04061-3Guler, A. T., Waaijer, C. J. F., & Palmblad, M. (2016). Scientific workflows for bibliometrics. Scientometrics, 107(2), 385–398. https://doi.org/10.1007/S11192-016-1885-6Haak, L. L., Fenner, M., Paglione, L., Pentz, E., & Ratner, H. (2012). ORCID: A system to uniquely identify researchers. Learned Publishing, 25(4), 259–264. https://doi.org/10.1087/20120404Hooker, H., Dance, S. L., Mason, D. C., Bevington, J., & Shelton, K. (2022). Spatial scale evaluation of forecast flood inundation maps. Journal of Hydrology, 612, 128170. https://doi.org/10.1016/J.JHYDROL.2022.128170IEEE Xplore. Version 1.3. (2002). Online Information Review, 26(4), 285. https://doi.org/10.1108/OIR.2002.26.4.285.12Iqbal, U., Perez, P., Li, W., & Barthelemy, J. (2021). How computer vision can facilitate flood management: A systematic review. En International Journal of Disaster Risk Reduction (Vol. 53). Elsevier Ltd. https://doi.org/10.1016/j.ijdrr.2020.102030Iqbal, U., Riaz, M. Z. Bin, Barthelemy, J., Hutchison, N., & Perez, P. (2022). Floodborne Objects Type Recognition Using Computer Vision to Mitigate Blockage Originated Floods. Water (Switzerland), 14(17). https://doi.org/10.3390/w14172605Islam, M. A., Rashid, S. I., Hossain, N. U. I., Fleming, R., & Sokolov, A. (2023). An integrated convolutional neural network and sorting algorithm for image classification for efficient flood disaster management. Decision Analytics Journal, 7. https://doi.org/10.1016/j.dajour.2023.100225Ivanova, S., Prosekov, A., & Kaledin, A. (2022). A Survey on Monitoring of Wild Animals during Fires Using Drones. Fire, 5(3). https://doi.org/10.3390/fire5030060Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Ontiveros-Capurata, R. E., & Marcial-Pablo, M. de J. (2020). Rapid urban flood damage assessment using high resolution remote sensing data and an object-based approach. Geomatics, Natural Hazards, and Risk, 11(1), 906–927. https://doi.org/10.1080/19475705.2020.1760360Khasseh, A. A., Soheili, F., Moghaddam, H. S., & Chelak, A. M. (2017). Intellectual structure of knowledge in iMetrics: A co-word analysis. Information Processing and Management, 53(3), 705–720. https://doi.org/10.1016/j.ipm.2017.02.001Liu, X. (2013). Full-Text Citation Analysis: A New Method to Enhance. Journal of the American Society for Information Science and Technology, 64(July), 1852–1863. https://doi.org/10.1002/ASIMichael Griffin, S., Shaw, I. H., & Dresner, S. M. (2002). Early complications after Ivor Lewis subtotal esophagectomy with two-field lymphadenectomy: Risk factors and management. Journal of the American College of Surgeons, 194(3), 285–297. https://doi.org/10.1016/S1072-7515(01)01177-2Mohd Daud, S. M. S., Mohd Yusof, M. Y. P., Heo, C. C., Khoo, L. S., Chainchel Singh, M. K., Mahmood, M. S., & Nawawi, H. (2022a). Applications of drone in disaster management: A scoping review. Science & Justice, 62(1), 30–42. https://doi.org/10.1016/J.SCIJUS.2021.11.002Mohd Daud, S. M. S., Mohd Yusof, M. Y. P., Heo, C. C., Khoo, L. S., Chainchel Singh, M. K., Mahmood, M. S., & Nawawi, H. (2022b). Applications of drone in disaster management: A scoping review. En Science and Justice (Vol. 62, Número 1, pp. 30–42). Forensic Science Society. https://doi.org/10.1016/j.scijus.2021.11.002Mondal, S. H., & Mondal, S. (2019). Jàmbá-Journal of Disaster Risk Studies. https://doi.org/10.4102/jambaMoreira Furlan, L., Moreira, C. A., de Alencar, P. G., & Rosolen, V. (2021). Environmental monitoring and hydrological simulations of a natural wetland based on high-resolution unmanned aerial vehicle data (Paulista Peripheral Depression, Brazil). Environmental Challenges, 4. https://doi.org/10.1016/j.envc.2021.100146Pothula, S. B., & Singh, A. K. (s/f). Precision Irrigation Water Management-Current Status, Scope and Challenges Carbon Sequestration and Sustainable Agriculture and Carbon Balance View project Modelling groundwater Nitrate pollution at IARI farm