Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial
En el desarrollo de esta investigación, se implementa un prototipo de banda transportadora para la selección de ciruela, en la cual se instala una sección de sensado compuesta de una cámara contenida en un ambiente de luminosidad controlada. Las imágenes adquiridas por el sistema de sensado, fueron...
- Autores:
-
Bautista Gordo, Cristian Javier
Fonseca Cala, Yesid Aldemar
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/33770
- Acceso en línea:
- http://hdl.handle.net/11634/33770
- Palabra clave:
- Artificial Intelligence
Plum Selection
Image Classification
Computer Vision
Machine Learning
Inteligencia Artificial
Selección de Ciruela
Clasificación de Imágenes
Visión por computador
Aprendizaje automático
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_2de0c329b4c78092e4c045eb9c515409 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/33770 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial |
title |
Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial |
spellingShingle |
Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial Artificial Intelligence Plum Selection Image Classification Computer Vision Machine Learning Inteligencia Artificial Selección de Ciruela Clasificación de Imágenes Visión por computador Aprendizaje automático |
title_short |
Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial |
title_full |
Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial |
title_fullStr |
Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial |
title_full_unstemmed |
Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial |
title_sort |
Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial |
dc.creator.fl_str_mv |
Bautista Gordo, Cristian Javier Fonseca Cala, Yesid Aldemar |
dc.contributor.advisor.none.fl_str_mv |
Pardo, Camilo Ávila, Adolfo |
dc.contributor.author.none.fl_str_mv |
Bautista Gordo, Cristian Javier Fonseca Cala, Yesid Aldemar |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Santo Tomás seccional Tunja |
dc.subject.keyword.spa.fl_str_mv |
Artificial Intelligence Plum Selection Image Classification Computer Vision Machine Learning |
topic |
Artificial Intelligence Plum Selection Image Classification Computer Vision Machine Learning Inteligencia Artificial Selección de Ciruela Clasificación de Imágenes Visión por computador Aprendizaje automático |
dc.subject.proposal.spa.fl_str_mv |
Inteligencia Artificial Selección de Ciruela Clasificación de Imágenes Visión por computador Aprendizaje automático |
description |
En el desarrollo de esta investigación, se implementa un prototipo de banda transportadora para la selección de ciruela, en la cual se instala una sección de sensado compuesta de una cámara contenida en un ambiente de luminosidad controlada. Las imágenes adquiridas por el sistema de sensado, fueron sometidas, por una parte; a algoritmos de Visión por Computador y Deep Learning, orientados a la extracción de características y, por otra parte; a algoritmos de Machine Learning y Deep Learning, orientados a la clasificación del fruto en tres categorías, definidas por sus características morfológicas y deficiencias nutricionales (afectaciones visuales). Las primeras pruebas para llegar a una clasificación satisfactoria, se realizaron aplicando sobre las imágenes múltiples técnicas de Visión por Computador como: Detección de bordes de Canny, operaciones morfológicas, segmentación de fondo por umbrales, entre otras técnicas que permiten hacer ingeniería de características, las cuales dieron paso a una estructura de clasificación condicional. Posteriormente, se hicieron pruebas con árboles de decisión, máquinas de soporte vectorial, perceptrón multicapa y K-Vecino más cercano (KNN). Finalmente, se implementó una estructura de red neuronal convolucional (CNN). |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-04-23T22:47:35Z |
