Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers

Debido a la alta demanda de servicios web y almacenamiento en la nube, es necesario el diseño de ‘Data Centers’ con mayor cantidad de Racks, los cuales alojan servidores y discos duros; en base al crecimiento exponencial de ‘Data Centers’ se estimó que para el año 2030 representaran el consumo del 5...

Full description

Autores:
Roncancio Carreño, Brayan Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/50837
Acceso en línea:
http://hdl.handle.net/11634/50837
Palabra clave:
Data Centers
PPC
DCx
LMI Control
Frequency Control
PSO Control
Optimization
Efficiency
Electrónica de Potencia
Ingeniería electrónica
Circuitos electrónicos
Data Centers
PPC
DCx
Control LMI
Control frecuencia
Control PSO
Optimización
Eficiencia
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_1f0ae994f759d75750de820f40b5a49d
oai_identifier_str oai:repository.usta.edu.co:11634/50837
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers
title Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers
spellingShingle Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers
Data Centers
PPC
DCx
LMI Control
Frequency Control
PSO Control
Optimization
Efficiency
Electrónica de Potencia
Ingeniería electrónica
Circuitos electrónicos
Data Centers
PPC
DCx
Control LMI
Control frecuencia
Control PSO
Optimización
Eficiencia
title_short Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers
title_full Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers
title_fullStr Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers
title_full_unstemmed Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers
title_sort Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers
dc.creator.fl_str_mv Roncancio Carreño, Brayan Alejandro
dc.contributor.advisor.none.fl_str_mv Torres Pinzón, Carlos Andrés
Flores Bahamonde, Freddy Arturo
dc.contributor.author.none.fl_str_mv Roncancio Carreño, Brayan Alejandro
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0001-9643-5057
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?hl=es&user=aCsJYTEAAAAJ
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Data Centers
PPC
DCx
LMI Control
Frequency Control
PSO Control
Optimization
Efficiency
topic Data Centers
PPC
DCx
LMI Control
Frequency Control
PSO Control
Optimization
Efficiency
Electrónica de Potencia
Ingeniería electrónica
Circuitos electrónicos
Data Centers
PPC
DCx
Control LMI
Control frecuencia
Control PSO
Optimización
Eficiencia
dc.subject.lemb.spa.fl_str_mv Electrónica de Potencia
Ingeniería electrónica
Circuitos electrónicos
dc.subject.proposal.spa.fl_str_mv Data Centers
PPC
DCx
Control LMI
Control frecuencia
Control PSO
Optimización
Eficiencia
description Debido a la alta demanda de servicios web y almacenamiento en la nube, es necesario el diseño de ‘Data Centers’ con mayor cantidad de Racks, los cuales alojan servidores y discos duros; en base al crecimiento exponencial de ‘Data Centers’ se estimó que para el año 2030 representaran el consumo del 51% de la energía generada a nivel global. Por ello es necesario elaborar fuentes de suministro de energía con alta eficiencia. Se propone en este trabajo de grado, la implementación de dos tecnologías de convertidores que tienen como característica principal la alta eficiencia, se trata del convertidor DCx y el convertidor PPC. Estos serán utilizados para reducir 12 V al voltaje de la carga, que en este caso está representada por discos duros y servidores, cuyos voltajes de funcionamiento son 1.8 V. El convertidor DCx está compuesto de un generador de onda cuadrada, una red resonante, un transformador y su respectiva rectificación, por ende, no es necesario la elaboración de un sistema de control para este convertidor. Caso contrario se presenta con el convertidor PPC, el cual modifica el voltaje a la salida dependiendo el ancho de pulso de los dispositivos conmutadores; por ello, es necesario realizar control sobre dicha variable para