Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo

El Alzheimer es una enfermedad degenerativa la cual se presenta principalmente en personas de avanzada edad y se esta presentando cada vez mas en población de mediana edad. Esta enfermedad se presenta en todo el mundo, sin distinguir clima o estrato por lo que muchas personas que lo padecen sufren d...

Full description

Autores:
Guio Rodriguez, Carlos Fernando
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/35675
Acceso en línea:
http://hdl.handle.net/11634/35675
Palabra clave:
Deep Learning
Convolutional Network
LSTM Network
Yolo
Alzheimer
Peces Cebra
Trayectoria
Aprendizaje profundo
Redes Convolucionales
Redes LSTM
Yolo
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_26d63ee46942ffb75a4042f08f935e17
oai_identifier_str oai:repository.usta.edu.co:11634/35675
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo
title Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo
spellingShingle Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo
Deep Learning
Convolutional Network
LSTM Network
Yolo
Alzheimer
Peces Cebra
Trayectoria
Aprendizaje profundo
Redes Convolucionales
Redes LSTM
Yolo
title_short Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo
title_full Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo
title_fullStr Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo
title_full_unstemmed Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo
title_sort Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo
dc.creator.fl_str_mv Guio Rodriguez, Carlos Fernando
dc.contributor.advisor.none.fl_str_mv Calderón Chavez, Juan Manuel
dc.contributor.author.none.fl_str_mv Guio Rodriguez, Carlos Fernando
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-4471-3980
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=095RddUAAAAJ&hl=en
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000380938
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Deep Learning
Convolutional Network
LSTM Network
Yolo
topic Deep Learning
Convolutional Network
LSTM Network
Yolo
Alzheimer
Peces Cebra
Trayectoria
Aprendizaje profundo
Redes Convolucionales
Redes LSTM
Yolo
dc.subject.lemb.spa.fl_str_mv Alzheimer
Peces Cebra
Trayectoria
dc.subject.proposal.spa.fl_str_mv Aprendizaje profundo
Redes Convolucionales
Redes LSTM
Yolo
description El Alzheimer es una enfermedad degenerativa la cual se presenta principalmente en personas de avanzada edad y se esta presentando cada vez mas en población de mediana edad. Esta enfermedad se presenta en todo el mundo, sin distinguir clima o estrato por lo que muchas personas que lo padecen sufren de condiciones de vida lamentable o abandono. Actualmente no se cuenta con un tratamiento definitivo para curar esta enfermedad. En la investigación para la búsqueda de un tratamiento o una cura, los investigadores están usando a los peces cebra como modelo animal ya que cuentan con una gran similitud neurobiológica con los seres humanos al momento de padecer el Alzheimer. Por ello, se propone un sistema de reconocimiento visual basado en aprendizaje profundo para entregar la trayectoria recorrida por los peces cebra la cual ayudara a los investigadores en sus diferentes estudios.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-23T12:25:01Z
dc.date.available.none.fl_str_mv 2021-09-23T12:25:01Z
dc.date.issued.none.fl_str_mv 2021-09-22
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Guio Rodriguez. (2021). Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo [Tesis de pregrado], Universidad Santo Tomas sede Bogotá.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/35675
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Guio Rodriguez. (2021). Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo [Tesis de pregrado], Universidad Santo Tomas sede Bogotá.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/35675
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv G. Audira, B. P. Sampurna, S. Juniardi, S.-T. Liang, Y.-H. Lai, and C.-D. Hsiao, “A simple setup to perform 3d locomotion tracking in zebrafish by using a single camera,” Inventions, Jan 2018
S. Macrì, D. Neri, T. Ruberto, V. Mwaffo, S. Butail, and M. Porfiri, “Three-dimensional scoring of zebrafish behavior unveils biological phenomena hidden by two-dimensional analyses,” Scientific Reports, May 2017
A. L. Ribinstein, “Zebrafish: from disease modeling to drug discovery,” Drug Discovery & Development, pp. 218–223, Mar 2003, pMID:12669457
“Intro a las redes neuronales convolucionales.” [Online]. Available: https://bootcampai.medium.com/ redes-neuronales-convolucionales-5e0ce960caf8
“Redes neuronales convolucionales.” [Online]. Available: https://developer.ibm.com/es/technologies/artificial-intelligence/ articles/cc-convolutional-neural-network-vision-recognition/
“SKRWT: herramienta para la corrección trapezoidal.” [Online]. Available: https://www.androidsis.com/ skrwt-es-una-poderosa-herramienta-de-correccion-trapezoidal-para-tu-android/
“REDES NEURONALES.” [Online]. Available: https://sites.google. com/site/mayinteligenciartificial/unidad-4-redes-neuronales.