dc.date.available.none.fl_str_mv |
2021-04-23T22:47:35Z |
dc.date.issued.none.fl_str_mv |
2021-04-22 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Bautista, C., & Fonseca, Y. (2021). Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/33770 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Bautista, C., & Fonseca, Y. (2021). Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/33770 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
1.17. Neural network models (supervised) — scikit-learn 0.24.1 documentation. (n.d.). Retrieved March 6, 2021, from https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron Aggarwal, C. C. (2018). Neural Networks and Deep Learning. In Neural Networks and Deep Learning. https://doi.org/10.1007/978-3-319-94463-0 Alegre, E. G., Pajares, M., & de la Escalera Hueso, A. (2016). Conceptos y métodos en visión por computador. Retrieved from https://books.google.com.co/books?id=9g9UAQAACAAJ Bautista, C. J., Aldemar Fonseca, Y., & Pardo-Beainy, C. (2020). Plum selection system using computer vision. 2020 IEEE ANDESCON, 1–6. https://doi.org/10.1109/ANDESCON50619.2020.9272177 Behera, S. K., Rath, A. K., & Sethy, P. K. (2020). Maturity status classification of papaya fruits based on machine learning and transfer learning approach. Information Processing in Agriculture. https://doi.org/https://doi.org/10.1016/j.inpa.2020.05.003 Bishop, C. M. (2006). Pattern Recognition and Machine Learning (1st ed. 20). Retrieved from http://gen.lib.rus.ec/book/index.php?md5=6b552b24cae380bb656f7aaef7f81b46 Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851 Chollet, F. (2017). Deep Learning with Python (1st ed.). USA: Manning Publications Co. CUDA GPUs | NVIDIA Developer. (n.d.). Retrieved March 9, 2021, from https://developer.nvidia.com/cuda-gpus Dávila-Rodríguez, I., Nuño-Maganda, M., Hernández-Mier, Y., & Polanco-Martagón, S. (2019). Decision-Tree Based Pixel Classification for Real-time Citrus Segmentation on FPGA. 2019 International Conference on ReConFigurable Computing and FPGAs (ReConFig), 1–8. https://doi.org/10.1109/ReConFig48160.2019.8994792 Forsyth, D., & Ponce, J. (2012). Computer Vision: A Modern Approach. Retrieved from https://books.google.com.co/books?id=gM63QQAACAAJ Garcia-Lamont, F., Cervantes, J., López, A., & Rodriguez, L. (2018). Segmentation of images by color features: A survey. Neurocomputing, 292, 1–27. https://doi.org/10.1016/j.neucom.2018.01.091 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. Gopal, A., Subhasree, R., Srinivasan, V. K., Varsha, N. K., & Poobal, S. (2012). Classification of color objects like fruits using probability density function (PDF). 2012 International Conference on Machine Vision and Image Processing (MVIP), 1–4. https://doi.org/10.1109/MVIP.2012.6428746 Hitanshu, Kalia, P., Garg, A., & Kumar, A. (2019). Fruit quality evaluation using Machine Learning: A review. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 1, 952–956. https://doi.org/10.1109/ICICICT46008.2019.8993240 Hou, L., Wu, Q., Sun, Q., Yang, H., & Li, P. (2016). Fruit recognition based on convolution neural network. 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 18–22. https://doi.org/10.1109/FSKD.2016.7603144 Ketkar, N. (2017). Deep Learning with Python. In Deep Learning with Python. https://doi.org/10.1007/978-1-4842-2766-4 Kumari, R. S. S., & Gomathy, V. (2018). Fruit Classification using Statistical Features in SVM Classifier. 