poder obtener la salida requerida. Para el sistema de control, se elaboran 3 técnicas, una básica (control en frecuencia), una avanzada (control LMI) y otra por medio de algoritmos de optimización (PSO). Se realiza el diseño y se procede a simular cada uno de los controladores con el fin de identificar aquel con mejores prestaciones. La estructura del convertidor general está definida por el convertidor PPC y en serie se encuentra conectado el convertidor DCx; en donde el convertidor PPC realiza la reducción de tensión de 12 V a 7.2V y el DCx acota la tensión a 1.8V. Se implementa el convertidor general con cada uno de los controladores mencionados, se realizan simulaciones con perturbaciones y valores de componentes semejantes a la realidad para identificar el correcto funcionamiento del sistema y obtener el controlador que ofrece mejores resultados. Finalmente, se presenta una versión inicial de una PCB para llevar a cabo su implementación física. No es una versión definitiva, ya que ciertos componentes es necesario realizar su fabricación ya que no son comerciales, por ende, las dimensiones plasmadas puede que sean o no acertadas.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-26T14:49:33Z
dc.date.available.none.fl_str_mv 2023-06-26T14:49:33Z
dc.date.issued.none.fl_str_mv 2023-06-15
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Roncancio Carreño, B. A. (2023). Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/50837
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Roncancio Carreño, B. A. (2023). Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/50837
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Xin Li and Shuai Jiang. Google 48V Power Architecture. Apec, 2017 [Online]. Available:http://apec.dev.itswebs.com/Portals/0/APEC 2017 Files/Plenary/APEC Plenary Google.pdf?ver=2017-04-24-091315-930&timestamp=1495563027516.
Mohamed H. Ahmed, Ahmed Nabih, Fred C. Lee, and Qiang Li. High-efficiency, high-density isolated/Regulated 48V bus converter with a novel planar magnetic structure. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:468–475, 2019
Rojas Villarroel and Julián Ariel. CARGA RÁPIDA DE VEHÍCULOS ELÉCTRICO. 2019.
David González Bravo. Cargador De Baterías Mediante Convertidor Cc-Cc Resonante Llc. 2019.
CoolMOS  benefits in both hard and soft switching SMPS topologies Hard and soft switching topologies , applications and suitable CoolMOS families.
Arnau Ibarz Claret. Tesis de Magister Optimizadores de potencia para sistemas fotovoltaicos basados en convertidores de potencia parcial. 2019.
Richard Brown, Eric Masanet, Bruce Nordman, Arman Shehabi, John Stanley, Dale Sartor, and Peter Chan. Report to Congress on Server and Data Center Energy Efficiency : Public Law 109-431 Environmental Energy Technologies Division Alliance to Save Energy ICF Incorporated. (August), 2008.
Toru Tanaka, Naoki Hanaoka, Akiko Takahashi, Koki Asakimori, Takeshi Iwato, Atsushi Sakurai, and Nobuhiko Yamashita. Concept of new power supply system topology using 380 v and 48 v DC bus for future datacenters and telecommunication buildings. INTELEC, International Telecommunications Energy Conference (Procee-dings), 2016-Septe:3-4, 2016.
Shuai Jiang, Stefano Saggini, Chenhao Nan, Xin Li, Chee Chung, and Mobashar Yazdani. Switched Tank Converters. IEEE Transactions on Power Electronics, 34(6):5048–5062, 2019.
Luhfw W R Rzq, Uxqhool D Dulq, Jdlq Prgholqj, D Q G Hiilflhqf, and Zloo Eh. Direct 48V to 1V Step-Down DC-DC Converter
Stefano Saggini, Shuai Jiang, Mario Ursino, and Chenhao Nan. A 99 % efficient dual-phase resonant switched-Capacitor-buck converter for 48 v data center bus con-versions. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:482-487, 2019
Zichao Ye, Yutian Lei, and Robert C.N. Pilawa-Podgurski. The Cascaded Resonant Converter: A Hybrid Switched-Capacitor Topology with High Power Density and Efficiency. IEEE Transactions on Power Electronics, 35(5):4946-4958, 2020.
