Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial

En el desarrollo de esta investigación, se implementa un prototipo de banda transportadora para la selección de ciruela, en la cual se instala una sección de sensado compuesta de una cámara contenida en un ambiente de luminosidad controlada. Las imágenes adquiridas por el sistema de sensado, fueron...

Full description

Autores:
Bautista Gordo, Cristian Javier
Fonseca Cala, Yesid Aldemar
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/33770
Acceso en línea:
http://hdl.handle.net/11634/33770
Palabra clave:
Artificial Intelligence
Plum Selection
Image Classification
Computer Vision
Machine Learning
Inteligencia Artificial
Selección de Ciruela
Clasificación de Imágenes
Visión por computador
Aprendizaje automático
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_2de0c329b4c78092e4c045eb9c515409
oai_identifier_str oai:repository.usta.edu.co:11634/33770
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial
title Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial
spellingShingle Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial
Artificial Intelligence
Plum Selection
Image Classification
Computer Vision
Machine Learning
Inteligencia Artificial
Selección de Ciruela
Clasificación de Imágenes
Visión por computador
Aprendizaje automático
title_short Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial
title_full Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial
title_fullStr Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial
title_full_unstemmed Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial
title_sort Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial
dc.creator.fl_str_mv Bautista Gordo, Cristian Javier
Fonseca Cala, Yesid Aldemar
dc.contributor.advisor.none.fl_str_mv Pardo, Camilo
Ávila, Adolfo
dc.contributor.author.none.fl_str_mv Bautista Gordo, Cristian Javier
Fonseca Cala, Yesid Aldemar
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás seccional Tunja
dc.subject.keyword.spa.fl_str_mv Artificial Intelligence
Plum Selection
Image Classification
Computer Vision
Machine Learning
topic Artificial Intelligence
Plum Selection
Image Classification
Computer Vision
Machine Learning
Inteligencia Artificial
Selección de Ciruela
Clasificación de Imágenes
Visión por computador
Aprendizaje automático
dc.subject.proposal.spa.fl_str_mv Inteligencia Artificial
Selección de Ciruela
Clasificación de Imágenes
Visión por computador
Aprendizaje automático
description En el desarrollo de esta investigación, se implementa un prototipo de banda transportadora para la selección de ciruela, en la cual se instala una sección de sensado compuesta de una cámara contenida en un ambiente de luminosidad controlada. Las imágenes adquiridas por el sistema de sensado, fueron sometidas, por una parte; a algoritmos de Visión por Computador y Deep Learning, orientados a la extracción de características y, por otra parte; a algoritmos de Machine Learning y Deep Learning, orientados a la clasificación del fruto en tres categorías, definidas por sus características morfológicas y deficiencias nutricionales (afectaciones visuales). Las primeras pruebas para llegar a una clasificación satisfactoria, se realizaron aplicando sobre las imágenes múltiples técnicas de Visión por Computador como: Detección de bordes de Canny, operaciones morfológicas, segmentación de fondo por umbrales, entre otras técnicas que permiten hacer ingeniería de características, las cuales dieron paso a una estructura de clasificación condicional. Posteriormente, se hicieron pruebas con árboles de decisión, máquinas de soporte vectorial, perceptrón multicapa y K-Vecino más cercano (KNN). Finalmente, se implementó una estructura de red neuronal convolucional (CNN).