2018 4th International Conference on Electrical Energy Systems (ICEES), 526–529. https://doi.org/10.1109/ICEES.2018.8442331 Lee, D. J., Archibald, J. K., Chang, Y. C., & Greco, C. R. (2008). Robust color space conversion and color distribution analysis techniques for date maturity evaluation. Journal of Food Engineering, 88(3), 364–372. https://doi.org/10.1016/j.jfoodeng.2008.02.023 Leekul, P., & Krairiksh, M. (2018). A Sensor for Fruit Classification Using Doppler Radar. 2018 IEEE Conference on Antenna Measurements Applications (CAMA), 1–2. https://doi.org/10.1109/CAMA.2018.8530566 M. Shah Baki, S. R., Mohd Z., M. A., Yassin, I. M., Hasliza, A. H., & Zabidi, A. (2010). Non-destructive classification of watermelon ripeness using Mel-Frequency Cepstrum Coefficients and Multilayer Perceptrons. The 2010 International Joint Conference on Neural Networks (IJCNN), 1–6. https://doi.org/10.1109/IJCNN.2010.5596573 Monir Rabby, M. K., Chowdhury, B., & Kim, J. H. (2018). A Modified Canny Edge Detection Algorithm for Fruit Detection Classification. 2018 10th International Conference on Electrical and Computer Engineering (ICECE), 237–240. https://doi.org/10.1109/ICECE.2018.8636811 Nanaa, K., Rizon, M., Rahman, M. N. A., Ibrahim, Y., & Aziz, A. Z. A. (2014). Detecting Mango Fruits by Using Randomized Hough Transform and Backpropagation Neural Network. 2014 18th International Conference on Information Visualisation, 388–391. https://doi.org/10.1109/IV.2014.54 Nvidia. (n.d.-a). Getting Started With Jetson Nano Developer Kit | NVIDIA Developer. Retrieved March 15, 2021, from https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#intro Nvidia. (n.d.-b). Historia de NVIDIA: innovaciones a lo largo de los años | NVIDIA. Retrieved March 1, 2021, from https://www.nvidia.com/es-es/about-nvidia/corporate-timeline/ Open Source Computer Vision. (n.d.). OpenCV: Color conversions. Retrieved March 3, 2021, from https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076 Pacheco, W. D. N., & López, F. R. J. (2019). Tomato classification according to organoleptic maturity (coloration) using machine learning algorithms K-NN, MLP, and K-Means Clustering. 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), 1–5. https://doi.org/10.1109/STSIVA.2019.8730232 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, E. (2011). Scikit-learn: Machine Learning in {P}ython. Journal of Machine Learning Research, 12, 2825–2830. Puentes, G., Soto, D., & Granados, D. (2019). La planificación de cultivos permanentes, una estrategia empresarial para el cultivo de ciruela en Boyacá Colombia. 687–695. Raj, S., & Vinod, D. S. (2016). Automatic defect identification and grading system for ‘Jonagold’ apples. 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), 1–5. https://doi.org/10.1109/CCIP.2016.7802851 Riyadi, S., Ishak, A. J., Mustafa, M. M., & Hussain, A. (2008). Wavelet-based feature extraction technique for fruit shape classification. 2008 5th International Symposium on Mechatronics and Its Applications, 1–5. https://doi.org/10.1109/ISMA.2008.4648858 Rother, C., Kolmogorov, V., & Blake, A. (2004). “GrabCut”: Interactive Foreground Extraction Using Iterated Graph Cuts. ACM SIGGRAPH 2004 Papers, 309–314. https://doi.org/10.1145/1186562.1015720 Sârbu, C., Naşcu-Briciu, R. D., Kot-Wasik, A., Gorinstein, S., Wasik, A., & Namieśnik, J. (2012). Classification and fingerprinting of kiwi and pomelo fruits by multivariate analysis of chromatographic and spectroscopic data. Food Chemistry, 130(4), 994–1002. https://doi.org/https://doi.org/10.1016/j.foodchem.2011.07.120 Sch, B., Williamson, R. C., & Bartlett, P. L. (2000). Schölkopf et al. - 2000 - New support vector algorithms.pdf. 1245, 1207–1245. Septiarini, A., Hamdani, H., Hatta, H. R., & Anwar, K. (2020). Automatic image segmentation of oil palm fruits by applying the contour-based approach. Scientia Horticulturae, 261(October), 391. https://doi.org/10.1016/j.scienta.2019.108939 Sravan, V., Swaraj, K., Meenakshi, K., & Kora, P. (2021). A deep learning based crop disease classification using transfer learning. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.846 Szeliski, R. (2011). Computer Vision. In D. Gries & F. B. Schneider (Eds.), Springer Tracts in Advanced Robotics (Vol. 73). https://doi.org/10.1007/978-3-642-20144-8_11 Tan, W., Sunday, T., & Tan, Y. (2013). Enhanced “GrabCut” tool with blob analysis in segmentation of blooming flower images. 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 1–4. https://doi.org/10.1109/ECTICon.2013.6559597 Tran, C. C., Nguyen, D. T., Dang Le, H., Truong, Q. B., & Dinh Truong, Q. (2017). Automatic dragon fruit counting using adaptive thresholds for image segmentation and shape analysis. 2017 4th NAFOSTED Conference on Information and Computer Science, 132–137. https://doi.org/10.1109/NAFOSTED.2017.8108052 Wan, S., & Goudos, S. (2020). Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks, 168, 107036. https://doi.org/https://doi.org/10.1016/j.comnet.2019.107036 Watcharasing, J., Thiralertphanich, T., Panthuwadeethorn, S., & Phimoltares, S. (2019). Classification of Fruit in a Box (FIB) Using Hybridization of Color and Texture Features. 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 303–308. https://doi.org/10.1109/JCSSE.2019.8864164 Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Chen, G., … Schneider, D. (2020). Automated cattle counting using Mask R-CNN in quadcopter vision system. Computers and Electronics in Agriculture, 171, 105300. https://doi.org/https://doi.org/10.1016/j.compag.2020.105300 Yamparala, R., Challa, R., Kantharao, V., & Krishna, P. S. R. (2020). Computerized Classification of Fruits using Convolution Neural Network. 2020 7th International Conference on Smart Structures and Systems (ICSSS), 1–4. https://doi.org/10.1109/ICSSS49621.2020.9202305 Yang, F. (2019). An Extended Idea about Decision Trees. 2019 International Conference on Computational Science and Computational Intelligence (CSCI), 349–354. https://doi.org/10.1109/CSCI49370.2019.00068 Yazgaç, B. G., & Kırcı, M. (2019). Fractional order calculus based fruit detection. 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 1–4. https://doi.org/10.1109/Agro-Geoinformatics.2019.8820545 Zhao, Y., & Chang, J. (2010). Analysis of Image Edge Checking Algorithms for the Estimation of Pear Size. 2010 International Conference on Intelligent Computation Technology and Automation, 1, 663–666. https://doi.org/10.1109/ICICTA.2010.363 Zhou, H., Zhuang, Z., Liu, Y., Liu, Y., & Zhang, X. (2020). Defect classification of green plums based on deep learning. Sensors (Switzerland), 20(23), 1–15. https://doi.org/10.3390/s20236993 |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Tunja |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Electrónica |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/33770/1/2021BautistaCristan_FonsecaYesid.pdf https://repository.usta.edu.co/bitstream/11634/33770/2/Carta%20Derechos%20de%20Autor.pdf https://repository.usta.edu.co/bitstream/11634/33770/5/Autorizaci%c3%b3n%20Facultad.pdf https://repository.usta.edu.co/bitstream/11634/33770/3/license_rdf https://repository.usta.edu.co/bitstream/11634/33770/4/license.txt https://repository.usta.edu.co/bitstream/11634/33770/6/2021BautistaCristan_FonsecaYesid.pdf.jpg https://repository.usta.edu.co/bitstream/11634/33770/7/Carta%20Derechos%20de%20Autor.pdf.jpg https://repository.usta.edu.co/bitstream/11634/33770/8/Autorizaci%c3%b3n%20Facultad.pdf.jpg |
bitstream.checksum.fl_str_mv |