I. GOODFELLOW, Y. ANDBENGIO, and A. ANDCOURVILLE, “Deep learning,” MIT press, pp. 326–366, 2016. [Online]. Available: https://www.aprendemachinelearning.com/ como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/
A. M. Mañas, “Notas sobre pronóstico del flujo detráfico en la ciudad de madrid,” Escuela Técnica Superior de Ingeniería Informática, pp. 48–52, 2019. [Online]. Available: https://bookdown.org/amanas/ traficomadrid/tff-madrid.pdf
C. Olah, “Understanding lstm networks,” Colah, 2015. [Online]. Available: http://colah.github.io/posts/ 2015-08-Understanding-LSTMs/
“Yolo webpage.” [Online]. Available: https://pjreddie.com/
A. D. International, “Informe mundial sobre el alzheimer 2019.” [Online]. Available: https://www.alzint.org/u/ WorldAlzheimerReport2019-Spanish-Summary.pdf
M. C. Fishman, “Zebrafish–the canonical vertebrate,” Science, vol. 294, no. 5545, pp. 1290–1291, 2001.
M. de Jong and T. Maina, “Of mice and humans: Are they the same?—implications in cancer translational research,” Journal of Nuclear Medicine, vol. 51, no. 4, pp. 501–504, 2010.
E. M. Caramillo and D. J. Echevarria, “Alzheimer’s disease in the zebrafish: where can we take it?” Behavioural pharmacology, 2017.
H. Li, Y. Li, and F. Porikli, “Deeptrack: Learning discriminative feature representations online for robust visual tracking,” IEEE Transactions on Image Processing, vol. 25, no. 4, p. 1834–1848, Apr 2016. [Online]. Available: http://dx.doi.org/10.1109/TIP.2015.2510583
N. Wang and D.-Y. Yeung, “Learning a deep compact image representation for visual tracking,” in Advances in Neural Information Processing Systems, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds., vol. 26. Curran Associates, Inc., 2013. [Online]. Available: https://proceedings.neurips. cc/paper/2013/file/dc6a6489640ca02b0d42dabeb8e46bb7-Paper.pdf
A. Graves, “Generating sequences with recurrent neural networks,” 2014.
A. F. Reyes, E. C. Camacho, M. Armando, and J. M. Calderón, “Lstm based brain-machine interface tool for text generation through eyes blinking detection,” in 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2021, pp. 1–6.
Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. L. Y. Bengio, and A. Courville, “Towards end-to-end speech recognition with deep convolutional neural networks,” 2017.
F. Altché and A. de La Fortelle, “An lstm network for highway trajectory prediction,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 353–359.
A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm: Human trajectory prediction in crowded spaces,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2016/html/ Alahi_Social_LSTM_Human_CVPR_2016_paper.html
Z. XU and X. E. Cheng, “Zebrafish tracking using convolutional neural networks,” Scientific Reports, vol. 7, 2017.
P. R. Martineau and P. Mourrain, “Tracking zebrafish larvae in group – status and perspectives,” Methods, vol. 62, no. 3, pp. 292–303, 2013, zebrafish Methods.
C. Quintero, S. Rodríguez, K. Pérez, J. López, E. Rojas, and J. Calderón, “Learning soccer drills for the small size league of robocup,” in Robot Soccer World Cup. Springer, 2014, pp. 395–406.
S. Rodríguez, E. Rojas, K. Pérez, J. López, C. Quintero, and J. Calderón, “Fast path planning algorithm for the robocup small size league,” in Robot Soccer World Cup. Springer, 2014, pp. 407–418.
G. A. Cardona, W. Moreno, A. Weitzenfeld, and J. M. Calderon, “Reduction of impact force in falling robots using variable stiffness,” in SoutheastCon 2016. IEEE, 2016, pp. 1–6.