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-04-23T22:47:35Z
dc.date.available.none.fl_str_mv 2021-04-23T22:47:35Z
dc.date.issued.none.fl_str_mv 2021-04-22
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Bautista, C., & Fonseca, Y. (2021). Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/33770
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Bautista, C., & Fonseca, Y. (2021). Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/33770
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1.17. Neural network models (supervised) — scikit-learn 0.24.1 documentation. (n.d.). Retrieved March 6, 2021, from https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron
Aggarwal, C. C. (2018). Neural Networks and Deep Learning. In Neural Networks and Deep Learning. https://doi.org/10.1007/978-3-319-94463-0
Alegre, E. G., Pajares, M., & de la Escalera Hueso, A. (2016). Conceptos y métodos en visión por computador. Retrieved from https://books.google.com.co/books?id=9g9UAQAACAAJ
Bautista, C. J., Aldemar Fonseca, Y., & Pardo-Beainy, C. (2020). Plum selection system using computer vision. 2020 IEEE ANDESCON, 1–6. https://doi.org/10.1109/ANDESCON50619.2020.9272177
Behera, S. K., Rath, A. K., & Sethy, P. K. (2020). Maturity status classification of papaya fruits based on machine learning and transfer learning approach. Information Processing in Agriculture. https://doi.org/https://doi.org/10.1016/j.inpa.2020.05.003
Bishop, C. M. (2006). Pattern Recognition and Machine Learning (1st ed. 20). Retrieved from http://gen.lib.rus.ec/book/index.php?md5=6b552b24cae380bb656f7aaef7f81b46
Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851
Chollet, F. (2017). Deep Learning with Python (1st ed.). USA: Manning Publications Co.
CUDA GPUs | NVIDIA Developer. (n.d.). Retrieved March 9, 2021, from https://developer.nvidia.com/cuda-gpus
Dávila-Rodríguez, I., Nuño-Maganda, M., Hernández-Mier, Y., & Polanco-Martagón, S. (2019). Decision-Tree Based Pixel Classification for Real-time Citrus Segmentation on FPGA. 2019 International Conference on ReConFigurable Computing and FPGAs (ReConFig), 1–8. https://doi.org/10.1109/ReConFig48160.2019.8994792
Forsyth, D., & Ponce, J. (2012). Computer Vision: A Modern Approach. Retrieved from https://books.google.com.co/books?id=gM63QQAACAAJ
Garcia-Lamont, F., Cervantes, J., López, A., & Rodriguez, L. (2018). Segmentation of images by color features: A survey. Neurocomputing, 292, 1–27. https://doi.org/10.1016/j.neucom.2018.01.091
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Gopal, A., Subhasree, R., Srinivasan, V. K., Varsha, N. K., & Poobal, S. (2012). Classification of color objects like fruits using probability density function (PDF). 2012 International Conference on Machine Vision and Image Processing (MVIP), 1–4. https://doi.org/10.1109/MVIP.2012.6428746
Hitanshu, Kalia, P., Garg, A., & Kumar, A. (2019). Fruit quality evaluation using Machine Learning: A review. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 1, 952–956. https://doi.org/10.1109/ICICICT46008.2019.8993240
Hou, L., Wu, Q., Sun, Q., Yang, H., & Li, P. (2016). Fruit recognition based on convolution neural network. 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 18–22. https://doi.org/10.1109/FSKD.2016.7603144
Ketkar, N. (2017). Deep Learning with Python. In Deep Learning with Python. https://doi.org/10.1007/978-1-4842-2766-4
Kumari, R. S. S., & Gomathy, V. (2018). Fruit Classification using Statistical Features in SVM Classifier. 2018 4th International Conference on Electrical Energy Systems (ICEES), 526–529. https://doi.org/10.1109/ICEES.2018.8442331