68c3ebf860d86378d50436d15261057a 237eea02ee86544f167c4422dcb2e51a 66da926e97e8aad52144d2a7be904d07 217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 517267e7a7c23206b35e14bc5cd6a573 9a3230bfe1dec93b1a2d199980c93c78 dfd5ac7a546a810b67721abee19edf63 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026250630463488 |
spelling |
Pardo, CamiloÁvila, AdolfoBautista Gordo, Cristian JavierFonseca Cala, Yesid AldemarUniversidad Santo Tomás seccional Tunja2021-04-23T22:47:35Z2021-04-23T22:47:35Z2021-04-22Bautista, C., & Fonseca, Y. (2021). Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial.http://hdl.handle.net/11634/33770reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn el desarrollo de esta investigación, se implementa un prototipo de banda transportadora para la selección de ciruela, en la cual se instala una sección de sensado compuesta de una cámara contenida en un ambiente de luminosidad controlada. Las imágenes adquiridas por el sistema de sensado, fueron sometidas, por una parte; a algoritmos de Visión por Computador y Deep Learning, orientados a la extracción de características y, por otra parte; a algoritmos de Machine Learning y Deep Learning, orientados a la clasificación del fruto en tres categorías, definidas por sus características morfológicas y deficiencias nutricionales (afectaciones visuales). Las primeras pruebas para llegar a una clasificación satisfactoria, se realizaron aplicando sobre las imágenes múltiples técnicas de Visión por Computador como: Detección de bordes de Canny, operaciones morfológicas, segmentación de fondo por umbrales, entre otras técnicas que permiten hacer ingeniería de características, las cuales dieron paso a una estructura de clasificación condicional. Posteriormente, se hicieron pruebas con árboles de decisión, máquinas de soporte vectorial, perceptrón multicapa y K-Vecino más cercano (KNN). Finalmente, se implementó una estructura de red neuronal convolucional (CNN).The development of this research, a prototype of a conveyor belt for the selection of plums is implemented, in which a sensing section composed of a camera contained in an environment of controlled luminosity is installed. The images acquired by the sensing system were submitted, on the one hand to Computer Vision and Deep Learning algorithms, oriented to the extraction of characteristics and, on the other hand to Machine Learning and Deep Learning algorithms, aimed at classifying the fruit into three categories, defined by their morphological characteristics and nutritional deficiencies (visual impairments). The first tests to reach a satisfactory classification were carried out by applying multiple Computer Vision techniques to the images, such as: Canny edge detection, morphological operations, background segmentation by thresholds, among other techniques that allow engineering characteristics, the which gave way to a conditional classification structure. Subsequently, tests were made with decision trees, vector support machines, multilayer perceptron and K-Nearest Neighbor (KNN). Finally, a convolutional neural network (CNN) structure was implemented.Ingeniero ElectronicoPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia ArtificialArtificial IntelligencePlum SelectionImage ClassificationComputer VisionMachine LearningInteligencia ArtificialSelección de CiruelaClasificación de ImágenesVisión por computadorAprendizaje automáticoTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA Tunja1.17. Neural network models (supervised) — scikit-learn 0.24.1 documentation. (n.d.). Retrieved March 6, 2021, from https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptronAggarwal, C. C. (2018). Neural Networks and Deep Learning. In Neural Networks and Deep Learning. https://doi.org/10.1007/978-3-319-94463-0Alegre, E. G., Pajares, M., & de la Escalera Hueso, A. (2016). Conceptos y métodos en visión por computador. Retrieved from https://books.google.com.co/books?id=9g9UAQAACAAJBautista, C. J., Aldemar Fonseca, Y., & Pardo-Beainy, C. (2020). Plum selection system using computer vision. 