E. Elibol, J. Calderon, M. Llofriu, C. Quintero, W. Moreno, and A. Weitzenfeld, “Power usage reduction of humanoid standing process using q-learning,” in Robot Soccer World Cup. Springer, 2015, pp. 251–263.
E. Elibol, J. Calderon, M. Llofriu, W. Moreno, and A. Weitzenfeld, “Analyzing and reducing energy usage in a humanoid robot during standing up and sitting down tasks,” International Journal of Humanoid Robotics, vol. 13, no. 04, p. 1650014, 2016.
J. Calderon, G. A. Cardona, M. Llofriu, M. Shamsi, F. Williams, W. Moreno, and A. Weitzenfeld, “Impact force reduction using variable stiffness with an optimal approach for falling robots,” in Robot World Cup. Springer, 2016, pp. 404–415.
J. M. Calderon, E. R. Rojas, S. Rodriguez, H. R. Baez, and J. A. Lopez, “A robot soccer team as a strategy to develop educational iniciatives,” in Latin American and Caribbean Conference for Engineering and Technology, Panama City, Panama, 2012.
J.G.G.Marin,G.C.O.Díaz,A.F.T.Rodríguez,andÉ.C.C.Poveda, “Entorno pedagógico para la enseñanza en básica primaria mediante el uso de sistema robótico comercial,” Ingeniería, vol. 26, no. 1, 2021.
H. Báez, K. Perez, E. Rojas, S. Rodriguez, J. López, C. Quintero, and J. M. Calderón, “Application of an educational strategy based on a soccer robotic platform,” in 2013 16th International Conference on Advanced Robotics (ICAR). IEEE, 2013, pp. 1–6.
C. Higuera, F. Lozano, E. C. Camacho, and C. H. Higuera, “Multiagent reinforcement learning applied to traffic light signal control,” in International Conference on Practical Applications of Agents and Multi-Agent Systems. Springer, 2019, pp. 115–126.
G. A. Cardona and J. M. Calderon, “Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations,” Applied Sciences, vol. 9, no. 8, p. 1702, 2019.
G. A. Cardona, J. Ramirez-Rugeles, E. Mojica-Nava, and J. M. Calderon, “Visual victim detection and quadrotor-swarm coordination control in search and rescue environment.” International Journal of Electrical & Computer Engineering (2088-8708), vol. 11, no. 3, 2021.
J. León, G. A. Cardona, A. Botello, and J. M. Calderón, “Robot swarms theory applicable to seek and rescue operation,” in International Conference on Intelligent Systems Design and Applications. Springer, 2016, pp. 1061–1070.
W. O. Quesada, J. I. Rodriguez, J. C. Murillo, G. A. Cardona, D. Yanguas-Rojas, L. G. Jaimes, and J. M. Calderón, “Leader-follower formation for uav robot swarm based on fuzzy logic theory,” in International Conference on Artificial Intelligence and Soft Computing. Springer, 2018, pp. 740–751.
J. Calderon, A. Obando, and D. Jaimes, “Road detection algorithm for an autonomous ugv based on monocular vision,” in Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007). IEEE, 2007, pp. 253–259.
G. Cardona, C. Bravo, W. Quesada, D. Ruiz, M. Obeng, X. Wu, and J. Calderon, “Autonomous navigation for exploration of unknown environments and collision avoidance in mobile robots using reinforcement learning,” in 2019 SoutheastCon. IEEE, 2019, pp. 1–7.
S. Amaya and A. Mateus, “Tasks allocation for rescue robotics: a replicator dynamics approach,” in International Conference on Artificial Intelligence and Soft Computing. Springer, 2019, pp. 609– 621.
Y. Suarez, C. Higuera, and E. C. Camacho, “Inverse reinforcement learning application for discrete and continuous environments,” in International Conference on Advanced Engineering Theory and Applications. Springer, 2019, pp. 345–355.
M. Newman, E. Ebrahimie, and M. Lardelli, “Using the zebrafish model for alzheimer’s disease research,” Frontiers in Genetics, vol. 5, p. 189, 2014.
L. Bleiler and T. William, “2012 alzheimer’s disease facts and figures,” Alzheimer’s & Dementia, vol. 8, no. 2, pp. 131–168, 2012.