Lee, D. J., Archibald, J. K., Chang, Y. C., & Greco, C. R. (2008). Robust color space conversion and color distribution analysis techniques for date maturity evaluation. Journal of Food Engineering, 88(3), 364–372. https://doi.org/10.1016/j.jfoodeng.2008.02.023
Leekul, P., & Krairiksh, M. (2018). A Sensor for Fruit Classification Using Doppler Radar. 2018 IEEE Conference on Antenna Measurements Applications (CAMA), 1–2. https://doi.org/10.1109/CAMA.2018.8530566
M. Shah Baki, S. R., Mohd Z., M. A., Yassin, I. M., Hasliza, A. H., & Zabidi, A. (2010). Non-destructive classification of watermelon ripeness using Mel-Frequency Cepstrum Coefficients and Multilayer Perceptrons. The 2010 International Joint Conference on Neural Networks (IJCNN), 1–6. https://doi.org/10.1109/IJCNN.2010.5596573
Monir Rabby, M. K., Chowdhury, B., & Kim, J. H. (2018). A Modified Canny Edge Detection Algorithm for Fruit Detection Classification. 2018 10th International Conference on Electrical and Computer Engineering (ICECE), 237–240. https://doi.org/10.1109/ICECE.2018.8636811
Nanaa, K., Rizon, M., Rahman, M. N. A., Ibrahim, Y., & Aziz, A. Z. A. (2014). Detecting Mango Fruits by Using Randomized Hough Transform and Backpropagation Neural Network. 2014 18th International Conference on Information Visualisation, 388–391. https://doi.org/10.1109/IV.2014.54
Nvidia. (n.d.-a). Getting Started With Jetson Nano Developer Kit | NVIDIA Developer. Retrieved March 15, 2021, from https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#intro
Nvidia. (n.d.-b). Historia de NVIDIA: innovaciones a lo largo de los años | NVIDIA. Retrieved March 1, 2021, from https://www.nvidia.com/es-es/about-nvidia/corporate-timeline/
Open Source Computer Vision. (n.d.). OpenCV: Color conversions. Retrieved March 3, 2021, from https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076
Pacheco, W. D. N., & López, F. R. J. (2019). Tomato classification according to organoleptic maturity (coloration) using machine learning algorithms K-NN, MLP, and K-Means Clustering. 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), 1–5. https://doi.org/10.1109/STSIVA.2019.8730232
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, E. (2011). Scikit-learn: Machine Learning in {P}ython. Journal of Machine Learning Research, 12, 2825–2830.
Puentes, G., Soto, D., & Granados, D. (2019). La planificación de cultivos permanentes, una estrategia empresarial para el cultivo de ciruela en Boyacá Colombia. 687–695.
Raj, S., & Vinod, D. S. (2016). Automatic defect identification and grading system for ‘Jonagold’ apples. 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), 1–5. https://doi.org/10.1109/CCIP.2016.7802851
Riyadi, S., Ishak, A. J., Mustafa, M. M., & Hussain, A. (2008). Wavelet-based feature extraction technique for fruit shape classification. 2008 5th International Symposium on Mechatronics and Its Applications, 1–5. https://doi.org/10.1109/ISMA.2008.4648858
Rother, C., Kolmogorov, V., & Blake, A. (2004). “GrabCut”: Interactive Foreground Extraction Using Iterated Graph Cuts. ACM SIGGRAPH 2004 Papers, 309–314. https://doi.org/10.1145/1186562.1015720
Sârbu, C., Naşcu-Briciu, R. D., Kot-Wasik, A., Gorinstein, S., Wasik, A., & Namieśnik, J. (2012). Classification and fingerprinting of kiwi and pomelo fruits by multivariate analysis of chromatographic and spectroscopic data. Food Chemistry, 130(4), 994–1002. https://doi.org/https://doi.org/10.1016/j.foodchem.2011.07.120
Sch, B., Williamson, R. C., & Bartlett, P. L. (2000). Schölkopf et al. - 2000 - New support vector algorithms.pdf. 1245, 1207–1245.