2020 IEEE ANDESCON, 1–6. https://doi.org/10.1109/ANDESCON50619.2020.9272177Behera, S. K., Rath, A. K., & Sethy, P. K. (2020). Maturity status classification of papaya fruits based on machine learning and transfer learning approach. Information Processing in Agriculture. https://doi.org/https://doi.org/10.1016/j.inpa.2020.05.003Bishop, C. M. (2006). Pattern Recognition and Machine Learning (1st ed. 20). Retrieved from http://gen.lib.rus.ec/book/index.php?md5=6b552b24cae380bb656f7aaef7f81b46Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851Chollet, F. (2017). Deep Learning with Python (1st ed.). USA: Manning Publications Co.CUDA GPUs | NVIDIA Developer. (n.d.). Retrieved March 9, 2021, from https://developer.nvidia.com/cuda-gpusDávila-Rodríguez, I., Nuño-Maganda, M., Hernández-Mier, Y., & Polanco-Martagón, S. (2019). Decision-Tree Based Pixel Classification for Real-time Citrus Segmentation on FPGA. 2019 International Conference on ReConFigurable Computing and FPGAs (ReConFig), 1–8. https://doi.org/10.1109/ReConFig48160.2019.8994792Forsyth, D., & Ponce, J. (2012). Computer Vision: A Modern Approach. Retrieved from https://books.google.com.co/books?id=gM63QQAACAAJGarcia-Lamont, F., Cervantes, J., López, A., & Rodriguez, L. (2018). Segmentation of images by color features: A survey. Neurocomputing, 292, 1–27. https://doi.org/10.1016/j.neucom.2018.01.091Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.Gopal, A., Subhasree, R., Srinivasan, V. K., Varsha, N. K., & Poobal, S. (2012). Classification of color objects like fruits using probability density function (PDF). 2012 International Conference on Machine Vision and Image Processing (MVIP), 1–4. https://doi.org/10.1109/MVIP.2012.6428746Hitanshu, Kalia, P., Garg, A., & Kumar, A. (2019). Fruit quality evaluation using Machine Learning: A review. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 1, 952–956. https://doi.org/10.1109/ICICICT46008.2019.8993240Hou, L., Wu, Q., Sun, Q., Yang, H., & Li, P. (2016). Fruit recognition based on convolution neural network. 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 18–22. https://doi.org/10.1109/FSKD.2016.7603144Ketkar, N. (2017). Deep Learning with Python. In Deep Learning with Python. https://doi.org/10.1007/978-1-4842-2766-4Kumari, R. S. S., & Gomathy, V. (2018). Fruit Classification using Statistical Features in SVM Classifier. 2018 4th International Conference on Electrical Energy Systems (ICEES), 526–529. https://doi.org/10.1109/ICEES.2018.8442331Lee, D. J., Archibald, J. K., Chang, Y. C., & Greco, C. R. (2008). Robust color space conversion and color distribution analysis techniques for date maturity evaluation. Journal of Food Engineering, 88(3), 364–372. https://doi.org/10.1016/j.jfoodeng.2008.02.023Leekul, P., & Krairiksh, M. (2018). A Sensor for Fruit Classification Using Doppler Radar. 2018 IEEE Conference on Antenna Measurements Applications (CAMA), 1–2. https://doi.org/10.1109/CAMA.2018.8530566M. Shah Baki, S. R., Mohd Z., M. A., Yassin, I. M., Hasliza, A. H., & Zabidi, A. (2010). Non-destructive classification of watermelon ripeness using Mel-Frequency Cepstrum Coefficients and Multilayer Perceptrons. The 2010 International Joint Conference on Neural Networks (IJCNN), 1–6. https://doi.org/10.1109/IJCNN.2010.5596573Monir Rabby, M. K., Chowdhury, B., & Kim, J. H. (2018). A Modified Canny Edge Detection Algorithm for Fruit Detection Classification. 