“ALZHEIMER UN PROBLEMA DE SALUD PÚBLICA EN COLOMBIA.” [Online]. Available: https://www.icesi.edu.co/unicesi/todas-las-noticias/ 2241-alzheimer-un-problema-de-salud-publica-en-colombia.
A. Daisy and W. Marc, “The Global Economic Impact of Dementia,” Alzheimer’s Association, Jun 2010. [Online]. Available: https://www.alzint.org/resource/world-alzheimer-report-2010/
J. McCarthy, C. Twomey, and P. Wujek, “Presenilin-dependent regulated intramembrane proteolysis and γ-secretase activity,” Cellular and Molecular Life Sciences, vol. 66, pp. 1534–1555, 2009.
K. Blennow, M. J. de Leon, and H. Zettenberg, “Alzheimer’s disease,” The Lancet, vol. 368, pp. 387–403, Jul 2006.
U. Leimer, K. Lun, H. Romig, J. Walter, J. Grünberg, M. Brand, and C. Haass, “Zebrafish (danio rerio) presenilin promotes aberrant amyloid β-peptide production and requires a critical aspartate residue for its function in amyloidogenesis,” Biochemistry, vol. 38, no. 41, pp. 13 602– 13 609, 1999, pMID: 10521267.
C. Groth, S. Nornes, R. McCarty, R. Tamme, and M. Lardelli, “Identification of a second presenilin gene in zebrafish with similarity to the human alzheimer’s disease gene presenilin2,” Dev. Genes Evol, pp. 486–490, Nov 2002.
W. Y. Hwang, Y. Fu, D. Reyon, M. L. Maeder, S. Q. Tsai, J. D. Sander, R. T. Peterson, J.-R. J. Yeh, and J. K. Joung, “Efficient genome editing in zebrafish using a crispr-cas system,” nature biotechnology, vol. 31, pp. 227—-229, Jan 2013.
“Frame rate.” [Online]. Available: https://developer.mozilla.org/es/ docs/Glossary/FPS
“Pixel.” [Online]. Available: http://aulainformatica.eu/datos/ dise~no_grafico/gimp/capitulo2/Teoria2.pdf
Medlineplus, “Conducción nerviosa.” [Online]. Available: https: //medlineplus.gov/spanish/ency/anatomyvideos/000089.htm
Conceptos Tecnológica [Online]. Available: https://www.frro.utn.edu.ar/repositorio/catedras/quimica/ 5_anio/orientadora1/monograias/matich-redesneuronales.pdf
E. C. A. Tepán, “Estudio de los principales tipos de redes neuronales y las herramientas para su aplicaciÓn,” UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA, 2013. [Online]. Available: https://dspace.ups.edu.ec/bitstream/123456789/4098/1/ UPS-CT002584.pdf
E. G. Sánchez, “Introducción a las redes neuronales de convolución. aplicación a la visión por ordenador,” Universidad de Zaragoza, 2019. [Online]. Available: https://core.ac.uk/download/pdf/290002463.pdf
“Convolutional visualization.” [Online]. Available: https://www.cs. ryerson.ca/~aharley/vis/conv/flat.html
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/35675/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/35675/5/license.txt
https://repository.usta.edu.co/bitstream/11634/35675/1/2021carlosguio.pdf
https://repository.usta.edu.co/bitstream/11634/35675/2/Carta%20Aprobacio%cc%81n%20Facultad.pdf
https://repository.usta.edu.co/bitstream/11634/35675/3/Carta_autorizacion_autoarchivo_autor_2021.pdf
https://repository.usta.edu.co/bitstream/11634/35675/6/2021carlosguio.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/35675/7/Carta%20Aprobacio%cc%81n%20Facultad.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/35675/8/Carta_autorizacion_autoarchivo_autor_2021.pdf.jpg
bitstream.checksum.fl_str_mv 217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
d8a63c4df9b4079cc47d7ee54226da38
248569469c4bfa998470e557e278c665
f79ab9da7ffe619f738971bcdd1e0efe
5d073160da8168afb7632211eb22b7a5
04f5c0f5099b1b9f13366f1178bad88c
982ea12503924c1376178e4f20aa453e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026230503047168