Septiarini, A., Hamdani, H., Hatta, H. R., & Anwar, K. (2020). Automatic image segmentation of oil palm fruits by applying the contour-based approach. Scientia Horticulturae, 261(October), 391. https://doi.org/10.1016/j.scienta.2019.108939
Sravan, V., Swaraj, K., Meenakshi, K., & Kora, P. (2021). A deep learning based crop disease classification using transfer learning. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.846
Szeliski, R. (2011). Computer Vision. In D. Gries & F. B. Schneider (Eds.), Springer Tracts in Advanced Robotics (Vol. 73). https://doi.org/10.1007/978-3-642-20144-8_11
Tan, W., Sunday, T., & Tan, Y. (2013). Enhanced “GrabCut” tool with blob analysis in segmentation of blooming flower images. 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 1–4. https://doi.org/10.1109/ECTICon.2013.6559597
Tran, C. C., Nguyen, D. T., Dang Le, H., Truong, Q. B., & Dinh Truong, Q. (2017). Automatic dragon fruit counting using adaptive thresholds for image segmentation and shape analysis. 2017 4th NAFOSTED Conference on Information and Computer Science, 132–137. https://doi.org/10.1109/NAFOSTED.2017.8108052
Wan, S., & Goudos, S. (2020). Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks, 168, 107036. https://doi.org/https://doi.org/10.1016/j.comnet.2019.107036
Watcharasing, J., Thiralertphanich, T., Panthuwadeethorn, S., & Phimoltares, S. (2019). Classification of Fruit in a Box (FIB) Using Hybridization of Color and Texture Features. 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 303–308. https://doi.org/10.1109/JCSSE.2019.8864164
Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Chen, G., … Schneider, D. (2020). Automated cattle counting using Mask R-CNN in quadcopter vision system. Computers and Electronics in Agriculture, 171, 105300. https://doi.org/https://doi.org/10.1016/j.compag.2020.105300
Yamparala, R., Challa, R., Kantharao, V., & Krishna, P. S. R. (2020). Computerized Classification of Fruits using Convolution Neural Network. 2020 7th International Conference on Smart Structures and Systems (ICSSS), 1–4. https://doi.org/10.1109/ICSSS49621.2020.9202305
Yang, F. (2019). An Extended Idea about Decision Trees. 2019 International Conference on Computational Science and Computational Intelligence (CSCI), 349–354. https://doi.org/10.1109/CSCI49370.2019.00068
Yazgaç, B. G., & Kırcı, M. (2019). Fractional order calculus based fruit detection. 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 1–4. https://doi.org/10.1109/Agro-Geoinformatics.2019.8820545
Zhao, Y., & Chang, J. (2010). Analysis of Image Edge Checking Algorithms for the Estimation of Pear Size. 2010 International Conference on Intelligent Computation Technology and Automation, 1, 663–666. https://doi.org/10.1109/ICICTA.2010.363
Zhou, H., Zhuang, Z., Liu, Y., Liu, Y., & Zhang, X. (2020). Defect classification of green plums based on deep learning. Sensors (Switzerland), 20(23), 1–15. https://doi.org/10.3390/s20236993
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Tunja
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/33770/1/2021BautistaCristan_FonsecaYesid.pdf
https://repository.usta.edu.co/bitstream/11634/33770/2/Carta%20Derechos%20de%20Autor.pdf
https://repository.usta.edu.co/bitstream/11634/33770/5/Autorizaci%c3%b3n%20Facultad.pdf
https://repository.usta.edu.co/bitstream/11634/33770/3/license_rdf
https://repository.usta.edu.co/bitstream/11634/33770/4/license.txt
https://repository.usta.edu.co/bitstream/11634/33770/6/2021BautistaCristan_FonsecaYesid.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/33770/7/Carta%20Derechos%20de%20Autor.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/33770/8/Autorizaci%c3%b3n%20Facultad.pdf.jpg
bitstream.checksum.fl_str_mv 68c3ebf860d86378d50436d15261057a