2018 10th International Conference on Electrical and Computer Engineering (ICECE), 237–240. https://doi.org/10.1109/ICECE.2018.8636811Nanaa, K., Rizon, M., Rahman, M. N. A., Ibrahim, Y., & Aziz, A. Z. A. (2014). Detecting Mango Fruits by Using Randomized Hough Transform and Backpropagation Neural Network. 2014 18th International Conference on Information Visualisation, 388–391. https://doi.org/10.1109/IV.2014.54Nvidia. (n.d.-a). Getting Started With Jetson Nano Developer Kit | NVIDIA Developer. Retrieved March 15, 2021, from https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#introNvidia. (n.d.-b). Historia de NVIDIA: innovaciones a lo largo de los años | NVIDIA. Retrieved March 1, 2021, from https://www.nvidia.com/es-es/about-nvidia/corporate-timeline/Open Source Computer Vision. (n.d.). OpenCV: Color conversions. Retrieved March 3, 2021, from https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.htmlOtsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076Pacheco, W. D. N., & López, F. R. J. (2019). Tomato classification according to organoleptic maturity (coloration) using machine learning algorithms K-NN, MLP, and K-Means Clustering. 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), 1–5. https://doi.org/10.1109/STSIVA.2019.8730232Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, E. (2011). Scikit-learn: Machine Learning in {P}ython. Journal of Machine Learning Research, 12, 2825–2830.Puentes, G., Soto, D., & Granados, D. (2019). La planificación de cultivos permanentes, una estrategia empresarial para el cultivo de ciruela en Boyacá Colombia. 687–695.Raj, S., & Vinod, D. S. (2016). Automatic defect identification and grading system for ‘Jonagold’ apples. 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), 1–5. https://doi.org/10.1109/CCIP.2016.7802851Riyadi, S., Ishak, A. J., Mustafa, M. M., & Hussain, A. (2008). Wavelet-based feature extraction technique for fruit shape classification. 2008 5th International Symposium on Mechatronics and Its Applications, 1–5. https://doi.org/10.1109/ISMA.2008.4648858Rother, C., Kolmogorov, V., & Blake, A. (2004). “GrabCut”: Interactive Foreground Extraction Using Iterated Graph Cuts. ACM SIGGRAPH 2004 Papers, 309–314. https://doi.org/10.1145/1186562.1015720Sârbu, C., Naşcu-Briciu, R. D., Kot-Wasik, A., Gorinstein, S., Wasik, A., & Namieśnik, J. (2012). Classification and fingerprinting of kiwi and pomelo fruits by multivariate analysis of chromatographic and spectroscopic data. Food Chemistry, 130(4), 994–1002. https://doi.org/https://doi.org/10.1016/j.foodchem.2011.07.120Sch, B., Williamson, R. C., & Bartlett, P. L. (2000). Schölkopf et al. - 2000 - New support vector algorithms.pdf. 1245, 1207–1245.Septiarini, A., Hamdani, H., Hatta, H. R., & Anwar, K. (2020). Automatic image segmentation of oil palm fruits by applying the contour-based approach. Scientia Horticulturae, 261(October), 391. https://doi.org/10.1016/j.scienta.2019.108939Sravan, V., Swaraj, K., Meenakshi, K., & Kora, P. (2021). A deep learning based crop disease classification using transfer learning. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.846Szeliski, R. (2011). Computer Vision. In D. Gries & F. B. Schneider (Eds.), Springer Tracts in Advanced Robotics (Vol. 73). https://doi.org/10.1007/978-3-642-20144-8_11Tan, W., Sunday, T., & Tan, Y. (2013). Enhanced “GrabCut” tool with blob analysis in segmentation of blooming flower images. 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 1–4. https://doi.org/10.1109/ECTICon.2013.6559597Tran, C. C., Nguyen, D. T., Dang Le, H., Truong, Q. B., & Dinh Truong, Q. (2017). Automatic dragon fruit counting using adaptive thresholds for image segmentation and shape analysis. 