spelling Calderón Chavez, Juan ManuelGuio Rodriguez, Carlos Fernandohttps://orcid.org/0000-0002-4471-3980https://scholar.google.com/citations?user=095RddUAAAAJ&hl=enhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000380938Universidad Santo Tomás2021-09-23T12:25:01Z2021-09-23T12:25:01Z2021-09-22Guio Rodriguez. (2021). Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundo [Tesis de pregrado], Universidad Santo Tomas sede Bogotá.http://hdl.handle.net/11634/35675reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl Alzheimer es una enfermedad degenerativa la cual se presenta principalmente en personas de avanzada edad y se esta presentando cada vez mas en población de mediana edad. Esta enfermedad se presenta en todo el mundo, sin distinguir clima o estrato por lo que muchas personas que lo padecen sufren de condiciones de vida lamentable o abandono. Actualmente no se cuenta con un tratamiento definitivo para curar esta enfermedad. En la investigación para la búsqueda de un tratamiento o una cura, los investigadores están usando a los peces cebra como modelo animal ya que cuentan con una gran similitud neurobiológica con los seres humanos al momento de padecer el Alzheimer. Por ello, se propone un sistema de reconocimiento visual basado en aprendizaje profundo para entregar la trayectoria recorrida por los peces cebra la cual ayudara a los investigadores en sus diferentes estudios.Alzheimer is a degenerative disease which occurs mainly in elderly people and is increasingly occurring in the middle-aged population. This disease occurs all over the world, without distinguishing climate or stratum, so many people who suffer it suffer from unfortunate living conditions or abandonment. Currently there is no definitive treatment to cure this disease or a cure. Researchers are using zebrafish as an animal model as they have a strong neurobiological similarity to humans when suffering Alzheimer. Therefore, a visual recognition system based on deep learning is proposed to deliver the trajectory traveled by zebrafish, which will help researchers in their different studies.Ingeniero Electronicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Desarrollo de un sistema de seguimiento de la navegación de peces cebra en 3 dimensiones usando aprendizaje profundoDeep LearningConvolutional NetworkLSTM NetworkYoloAlzheimerPeces CebraTrayectoriaAprendizaje profundoRedes ConvolucionalesRedes LSTMYoloTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáG. Audira, B. P. Sampurna, S. Juniardi, S.-T. Liang, Y.-H. Lai, and C.-D. Hsiao, “A simple setup to perform 3d locomotion tracking in zebrafish by using a single camera,” Inventions, Jan 2018S. Macrì, D. Neri, T. Ruberto, V. Mwaffo, S. Butail, and M. Porfiri, “Three-dimensional scoring of zebrafish behavior unveils biological phenomena hidden by two-dimensional analyses,” Scientific Reports, May 2017A. L. Ribinstein, “Zebrafish: from disease modeling to drug discovery,” Drug Discovery & Development, pp. 218–223, Mar 2003, pMID:12669457“Intro a las redes neuronales convolucionales.” [Online]. Available: https://bootcampai.medium.com/ redes-neuronales-convolucionales-5e0ce960caf8“Redes neuronales convolucionales.” [Online]. Available: https://developer.ibm.com/es/technologies/artificial-intelligence/ articles/cc-convolutional-neural-network-vision-recognition/“SKRWT: herramienta para la corrección trapezoidal.” [Online]. Available: https://www.androidsis.com/ skrwt-es-una-poderosa-herramienta-de-correccion-trapezoidal-para-tu-android/“REDES NEURONALES.” [Online]. Available: https://sites.google. com/site/mayinteligenciartificial/unidad-4-redes-neuronales.I. GOODFELLOW, Y. ANDBENGIO, and A. ANDCOURVILLE, “Deep learning,” MIT press, pp. 326–366, 2016. [Online]. Available: https://www.aprendemachinelearning.com/ como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/A. M. Mañas, “Notas sobre pronóstico del flujo detráfico