237eea02ee86544f167c4422dcb2e51a
66da926e97e8aad52144d2a7be904d07
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
517267e7a7c23206b35e14bc5cd6a573
9a3230bfe1dec93b1a2d199980c93c78
dfd5ac7a546a810b67721abee19edf63
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026250630463488
spelling Pardo, CamiloÁvila, AdolfoBautista Gordo, Cristian JavierFonseca Cala, Yesid AldemarUniversidad Santo Tomás seccional Tunja2021-04-23T22:47:35Z2021-04-23T22:47:35Z2021-04-22Bautista, C., & Fonseca, Y. (2021). Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia Artificial.http://hdl.handle.net/11634/33770reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn el desarrollo de esta investigación, se implementa un prototipo de banda transportadora para la selección de ciruela, en la cual se instala una sección de sensado compuesta de una cámara contenida en un ambiente de luminosidad controlada. Las imágenes adquiridas por el sistema de sensado, fueron sometidas, por una parte; a algoritmos de Visión por Computador y Deep Learning, orientados a la extracción de características y, por otra parte; a algoritmos de Machine Learning y Deep Learning, orientados a la clasificación del fruto en tres categorías, definidas por sus características morfológicas y deficiencias nutricionales (afectaciones visuales). Las primeras pruebas para llegar a una clasificación satisfactoria, se realizaron aplicando sobre las imágenes múltiples técnicas de Visión por Computador como: Detección de bordes de Canny, operaciones morfológicas, segmentación de fondo por umbrales, entre otras técnicas que permiten hacer ingeniería de características, las cuales dieron paso a una estructura de clasificación condicional. Posteriormente, se hicieron pruebas con árboles de decisión, máquinas de soporte vectorial, perceptrón multicapa y K-Vecino más cercano (KNN). Finalmente, se implementó una estructura de red neuronal convolucional (CNN).The development of this research, a prototype of a conveyor belt for the selection of plums is implemented, in which a sensing section composed of a camera contained in an environment of controlled luminosity is installed. The images acquired by the sensing system were submitted, on the one hand to Computer Vision and Deep Learning algorithms, oriented to the extraction of characteristics and, on the other hand to Machine Learning and Deep Learning algorithms, aimed at classifying the fruit into three categories, defined by their morphological characteristics and nutritional deficiencies (visual impairments). The first tests to reach a satisfactory classification were carried out by applying multiple Computer Vision techniques to the images, such as: Canny edge detection, morphological operations, background segmentation by thresholds, among other techniques that allow engineering characteristics, the which gave way to a conditional classification structure. Subsequently, tests were made with decision trees, vector support machines, multilayer perceptron and K-Nearest Neighbor (KNN). Finally, a convolutional neural network (CNN) structure was implemented.Ingeniero ElectronicoPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sistema Clasificador de Ciruela Horvin Usando Técnicas de Inteligencia ArtificialArtificial IntelligencePlum SelectionImage ClassificationComputer VisionMachine LearningInteligencia ArtificialSelección de CiruelaClasificación de ImágenesVisión por computadorAprendizaje automáticoTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA Tunja1.17. Neural network models (supervised) — scikit-learn 0.24.1 documentation. (n.d.). Retrieved March 6, 2021, from https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptronAggarwal, C. C. (2018). Neural Networks and Deep Learning. In Neural Networks and Deep Learning. https://doi.org/10.1007/978-3-319-94463-0Alegre, E. G., Pajares, M., & de la Escalera Hueso, A. (2016). Conceptos y métodos en visión por computador. Retrieved from https://books.google.com.co/books?id=9g9UAQAACAAJBautista, C. J., Aldemar Fonseca, Y., & Pardo-Beainy, C. (2020). Plum selection system using computer vision. 