2017 4th NAFOSTED Conference on Information and Computer Science, 132–137. https://doi.org/10.1109/NAFOSTED.2017.8108052Wan, S., & Goudos, S. (2020). Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks, 168, 107036. https://doi.org/https://doi.org/10.1016/j.comnet.2019.107036Watcharasing, J., Thiralertphanich, T., Panthuwadeethorn, S., & Phimoltares, S. (2019). Classification of Fruit in a Box (FIB) Using Hybridization of Color and Texture Features. 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 303–308. https://doi.org/10.1109/JCSSE.2019.8864164Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Chen, G., … Schneider, D. (2020). Automated cattle counting using Mask R-CNN in quadcopter vision system. Computers and Electronics in Agriculture, 171, 105300. https://doi.org/https://doi.org/10.1016/j.compag.2020.105300Yamparala, R., Challa, R., Kantharao, V., & Krishna, P. S. R. (2020). Computerized Classification of Fruits using Convolution Neural Network. 2020 7th International Conference on Smart Structures and Systems (ICSSS), 1–4. https://doi.org/10.1109/ICSSS49621.2020.9202305Yang, F. (2019). An Extended Idea about Decision Trees. 2019 International Conference on Computational Science and Computational Intelligence (CSCI), 349–354. https://doi.org/10.1109/CSCI49370.2019.00068Yazgaç, B. G., & Kırcı, M. (2019). Fractional order calculus based fruit detection. 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 1–4. https://doi.org/10.1109/Agro-Geoinformatics.2019.8820545Zhao, Y., & Chang, J. (2010). Analysis of Image Edge Checking Algorithms for the Estimation of Pear Size. 2010 International Conference on Intelligent Computation Technology and Automation, 1, 663–666. https://doi.org/10.1109/ICICTA.2010.363Zhou, H., Zhuang, Z., Liu, Y., Liu, Y., & Zhang, X. (2020). Defect classification of green plums based on deep learning. Sensors (Switzerland), 20(23), 1–15. https://doi.org/10.3390/s20236993ORIGINAL2021BautistaCristan_FonsecaYesid.pdf2021BautistaCristan_FonsecaYesid.pdfTrabajo de Grado.application/pdf3563126https://repository.usta.edu.co/bitstream/11634/33770/1/2021BautistaCristan_FonsecaYesid.pdf68c3ebf860d86378d50436d15261057aMD51metadata only accessCarta Derechos de Autor.pdfCarta Derechos de Autor.pdfCarta Derechos de Autorapplication/pdf531705https://repository.usta.edu.co/bitstream/11634/33770/2/Carta%20Derechos%20de%20Autor.pdf237eea02ee86544f167c4422dcb2e51aMD52metadata only accessAutorización Facultad.pdfAutorización Facultad.pdfCarta autorización Facultadapplication/pdf88778https://repository.usta.edu.co/bitstream/11634/33770/5/Autorizaci%c3%b3n%20Facultad.pdf66da926e97e8aad52144d2a7be904d07MD55metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/33770/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/33770/4/license.txtaedeaf396fcd827b537c73d23464fc27MD54open accessTHUMBNAIL2021BautistaCristan_FonsecaYesid.pdf.jpg2021BautistaCristan_FonsecaYesid.pdf.jpgIM Thumbnailimage/jpeg5770https://repository.usta.edu.co/bitstream/11634/33770/6/2021BautistaCristan_FonsecaYesid.pdf.jpg517267e7a7c23206b35e14bc5cd6a573MD56open accessCarta Derechos de Autor.pdf.jpgCarta Derechos de Autor.pdf.jpgIM Thumbnailimage/jpeg7810https://repository.usta.edu.co/bitstream/11634/33770/7/Carta%20Derechos%20de%20Autor.pdf.jpg9a3230bfe1dec93b1a2d199980c93c78MD57open accessAutorización Facultad.pdf.jpgAutorización Facultad.pdf.jpgIM Thumbnailimage/jpeg4475https://repository.usta.edu.co/bitstream/11634/33770/8/Autorizaci%c3%b3n%20Facultad.pdf.jpgdfd5ac7a546a810b67721abee19edf63MD58open access11634/33770oai:repository.usta.edu.co:11634/337702022-10-31 03:03:37.594metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |