Comparación de la regresión GINI con la regresión de mínimos cuadrados ordinarios y otros modelos de regresión lineal robustos

In this paper compares Gini regression (using the non-parametric approach of weighted average of slope, instead of the parametric approach) with OLS and other robust regression methods, the type L (LAV, linear combinations of order statistics), the type M (M Huber, based on the concept of maximum li...

Full description

Autores:
Correa Morales, Juan Carlos
Florez, Gloria Patricia Carmona
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/39595
Acceso en línea:
https://revistas.usantotomas.edu.co/index.php/estadistica/article/view/1186
http://hdl.handle.net/11634/39595
Palabra clave:
Datos atípicos
eficiencia
míminos cuadrados ordinarios
modelos de regresión robustos
regresión Gini
robustez.
Rights
License
http://purl.org/coar/access_right/c_abf2
Description
Summary:In this paper compares Gini regression (using the non-parametric approach of weighted average of slope, instead of the parametric approach) with OLS and other robust regression methods, the type L (LAV, linear combinations of order statistics), the type M (M Huber, based on the concept of maximum likelihood) and the type MM (based on the minimization of an estimator M). The comparison of the methods is performed via simulation under different scenarios. The results show that the Gini regression has a higher degree of robustness compared with the OLS regression to estimate the regression coefficients in the presence of outliers, but their robustness is less than robust estimation methods LAV, M Huber and MM.