2020 IEEE ANDESCON, 1–6. https://doi.org/10.1109/ANDESCON50619.2020.9272177Behera, S. K., Rath, A. K., & Sethy, P. K. (2020). Maturity status classification of papaya fruits based on machine learning and transfer learning approach. Information Processing in Agriculture. https://doi.org/https://doi.org/10.1016/j.inpa.2020.05.003Bishop, C. M. (2006). Pattern Recognition and Machine Learning (1st ed. 20). Retrieved from http://gen.lib.rus.ec/book/index.php?md5=6b552b24cae380bb656f7aaef7f81b46Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851Chollet, F. (2017). Deep Learning with Python (1st ed.). USA: Manning Publications Co.CUDA GPUs | NVIDIA Developer. (n.d.). Retrieved March 9, 2021, from https://developer.nvidia.com/cuda-gpusDávila-Rodríguez, I., Nuño-Maganda, M., Hernández-Mier, Y., & Polanco-Martagón, S. (2019). Decision-Tree Based Pixel Classification for Real-time Citrus Segmentation on FPGA. 2019 International Conference on ReConFigurable Computing and FPGAs (ReConFig), 1–8. https://doi.org/10.1109/ReConFig48160.2019.8994792Forsyth, D., & Ponce, J. (2012). Computer Vision: A Modern Approach. Retrieved from https://books.google.com.co/books?id=gM63QQAACAAJGarcia-Lamont, F., Cervantes, J., López, A., & Rodriguez, L. (2018). Segmentation of images by color features: A survey. Neurocomputing, 292, 1–27. https://doi.org/10.1016/j.neucom.2018.01.091Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.Gopal, A., Subhasree, R., Srinivasan, V. K., Varsha, N. K., & Poobal, S. (2012). Classification of color objects like fruits using probability density function (PDF). 2012 International Conference on Machine Vision and Image Processing (MVIP), 1–4. https://doi.org/10.1109/MVIP.2012.6428746Hitanshu, Kalia, P., Garg, A., & Kumar, A. (2019). Fruit quality evaluation using Machine Learning: A review. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 1, 952–956. https://doi.org/10.1109/ICICICT46008.2019.8993240Hou, L., Wu, Q., Sun, Q., Yang, H., & Li, P. (2016). Fruit recognition based on convolution neural network. 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 18–22. https://doi.org/10.1109/FSKD.2016.7603144Ketkar, N. (2017). Deep Learning with Python. In Deep Learning with Python. https://doi.org/10.1007/978-1-4842-2766-4Kumari, R. S. S., & Gomathy, V. (2018). Fruit Classification using Statistical Features in SVM Classifier. 2018 4th International Conference on Electrical Energy Systems (ICEES), 526–529. https://doi.org/10.1109/ICEES.2018.8442331Lee, D. J., Archibald, J. K., Chang, Y. C., & Greco, C. R. (2008). Robust color space conversion and color distribution analysis techniques for date maturity evaluation. Journal of Food Engineering, 88(3), 364–372. https://doi.org/10.1016/j.jfoodeng.2008.02.023Leekul, P., & Krairiksh, M. (2018). A Sensor for Fruit Classification Using Doppler Radar. 2018 IEEE Conference on Antenna Measurements Applications (CAMA), 1–2. https://doi.org/10.1109/CAMA.2018.8530566M. Shah Baki, S. R., Mohd Z., M. A., Yassin, I. M., Hasliza, A. H., & Zabidi, A. (2010). Non-destructive classification of watermelon ripeness using Mel-Frequency Cepstrum Coefficients and Multilayer Perceptrons. The 2010 International Joint Conference on Neural Networks (IJCNN), 1–6. https://doi.org/10.1109/IJCNN.2010.5596573Monir Rabby, M. K., Chowdhury, B., & Kim, J. H. (2018). A Modified Canny Edge Detection Algorithm for Fruit Detection Classification. 2018 10th International Conference on Electrical and Computer Engineering (ICECE), 237–240. https://doi.org/10.1109/ICECE.2018.8636811Nanaa, K., Rizon, M., Rahman, M. N. A., Ibrahim, Y., & Aziz, A. Z. A. (2014). Detecting Mango Fruits by Using Randomized Hough Transform and Backpropagation Neural Network. 2014 18th International Conference on Information Visualisation, 388–391. https://doi.org/10.1109/IV.2014.54Nvidia. (n.d.-a). Getting Started With Jetson Nano Developer Kit | NVIDIA Developer. Retrieved March 15, 2021, from https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#introNvidia. (n.d.-b). Historia de NVIDIA: innovaciones a lo largo de los años | NVIDIA. Retrieved March 1, 2021, from https://www.nvidia.com/es-es/about-nvidia/corporate-timeline/Open Source Computer Vision. (n.d.). OpenCV: Color conversions. Retrieved March 3, 2021, from https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.htmlOtsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076Pacheco, W. D. N., & López, F. R. J. (2019). Tomato classification according to organoleptic maturity (coloration) using machine learning algorithms K-NN, MLP, and K-Means Clustering. 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), 1–5. https://doi.org/10.1109/STSIVA.2019.8730232Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, E. (2011). Scikit-learn: Machine Learning in {P}ython. Journal of Machine Learning Research, 12, 2825–2830.Puentes, G., Soto, D., & Granados, D. (2019). La planificación de cultivos permanentes, una estrategia empresarial para el cultivo de ciruela en Boyacá Colombia. 687–695.Raj, S., & Vinod, D. S. (2016). Automatic defect identification and grading system for ‘Jonagold’ apples. 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), 1–5. https://doi.org/10.1109/CCIP.2016.7802851Riyadi, S., Ishak, A. J., Mustafa, M. M., & Hussain, A. (2008). Wavelet-based feature extraction technique for fruit shape classification. 2008 5th International Symposium on Mechatronics and Its Applications, 1–5. https://doi.org/10.1109/ISMA.2008.4648858Rother, C., Kolmogorov, V., & Blake, A. (2004). “GrabCut”: Interactive Foreground Extraction Using Iterated Graph Cuts. ACM SIGGRAPH 2004 Papers, 309–314. https://doi.org/10.1145/1186562.1015720Sârbu, C., Naşcu-Briciu, R. D., Kot-Wasik, A., Gorinstein, S., Wasik, A., & Namieśnik, J. (2012). Classification and fingerprinting of kiwi and pomelo fruits by multivariate analysis of chromatographic and spectroscopic data. Food Chemistry, 130(4), 994–1002. https://doi.org/https://doi.org/10.1016/j.foodchem.2011.07.120Sch, B., Williamson, R. C., & Bartlett, P. L. (2000). Schölkopf et al. - 2000 - New support vector algorithms.pdf. 1245, 1207–1245.Septiarini, A., Hamdani, H., Hatta, H. R., & Anwar, K. (2020). Automatic image segmentation of oil palm fruits by applying the contour-based approach. Scientia Horticulturae, 261(October), 391. https://doi.org/10.1016/j.scienta.2019.108939Sravan, V., Swaraj, K., Meenakshi, K., & Kora, P. (2021). A deep learning based crop disease classification using transfer learning. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.846Szeliski, R. (2011). Computer Vision. In D. Gries & F. B. Schneider (Eds.), Springer Tracts in Advanced Robotics (Vol. 73). https://doi.org/10.1007/978-3-642-20144-8_11Tan, W., Sunday, T., & Tan, Y. (2013). Enhanced “GrabCut” tool with blob analysis in segmentation of blooming flower images. 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 1–4. https://doi.org/10.1109/ECTICon.2013.6559597Tran, C. C., Nguyen, D. T., Dang Le, H., Truong, Q. B., & Dinh Truong, Q. (2017). Automatic dragon fruit counting using adaptive thresholds for image segmentation and shape analysis. 