en la ciudad de madrid,” Escuela Técnica Superior de Ingeniería Informática, pp. 48–52, 2019. [Online]. Available: https://bookdown.org/amanas/ traficomadrid/tff-madrid.pdfC. Olah, “Understanding lstm networks,” Colah, 2015. [Online]. Available: http://colah.github.io/posts/ 2015-08-Understanding-LSTMs/“Yolo webpage.” [Online]. Available: https://pjreddie.com/A. D. International, “Informe mundial sobre el alzheimer 2019.” [Online]. Available: https://www.alzint.org/u/ WorldAlzheimerReport2019-Spanish-Summary.pdfM. C. Fishman, “Zebrafish–the canonical vertebrate,” Science, vol. 294, no. 5545, pp. 1290–1291, 2001.M. de Jong and T. Maina, “Of mice and humans: Are they the same?—implications in cancer translational research,” Journal of Nuclear Medicine, vol. 51, no. 4, pp. 501–504, 2010.E. M. Caramillo and D. J. Echevarria, “Alzheimer’s disease in the zebrafish: where can we take it?” Behavioural pharmacology, 2017.H. Li, Y. Li, and F. Porikli, “Deeptrack: Learning discriminative feature representations online for robust visual tracking,” IEEE Transactions on Image Processing, vol. 25, no. 4, p. 1834–1848, Apr 2016. [Online]. Available: http://dx.doi.org/10.1109/TIP.2015.2510583N. Wang and D.-Y. Yeung, “Learning a deep compact image representation for visual tracking,” in Advances in Neural Information Processing Systems, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds., vol. 26. Curran Associates, Inc., 2013. [Online]. Available: https://proceedings.neurips. cc/paper/2013/file/dc6a6489640ca02b0d42dabeb8e46bb7-Paper.pdfA. Graves, “Generating sequences with recurrent neural networks,” 2014.A. F. Reyes, E. C. Camacho, M. Armando, and J. M. Calderón, “Lstm based brain-machine interface tool for text generation through eyes blinking detection,” in 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2021, pp. 1–6.Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. L. Y. Bengio, and A. Courville, “Towards end-to-end speech recognition with deep convolutional neural networks,” 2017.F. Altché and A. de La Fortelle, “An lstm network for highway trajectory prediction,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 353–359.A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm: Human trajectory prediction in crowded spaces,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2016/html/ Alahi_Social_LSTM_Human_CVPR_2016_paper.htmlZ. XU and X. E. Cheng, “Zebrafish tracking using convolutional neural networks,” Scientific Reports, vol. 7, 2017.P. R. Martineau and P. Mourrain, “Tracking zebrafish larvae in group – status and perspectives,” Methods, vol. 62, no. 3, pp. 292–303, 2013, zebrafish Methods.C. Quintero, S. Rodríguez, K. Pérez, J. López, E. Rojas, and J. Calderón, “Learning soccer drills for the small size league of robocup,” in Robot Soccer World Cup. Springer, 2014, pp. 395–406.S. Rodríguez, E. Rojas, K. Pérez, J. López, C. Quintero, and J. Calderón, “Fast path planning algorithm for the robocup small size league,” in Robot Soccer World Cup. Springer, 2014, pp. 407–418.G. A. Cardona, W. Moreno, A. Weitzenfeld, and J. M. Calderon, “Reduction of impact force in falling robots using variable stiffness,” in SoutheastCon 2016. IEEE, 2016, pp. 1–6.E. Elibol, J. Calderon, M. Llofriu, C. Quintero, W. Moreno, and A. Weitzenfeld, “Power usage reduction of humanoid standing process using q-learning,” in Robot Soccer World Cup. Springer, 2015, pp. 251–263.E. Elibol, J. Calderon, M. Llofriu, W. Moreno, and A. Weitzenfeld, “Analyzing and reducing energy usage in a humanoid robot during standing up and sitting down tasks,” International Journal of Humanoid Robotics, vol. 13, no. 04, p. 1650014, 2016.J. Calderon, G. A. Cardona, M. Llofriu, M. Shamsi, F. Williams, W. Moreno, and