Arnab Acharya, V. Inder Kumar, and Santanu Kapat. Dynamic bus voltage configu-ration in a two-stage multi-phase buck converter to mitigate transients. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:496-501, 2019
Zichao Ye, Yutia Lei, and Robert C.N. Pilawa-Podgurski. A resonant switched capa-citor based 4-to-1 bus converter achieving 2180 W/in3 power density and 98.9 % peak efficiency. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2018-March:121-126, 2018
Gan Fets and Michael A De Rooij. High-Power Density, for servers Using 900-w llc converters gan FEts. pages 40-47, 2019
Arman Shehabi, Sarah Josephine Smith, Dale A Sartor, Richard E Brown, Magnus Herrlin, Jonathan G Koomey, Eric R Masanet, Nathaniel Horner, Inˆes Lima Azevedo, and William Lintner. United States Data Center Energy Usage Report - Energy Technologies Area. (June):65, 2016
A Case Energy-efficient Datacenters. Energy-Efficient Datacenters. 31(10):1465-1484, 2012
Anders Andrae and Tomas Edler. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges, 6(1):117–157, 2015
Eric R. Masanet, Richard E. Brown, Arman Shehabi, Jonathan G. Koomey, and Bruce Nordman. Estimating the energy use and efficiency potential of U.S. data centers. Proceedings of the IEEE, 99(8):1440-1453, 2011
Reto Christen, Jasmin Smajic, Arvind Sridhar, and Thomas Brunschwiler. Design and optimization of a wide dynamic range programmable power supply for data center applications. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:2210–2217, 2019.
Arthur G. Birchenough. A High Efficiency DC Bus Regulator / RPC for Spacecraft Applications. pages 606–613, 2004
Chiayi City. SOLAR POWER CONVERTER WITH MULTIPLE OUTPUTS AND CONVERSION CIRCUIT THEREOF. 1(19), 2011
Carlos Olalla, Daniel Clement, Miguel Rodriguez, and Dragan Maksimovic. Ar-chitectures and control of submodule integrated dc-dc converters for photovoltaic applications. IEEE Transactions on Power Electronics, 28(6):2980-2997, 2013
Jonatan Rafael Rakoski Zientarski, Jose Renes Pinheiro, Mario Lucio Da Silva Mar-tins, and Helio Leaes Hey. Understanding the partial power processing concept: A case-study of buck-boost dc/dc series regulator. 2015 IEEE 13th Brazilian Po-wer Electronics Conference and 1st Southern Power Electronics Conference, CO-BEP/SPEC 2016, (1), 2015
D E Patentes Pct, Mandatario Silva, and C I A Patentes Y Marcas. PARTIAL POWER CONVERTER (PPC) IN AN ELECTRICAL ENERGY SYSTEM. (12), 2018
Fei Xue, Ruiyang Yu, and Alex Huang. Fractional converter for high efficiency high power battery energy storage system. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-January:5144-5150, 2017.
Jon Anzola, Iosu Aizpuru, Asier Arruti Romero, Argine Alacano Loiti, Ramon Lopez-Erauskin, Jesus Sergio Artal-Sevil, and Carlos Bernal. Review of Architectures Based on Partial Power Processing for DC-DC Applications. IEEE Access, 8:103405-103418, 2020.