2017 4th NAFOSTED Conference on Information and Computer Science, 132–137. https://doi.org/10.1109/NAFOSTED.2017.8108052Wan, S., & Goudos, S. (2020). Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks, 168, 107036. https://doi.org/https://doi.org/10.1016/j.comnet.2019.107036Watcharasing, J., Thiralertphanich, T., Panthuwadeethorn, S., & Phimoltares, S. (2019). Classification of Fruit in a Box (FIB) Using Hybridization of Color and Texture Features. 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 303–308. https://doi.org/10.1109/JCSSE.2019.8864164Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Chen, G., … Schneider, D. (2020). Automated cattle counting using Mask R-CNN in quadcopter vision system. Computers and Electronics in Agriculture, 171, 105300. https://doi.org/https://doi.org/10.1016/j.compag.2020.105300Yamparala, R., Challa, R., Kantharao, V., & Krishna, P. S. R. (2020). Computerized Classification of Fruits using Convolution Neural Network. 2020 7th International Conference on Smart Structures and Systems (ICSSS), 1–4. https://doi.org/10.1109/ICSSS49621.2020.9202305Yang, F. (2019). An Extended Idea about Decision Trees. 2019 International Conference on Computational Science and Computational Intelligence (CSCI), 349–354. https://doi.org/10.1109/CSCI49370.2019.00068Yazgaç, B. G., & Kırcı, M. (2019). Fractional order calculus based fruit detection. 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 1–4. https://doi.org/10.1109/Agro-Geoinformatics.2019.8820545Zhao, Y., & Chang, J. (2010). Analysis of Image Edge Checking Algorithms for the Estimation of Pear Size. 2010 International Conference on Intelligent Computation Technology and Automation, 1, 663–666. https://doi.org/10.1109/ICICTA.2010.363Zhou, H., Zhuang, Z., Liu, Y., Liu, Y., & Zhang, X. (2020). Defect classification of green plums based on deep learning. Sensors (Switzerland), 20(23), 1–15. https://doi.org/10.3390/s20236993ORIGINAL2021BautistaCristan_FonsecaYesid.pdf2021BautistaCristan_FonsecaYesid.pdfTrabajo de Grado.application/pdf3563126https://repository.usta.edu.co/bitstream/11634/33770/1/2021BautistaCristan_FonsecaYesid.pdf68c3ebf860d86378d50436d15261057aMD51metadata only accessCarta Derechos de Autor.pdfCarta Derechos de Autor.pdfCarta Derechos de Autorapplication/pdf531705https://repository.usta.edu.co/bitstream/11634/33770/2/Carta%20Derechos%20de%20Autor.pdf237eea02ee86544f167c4422dcb2e51aMD52metadata only accessAutorización Facultad.pdfAutorización Facultad.pdfCarta autorización Facultadapplication/pdf88778https://repository.usta.edu.co/bitstream/11634/33770/5/Autorizaci%c3%b3n%20Facultad.pdf66da926e97e8aad52144d2a7be904d07MD55metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/33770/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/33770/4/license.txtaedeaf396fcd827b537c73d23464fc27MD54open accessTHUMBNAIL2021BautistaCristan_FonsecaYesid.pdf.jpg2021BautistaCristan_FonsecaYesid.pdf.jpgIM Thumbnailimage/jpeg5770https://repository.usta.edu.co/bitstream/11634/33770/6/2021BautistaCristan_FonsecaYesid.pdf.jpg517267e7a7c23206b35e14bc5cd6a573MD56open accessCarta Derechos de Autor.pdf.jpgCarta Derechos de Autor.pdf.jpgIM Thumbnailimage/jpeg7810https://repository.usta.edu.co/bitstream/11634/33770/7/Carta%20Derechos%20de%20Autor.pdf.jpg9a3230bfe1dec93b1a2d199980c93c78MD57open accessAutorización Facultad.pdf.jpgAutorización Facultad.pdf.jpgIM Thumbnailimage/jpeg4475https://repository.usta.edu.co/bitstream/11634/33770/8/Autorizaci%c3%b3n%20Facultad.pdf.jpgdfd5ac7a546a810b67721abee19edf63MD58open access11634/33770oai:repository.usta.edu.co:11634/337702022-10-31 03:03:37.594metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K