A. Weitzenfeld, “Impact force reduction using variable stiffness with an optimal approach for falling robots,” in Robot World Cup. Springer, 2016, pp. 404–415.J. M. Calderon, E. R. Rojas, S. Rodriguez, H. R. Baez, and J. A. Lopez, “A robot soccer team as a strategy to develop educational iniciatives,” in Latin American and Caribbean Conference for Engineering and Technology, Panama City, Panama, 2012.J.G.G.Marin,G.C.O.Díaz,A.F.T.Rodríguez,andÉ.C.C.Poveda, “Entorno pedagógico para la enseñanza en básica primaria mediante el uso de sistema robótico comercial,” Ingeniería, vol. 26, no. 1, 2021.H. Báez, K. Perez, E. Rojas, S. Rodriguez, J. López, C. Quintero, and J. M. Calderón, “Application of an educational strategy based on a soccer robotic platform,” in 2013 16th International Conference on Advanced Robotics (ICAR). IEEE, 2013, pp. 1–6.C. Higuera, F. Lozano, E. C. Camacho, and C. H. Higuera, “Multiagent reinforcement learning applied to traffic light signal control,” in International Conference on Practical Applications of Agents and Multi-Agent Systems. Springer, 2019, pp. 115–126.G. A. Cardona and J. M. Calderon, “Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations,” Applied Sciences, vol. 9, no. 8, p. 1702, 2019.G. A. Cardona, J. Ramirez-Rugeles, E. Mojica-Nava, and J. M. Calderon, “Visual victim detection and quadrotor-swarm coordination control in search and rescue environment.” International Journal of Electrical & Computer Engineering (2088-8708), vol. 11, no. 3, 2021.J. León, G. A. Cardona, A. Botello, and J. M. Calderón, “Robot swarms theory applicable to seek and rescue operation,” in International Conference on Intelligent Systems Design and Applications. Springer, 2016, pp. 1061–1070.W. O. Quesada, J. I. Rodriguez, J. C. Murillo, G. A. Cardona, D. Yanguas-Rojas, L. G. Jaimes, and J. M. Calderón, “Leader-follower formation for uav robot swarm based on fuzzy logic theory,” in International Conference on Artificial Intelligence and Soft Computing. Springer, 2018, pp. 740–751.J. Calderon, A. Obando, and D. Jaimes, “Road detection algorithm for an autonomous ugv based on monocular vision,” in Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007). IEEE, 2007, pp. 253–259.G. Cardona, C. Bravo, W. Quesada, D. Ruiz, M. Obeng, X. Wu, and J. Calderon, “Autonomous navigation for exploration of unknown environments and collision avoidance in mobile robots using reinforcement learning,” in 2019 SoutheastCon. IEEE, 2019, pp. 1–7.S. Amaya and A. Mateus, “Tasks allocation for rescue robotics: a replicator dynamics approach,” in International Conference on Artificial Intelligence and Soft Computing. Springer, 2019, pp. 609– 621.Y. Suarez, C. Higuera, and E. C. Camacho, “Inverse reinforcement learning application for discrete and continuous environments,” in International Conference on Advanced Engineering Theory and Applications. Springer, 2019, pp. 345–355.M. Newman, E. Ebrahimie, and M. Lardelli, “Using the zebrafish model for alzheimer’s disease research,” Frontiers in Genetics, vol. 5, p. 189, 2014.L. Bleiler and T. William, “2012 alzheimer’s disease facts and figures,” Alzheimer’s & Dementia, vol. 8, no. 2, pp. 131–168, 2012.