Vishnu Mahadeva Iyer, Srinivas Gulur, Subhashish Bhattacharya, and Ramanujam Ramabhadran. A Partial Power Converter Interface for Battery Energy Storage Integration with a DC Microgrid. 2019 IEEE Energy Conversion Congress and Ex-position, ECCE 2019, pages 5783–5790, 2019
Liqun Chen, Hongfei Wu, Peng Xu, Haibing Hu, and Chengan Wan. A high step-down non-isolated bus converter with partial power conversion based on synchronous LLC resonant converter. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2015-May(May):1950–1955, 2015
Junjian Zhao, Kenton Yeates, and Yehui Han. Analysis of high efficiency DC/DC converter processing partial input/output power. 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics, COMPEL 2013, pages 0–7, 2013
Jaime W. Zapata, Samir Kouro, Gonzalo Carrasco, Hugues Renaudineau, and Thierry A. Meynard. Analysis of Partial Power DC-DC Converters for Two-Stage Photovoltaic Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(1):591-603, 2019
Nicolas Muller, Samir Kouro, Pericle Zanchetta, and Patrick Wheeler. Bidirectional partial power converter interface for energy storage systems to provide peak shaving in grid-tied PV plants. Proceedings of the IEEE International Conference on Industrial Technology, 2018-Febru:892-897, 2018
Alexander Morrison, Jaime W. Zapata, Samir Kouro, Marcelo A. Perez, Thierry A. Meynard, and Hugues Renaudineau. Partial power DC-DC converter for photovoltaic two-stage string inverters. ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings, pages 6740–6745, 2016
Ahmad Diab Marzouk, S´ebastien Fournier-Bidoz, Jessica Yablecki, Kenneth McLean, and Olivier Trescases. Analysis of partial power processing distributed MPPT for a PV powered electric aircraft. 2014 International Power Electronics Conference, IPEC-Hiroshima - ECCE Asia 2014, pages 3496–3502, 2014
Cheng Li, Yann E. Bouvier, Antonio Berrios, Pedro Alou, Jesus A. Oliver, and Jose A. Cobos. Revisiting †partial power architectures†from the †differential po-wer†perspective. 2019 IEEE 20th Workshop on Control and Modeling for Power Electronics, COMPEL 2019, 1(1), 2019
Ratul Das and Hanh-phuc Le. Hybrid Converter for POL Applications in Data Centers and Telecommunication Systems. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pages 1997-2001, 2019
Matthias Kasper, Dominik Bortis, and Johann W. Kolar. Novel high voltage con-version ratio Rainstick DC/DC converters. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, pages 789–796, 2013
Enver Candan, Derek Heeger, Pradeep S. Shenoy, and Robert C.N. Pilawa-Podgurski. A series-stacked power delivery architecture with hot-swapping for high-efficiency data centers. 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 31(5):571-578, 2015
Jos A Cobos, Helena Cristbal, Diego Serrano, Regina Ramos, Jess A Oliver, and Pedro Alou. Differential power as a metric to optimize power converters and ar-chitectures. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-January(c):2168-2175, 2017
Abbass Zein Eddine, Iyad Zaarour, Francois Guerin, Abbas Hijazi, and Dimitri Le-febvre. Improving Fault Isolation in DC/DC Converters Based with Bayesian Belief Networks. IFAC-PapersOnLine, 49(5):303–308, 2016
Alvaro Anzueto-Ríos Valeria Álvarez-GarduËœno, Natalia Guadiana-Ramírez. Análisis comparativo de la modificación del parámetro de inercia para la mejora en el des-empeño del algoritmo PSO Comparative Analysis of the Modification of the Inertia Parameter for the Improvement of the PSO Algorithm Performance. 25:1-11, 2021
Maurice Clerc. Capitulo 15. On Parallelism. 2006
H B Llc. Application note HB LLC and SRK2001 , adaptive SR controller. (March 2020):1-51
Infineon Technologies. Resonant LLC Converter: Operation and Design. Application Note, AN2012-09, 1.0(September):1–19, 2012
Xinwei Zhang, Xueye Wei, Xiaodong Wu, and Xiaolong Yu. Design of a Digitally Controlled Full-Bridge LLC Resonant Converter. 147(Ncce):978-984, 2018