View project. https://www.researchgate.net/publication/360119350Roiha, J., Heinaro, E., & Holopainen, M. (2021). The hidden cairns—a case study of drone-based als as an archaeological site survey method. Remote Sensing, 13(10). https://doi.org/10.3390/rs13102010Şimşek, E. K., & Kalıpçı, M. B. (2023). A bibliometric study on higher tourism education and curriculum. Journal of Hospitality, Leisure, Sport, and Tourism Education, 33. https://doi.org/10.1016/j.jhlste.2023.100442Thümler, N. (2023). AGILITY IN MARKETING: A BIBLIOMETRIC ANALYSIS. Business: Theory and Practice, 24(1), 173–182. https://doi.org/10.3846/BTP.2023.17090Velez-Estevez, A., Perez, I. J., García-Sánchez, P., Moral-Munoz, J. A., & Cobo, M. J. (2023). Current trends in bibliometric APIs: A comparative analysis. Information Processing & Management, 60(4), 103385. https://doi.org/10.1016/J.IPM.2023.103385Verma, K., & Malhotra, K. (2023). A bibliometric analysis of sport utility vehicle segment in the automobile industry: two decades study based on web of science database. International Journal of Business and Emerging Markets, 15(2), 135–156. https://doi.org/10.1504/IJBEM.2023.130476Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391. https://doi.org/10.1016/j.joi.2016.02.007Wei, W., & Jiang, Z. (2023). A bibliometrix-based visualization analysis of international studies on conversations of people with aphasia: Present and prospects. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16839White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163–171. https://doi.org/10.1002/ASI.4630320302World Wildlife Fund, & Agencia de los Estados Unidos para el Desarrollo Internacional. (2018). GUÍA VERDE PARA INUNDACIONES. https://wwflac.awsassets.panda.org/downloads/flood_green_guide_espanol_revisado_armado.pdfZupic, I., & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629ORIGINAL2023ArleyCardenas.pdf2023ArleyCardenas.pdfTrabajo de gradoapplication/pdf848622https://repository.usta.edu.co/bitstream/11634/52559/1/2023ArleyCardenas.pdfa22996ed923c573b135f8ef6f286eb5aMD51open accessCarta_aprobacion_facultad_2021 - CARDENAS RODRIGUEZ ARLEY GIOVANNI.pdfCarta_aprobacion_facultad_2021 - CARDENAS RODRIGUEZ ARLEY GIOVANNI.pdfCarta aprobación de la facultadapplication/pdf1153942https://repository.usta.edu.co/bitstream/11634/52559/2/Carta_aprobacion_facultad_2021%20-%20CARDENAS%20RODRIGUEZ%20ARLEY%20GIOVANNI.pdf5f8a04ec2e50d8927cf53c3a99b9c6e1MD52metadata only access1Carta_autorizacion_autoarchivo_autor_2021.pdf1Carta_autorizacion_autoarchivo_autor_2021.pdfCarta Derechos de autorapplication/pdf922569https://repository.usta.edu.co/bitstream/11634/52559/3/1Carta_autorizacion_autoarchivo_autor_2021.pdfa35867793ace721b01e4719aefe55b5eMD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/52559/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/52559/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2023ArleyCardenas.pdf.jpg2023ArleyCardenas.pdf.jpgIM Thumbnailimage/jpeg8576https://repository.usta.edu.co/bitstream/11634/52559/6/2023ArleyCardenas.pdf.jpg64d98d50baa4a6e0940be3b6d49399abMD56open accessCarta_aprobacion_facultad_2021 - CARDENAS RODRIGUEZ ARLEY GIOVANNI.pdf.jpgCarta_aprobacion_facultad_2021 - CARDENAS RODRIGUEZ ARLEY GIOVANNI.pdf.jpgIM Thumbnailimage/jpeg6770https://repository.usta.edu.co/bitstream/11634/52559/7/Carta_aprobacion_facultad_2021%20-%20CARDENAS%20RODRIGUEZ%20ARLEY%20GIOVANNI.pdf.jpg45bd3fe9ab7a625263e0d0d9b8cc1861MD57open access1Carta_autorizacion_autoarchivo_autor_2021.pdf.jpg1Carta_autorizacion_autoarchivo_autor_2021.pdf.jpgIM Thumbnailimage/jpeg7692https://repository.usta.edu.co/bitstream/11634/52559/8/1Carta_autorizacion_autoarchivo_autor_2021.pdf.jpg775c791ca38e92510108d4dbccad0d67MD58open access11634/52559oai:repository.usta.edu.co:11634/525592023-10-04 03:17:39.432open accessRepositorio Universidad Santo Tomásnoreply@usta.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K