“ALZHEIMER UN PROBLEMA DE SALUD PÚBLICA EN COLOMBIA.” [Online]. Available: https://www.icesi.edu.co/unicesi/todas-las-noticias/ 2241-alzheimer-un-problema-de-salud-publica-en-colombia.A. Daisy and W. Marc, “The Global Economic Impact of Dementia,” Alzheimer’s Association, Jun 2010. [Online]. Available: https://www.alzint.org/resource/world-alzheimer-report-2010/J. McCarthy, C. Twomey, and P. Wujek, “Presenilin-dependent regulated intramembrane proteolysis and γ-secretase activity,” Cellular and Molecular Life Sciences, vol. 66, pp. 1534–1555, 2009.K. Blennow, M. J. de Leon, and H. Zettenberg, “Alzheimer’s disease,” The Lancet, vol. 368, pp. 387–403, Jul 2006.U. Leimer, K. Lun, H. Romig, J. Walter, J. Grünberg, M. Brand, and C. Haass, “Zebrafish (danio rerio) presenilin promotes aberrant amyloid β-peptide production and requires a critical aspartate residue for its function in amyloidogenesis,” Biochemistry, vol. 38, no. 41, pp. 13 602– 13 609, 1999, pMID: 10521267.C. Groth, S. Nornes, R. McCarty, R. Tamme, and M. Lardelli, “Identification of a second presenilin gene in zebrafish with similarity to the human alzheimer’s disease gene presenilin2,” Dev. Genes Evol, pp. 486–490, Nov 2002.W. Y. Hwang, Y. Fu, D. Reyon, M. L. Maeder, S. Q. Tsai, J. D. Sander, R. T. Peterson, J.-R. J. Yeh, and J. K. Joung, “Efficient genome editing in zebrafish using a crispr-cas system,” nature biotechnology, vol. 31, pp. 227—-229, Jan 2013.“Frame rate.” [Online]. Available: https://developer.mozilla.org/es/ docs/Glossary/FPS“Pixel.” [Online]. Available: http://aulainformatica.eu/datos/ dise~no_grafico/gimp/capitulo2/Teoria2.pdfMedlineplus, “Conducción nerviosa.” [Online]. Available: https: //medlineplus.gov/spanish/ency/anatomyvideos/000089.htmConceptos Tecnológica [Online]. Available: https://www.frro.utn.edu.ar/repositorio/catedras/quimica/ 5_anio/orientadora1/monograias/matich-redesneuronales.pdfE. C. A. Tepán, “Estudio de los principales tipos de redes neuronales y las herramientas para su aplicaciÓn,” UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA, 2013. [Online]. Available: https://dspace.ups.edu.ec/bitstream/123456789/4098/1/ UPS-CT002584.pdfE. G. Sánchez, “Introducción a las redes neuronales de convolución. aplicación a la visión por ordenador,” Universidad de Zaragoza, 2019. [Online]. Available: https://core.ac.uk/download/pdf/290002463.pdf“Convolutional visualization.” [Online]. Available: https://www.cs. ryerson.ca/~aharley/vis/conv/flat.htmlCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/35675/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/35675/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessORIGINAL2021carlosguio.pdf2021carlosguio.pdfTrabajo de Gradoapplication/pdf4725824https://repository.usta.edu.co/bitstream/11634/35675/1/2021carlosguio.pdfd8a63c4df9b4079cc47d7ee54226da38MD51open accessCarta Aprobación Facultad.pdfCarta Aprobación Facultad.pdfCarta aprobación facultadapplication/pdf132166https://repository.usta.edu.co/bitstream/11634/35675/2/Carta%20Aprobacio%cc%81n%20Facultad.pdf248569469c4bfa998470e557e278c665MD52metadata only accessCarta_autorizacion_autoarchivo_autor_2021.pdfCarta_autorizacion_autoarchivo_autor_2021.pdfCarta Derechos de Autorapplication/pdf903851https://repository.usta.edu.co/bitstream/11634/35675/3/Carta_autorizacion_autoarchivo_autor_2021.pdff79ab9da7ffe619f738971bcdd1e0efeMD53metadata only accessTHUMBNAIL2021carlosguio.pdf.jpg2021carlosguio.pdf.jpgIM Thumbnailimage/jpeg5112https://repository.usta.edu.co/bitstream/11634/35675/6/2021carlosguio.pdf.jpg5d073160da8168afb7632211eb22b7a5MD56open accessCarta Aprobación Facultad.pdf.jpgCarta Aprobación Facultad.pdf.jpgIM Thumbnailimage/jpeg6254https://repository.usta.edu.co/bitstream/11634/35675/7/Carta%20Aprobacio%cc%81n%20Facultad.pdf.jpg04f5c0f5099b1b9f13366f1178bad88cMD57open accessCarta_autorizacion_autoarchivo_autor_2021.pdf.jpgCarta_autorizacion_autoarchivo_autor_2021.pdf.jpgIM Thumbnailimage/jpeg6672https://repository.usta.edu.co/bitstream/11634/35675/8/Carta_autorizacion_autoarchivo_autor_2021.pdf.jpg982ea12503924c1376178e4f20aa453eMD58open access11634/35675oai:repository.usta.edu.co:11634/356752022-10-22 03:04:59.556open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K