Bill Andreycak. Zero Voltage Switching Resonant Power Conversion
Carolina Albea, Manuel G Ortega, Francisco Salas, Francisco Rubio, Carolina Albea, Manuel G Ortega, Francisco Salas, Francisco Rubio, D E L Control, and H A L Ppcar. Aplicación del control H infinito al PPCar To cite this version : HAL Id : hal-00604267. 2011
J William Helton, Orlando Merino, and Society for Industrial and Applied Mathe-matics. Classical control using H [infinity] methods : an introduction to design. pages xii, 171 p., 1998
Leidy Tatiana and Poveda Galvis. DiseËœno e implementaci´on de un Control Óptimo LQR con la tarjeta Rasberry Pi. page 104, 2016
Rut M. Ag¨uero, Guillermo Pic´o, Edgardo Guibert, and Juan L. Corchs. Interaction of the organic anion 1-aniline 8-naphthalene sulfonate (ANS) with isolated rat he-patocytes. Comparative Biochemistry and Physiology – Part B: Biochemistry and, 86(1):7–10, 1987
Josep M. Guerrero, Juan C. Vasquez, and Jose Matas. Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. New Zealand Journal of Educational Studies, 58(1):35–51, 2016.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/50837/1/2023brayanroncancio.pdf
https://repository.usta.edu.co/bitstream/11634/50837/2/Carta%20Aprobacion%20Facultad.pdf
https://repository.usta.edu.co/bitstream/11634/50837/3/Carta%20Derechos%20de%20Autor.pdf
https://repository.usta.edu.co/bitstream/11634/50837/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/50837/5/license.txt
https://repository.usta.edu.co/bitstream/11634/50837/6/2023brayanroncancio.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/50837/7/Carta%20Aprobacion%20Facultad.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/50837/8/Carta%20Derechos%20de%20Autor.pdf.jpg
bitstream.checksum.fl_str_mv b7c6e299e530430b81ffa88af8505da8
e14e9a069ea231126bdac12ce2759cf1
2e999655c40574dcab5df8632276cb8e
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
98e86468ef042757f666407cb817f19c
254e9ecd1bab041c2f6b27b9b5df024a
cacc20e4130826c6903e38249be48a2b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026199791304704
spelling Torres Pinzón, Carlos AndrésFlores Bahamonde, Freddy ArturoRoncancio Carreño, Brayan Alejandrohttps://orcid.org/0000-0001-9643-5057https://scholar.google.com/citations?hl=es&user=aCsJYTEAAAAJUniversidad Santo Tomás2023-06-26T14:49:33Z2023-06-26T14:49:33Z2023-06-15Roncancio Carreño, B. A. (2023). Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.http://hdl.handle.net/11634/50837reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coDebido a la alta demanda de servicios web y almacenamiento en la nube, es necesario el diseño de ‘Data Centers’ con mayor cantidad de Racks, los cuales alojan servidores y discos duros; en base al crecimiento exponencial de ‘Data Centers’ se estimó que para el año 2030 representaran el consumo del 51% de la energía generada a nivel global. Por ello es necesario elaborar fuentes de suministro de energía con alta eficiencia. Se propone en este trabajo de grado, la implementación de dos tecnologías de convertidores que tienen como característica principal la alta eficiencia, se trata del convertidor DCx y el convertidor PPC. Estos serán utilizados para reducir 12 V al voltaje de la carga, que en este caso está representada por discos duros y servidores, cuyos voltajes de funcionamiento son 1.8 V. El convertidor DCx está compuesto de un generador de onda cuadrada, una red resonante, un transformador y su respectiva rectificación, por ende, no es necesario la elaboración de un sistema de control para este convertidor. Caso contrario se presenta con el convertidor PPC, el cual modifica el voltaje a la salida dependiendo el ancho de pulso de los dispositivos conmutadores; por ello, es necesario realizar control sobre dicha variable para poder obtener la salida requerida. Para el sistema de control, se elaboran 3 técnicas, una básica (control en frecuencia), una avanzada (control LMI) y otra por medio de algoritmos de optimización (PSO). Se realiza el diseño y se procede a simular cada uno de los controladores con el fin de identificar aquel con mejores prestaciones. La estructura del convertidor general está definida por el convertidor PPC y en serie se encuentra conectado el convertidor DCx; en donde el convertidor PPC realiza la reducción de tensión de 12 V a 7.2V y el DCx acota la tensión a 1.8V. Se implementa el convertidor general con cada uno de los controladores mencionados, se realizan simulaciones con perturbaciones y valores de componentes semejantes a la realidad para identificar el correcto funcionamiento del sistema y obtener el controlador que ofrece mejores resultados. Finalmente, se presenta una versión inicial de una PCB para llevar a cabo su implementación física. No es una versión definitiva, ya que ciertos componentes es necesario realizar su fabricación ya que no son comerciales, por ende, las dimensiones plasmadas puede que sean o no acertadas.Due to the high demand for web services and cloud storage, it is necessary to design ‘Data Centers’ with a greater number of Racks, which house servers and hard disks; based on the exponential growth of ‘Data Centers’, it is estimated that by 2030 they will represent the consumption of 51% of the energy generated globally. Therefore, it is necessary to develop energy supply sources with high efficiency. It is proposed in this degree work, the implementation of two converter technologies that have as main characteristic the high efficiency, the DCx converter and the PPC converter. These will be used to reduce 12 V to the voltage of the load, which in this case is represented by hard disks and servers, whose operating voltages are 1.8 V. The DCx converter is composed of a square wave generator, a resonant network, a transformer and its respective rectification, therefore, it is not necessary to develop a control system for this converter. The opposite case occurs with the PPC converter, which modifies the output voltage depending on the pulse width of the switching devices; therefore, it is necessary to perform control over this variable to obtain the required output. For the control system, 3 techniques are developed, a basic one (frequency control), an advanced one (LMI control) and another one by means of optimization algorithms (PSO). The design is carried out and each of the controllers is simulated in order to identify the one with the best performance. The structure of the general converter is defined by the PPC converter and the DCx converter is connected in series; where the PPC converter performs the voltage reduction from 12V to 7.2V and the DCx reduces the voltage to 1.8V. The general converter is implemented with each of the mentioned controllers, simulations are performed with disturbances and component values similar to reality to identify the correct operation of the system and obtain the controller that offers the best results. Obtaining the best performance with the PSO controller due to the way of optimizing the values for the control system. Finally, an initial version of a PCB is presented to carry out its physical implementation. It is not a definitive version, since certain components need to be manufactured since they are not commercial, therefore, the dimensions shown may or may not be correct.Ingeniero ElectronicoPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centersData CentersPPCDCxLMI ControlFrequency ControlPSO ControlOptimizationEfficiencyElectrónica de PotenciaIngeniería electrónicaCircuitos electrónicosData CentersPPCDCxControl LMIControl frecuenciaControl PSOOptimizaciónEficienciaTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáXin Li and Shuai Jiang. Google 48V Power Architecture. Apec, 2017 [Online]. Available:http://apec.dev.itswebs.com/Portals/0/APEC 2017 Files/Plenary/APEC Plenary Google.pdf?ver=2017-04-24-091315-930&timestamp=1495563027516.Mohamed H. Ahmed, Ahmed Nabih, Fred C. Lee, and Qiang Li. High-efficiency, high-density isolated/Regulated 48V bus converter with a novel planar magnetic structure. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:468–475, 2019Rojas Villarroel and Julián Ariel. CARGA RÁPIDA DE VEHÍCULOS ELÉCTRICO. 2019.David González Bravo. Cargador De Baterías Mediante Convertidor Cc-Cc Resonante Llc. 2019.CoolMOS  benefits in both hard and soft switching SMPS topologies Hard and soft switching topologies , applications and suitable CoolMOS families.Arnau Ibarz Claret. Tesis de Magister Optimizadores de potencia para sistemas fotovoltaicos basados en convertidores de potencia parcial. 2019.Richard Brown, Eric Masanet, Bruce Nordman, Arman Shehabi, John Stanley, Dale Sartor, and Peter Chan. Report to Congress on Server and Data Center Energy Efficiency : Public Law 109-431 Environmental Energy Technologies Division Alliance to Save Energy ICF Incorporated. (August), 2008.Toru Tanaka, Naoki Hanaoka, Akiko Takahashi, Koki Asakimori, Takeshi Iwato, Atsushi Sakurai, and Nobuhiko Yamashita. Concept of new power supply system topology using 380 v and 48 v DC bus for future datacenters and telecommunication buildings. INTELEC, International Telecommunications Energy Conference (Procee-dings), 2016-Septe:3-4, 2016.Shuai Jiang, Stefano Saggini, Chenhao Nan, Xin Li, Chee Chung, and Mobashar Yazdani. Switched Tank Converters. IEEE Transactions on Power Electronics, 34(6):5048–5062, 2019.Luhfw W R Rzq, Uxqhool D Dulq, Jdlq Prgholqj, D Q G Hiilflhqf, and Zloo Eh. Direct 48V to 1V Step-Down DC-DC ConverterStefano Saggini, Shuai Jiang, Mario Ursino, and Chenhao Nan. A 99 % efficient dual-phase resonant switched-Capacitor-buck converter for 48 v data center bus con-versions. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:482-487, 2019Zichao Ye, Yutian Lei, and Robert C.N. Pilawa-Podgurski. The Cascaded Resonant Converter: A Hybrid Switched-Capacitor Topology with High Power Density and Efficiency. IEEE Transactions on Power Electronics, 35(5):4946-4958, 2020.Arnab Acharya, V. Inder Kumar, and Santanu Kapat. Dynamic bus voltage configu-ration in a two-stage multi-phase buck converter to mitigate transients. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:496-501, 2019Zichao Ye, Yutia Lei, and Robert C.N. Pilawa-Podgurski. A resonant switched capa-citor based 4-to-1 bus converter achieving 2180 W/in3 power density and 98.9 % peak efficiency. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2018-March:121-126, 2018Gan Fets and Michael A De Rooij. High-Power Density, for servers Using 900-w llc converters gan FEts. pages 40-47, 2019Arman Shehabi, Sarah Josephine Smith, Dale A Sartor, Richard E Brown, Magnus Herrlin, Jonathan G Koomey, Eric R Masanet, Nathaniel Horner, Inˆes Lima Azevedo, and William Lintner. United States Data Center Energy Usage Report - Energy Technologies Area. (June):65, 2016A Case Energy-efficient Datacenters. Energy-Efficient Datacenters. 31(10):1465-1484, 2012Anders Andrae and Tomas Edler. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges, 6(1):117–157, 2015Eric R. Masanet, Richard E. Brown, Arman Shehabi, Jonathan G. Koomey, and Bruce Nordman. Estimating the energy use and efficiency potential of U.S. data centers. Proceedings of the IEEE, 99(8):1440-1453, 2011Reto Christen, Jasmin Smajic, Arvind Sridhar, and Thomas Brunschwiler. Design and optimization of a wide dynamic range programmable power supply for data center applications. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:2210–2217, 2019.Arthur G. Birchenough. A High Efficiency DC Bus Regulator / RPC for Spacecraft Applications. pages 606–613, 2004Chiayi City. SOLAR POWER CONVERTER WITH MULTIPLE OUTPUTS AND CONVERSION CIRCUIT THEREOF. 1(19), 2011Carlos Olalla, Daniel Clement, Miguel Rodriguez, and Dragan Maksimovic. Ar-chitectures and control of submodule integrated dc-dc converters for photovoltaic applications. IEEE Transactions on Power Electronics, 28(6):2980-2997, 2013Jonatan Rafael Rakoski Zientarski, Jose Renes Pinheiro, Mario Lucio Da Silva Mar-tins, and Helio Leaes Hey. Understanding the partial power processing concept: A case-study of buck-boost dc/dc series regulator. 2015 IEEE 13th Brazilian Po-wer Electronics Conference and 1st Southern Power Electronics Conference, CO-BEP/SPEC 2016, (1), 2015D E Patentes Pct, Mandatario Silva, and C I A Patentes Y Marcas. PARTIAL POWER CONVERTER (PPC) IN AN ELECTRICAL ENERGY SYSTEM. (12), 2018Fei Xue, Ruiyang Yu, and Alex Huang. Fractional converter for high efficiency high power battery energy storage system. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-January:5144-5150, 2017.Jon Anzola, Iosu Aizpuru, Asier Arruti Romero, Argine Alacano Loiti, Ramon Lopez-Erauskin, Jesus Sergio Artal-Sevil, and Carlos Bernal. Review of Architectures Based on Partial Power Processing for DC-DC Applications. IEEE Access, 8:103405-103418, 2020.Vishnu Mahadeva Iyer, Srinivas Gulur, Subhashish Bhattacharya, and Ramanujam Ramabhadran. A Partial Power Converter Interface for Battery Energy Storage Integration with a DC Microgrid. 2019 IEEE Energy Conversion Congress and Ex-position, ECCE 2019, pages 5783–5790, 2019Liqun Chen, Hongfei Wu, Peng Xu, Haibing Hu, and Chengan Wan. A high step-down non-isolated bus converter with partial power conversion based on synchronous LLC resonant converter. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2015-May(May):1950–1955, 2015Junjian Zhao, Kenton Yeates, and Yehui Han. Analysis of high efficiency DC/DC converter processing partial input/output power. 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics, COMPEL 2013, pages 0–7, 2013Jaime W. Zapata, Samir Kouro, Gonzalo Carrasco, Hugues Renaudineau, and Thierry A. Meynard. Analysis of Partial Power DC-DC Converters for Two-Stage Photovoltaic Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(1):591-603, 2019Nicolas Muller, Samir Kouro, Pericle Zanchetta, and Patrick Wheeler. Bidirectional partial power converter interface for energy storage systems to provide peak shaving in grid-tied PV plants. Proceedings of the IEEE International Conference on Industrial Technology, 2018-Febru:892-897, 2018Alexander Morrison, Jaime W. Zapata, Samir Kouro, Marcelo A. Perez, Thierry A. Meynard, and Hugues Renaudineau. Partial power DC-DC converter for photovoltaic two-stage string inverters. ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings, pages 6740–6745, 2016Ahmad Diab Marzouk, S´ebastien Fournier-Bidoz, Jessica Yablecki, Kenneth McLean, and Olivier Trescases. Analysis of partial power processing distributed MPPT for a PV powered electric aircraft. 2014 International Power Electronics Conference, IPEC-Hiroshima - ECCE Asia 2014, pages 3496–3502, 2014Cheng Li, Yann E. Bouvier, Antonio Berrios, Pedro Alou, Jesus A. Oliver, and Jose A. Cobos. Revisiting †partial power architectures†from the †differential po-wer†perspective. 2019 IEEE 20th Workshop on Control and Modeling for Power Electronics, COMPEL 2019, 1(1), 2019Ratul Das and Hanh-phuc Le. Hybrid Converter for POL Applications in Data Centers and Telecommunication Systems. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pages 1997-2001, 2019Matthias Kasper, Dominik Bortis, and Johann W. Kolar. Novel high voltage con-version ratio Rainstick DC/DC converters. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, pages 789–796, 2013Enver Candan, Derek Heeger, Pradeep S. Shenoy, and Robert C.N. Pilawa-Podgurski. A series-stacked power delivery architecture with hot-swapping for high-efficiency data centers. 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 31(5):571-578, 2015Jos A Cobos, Helena Cristbal, Diego Serrano, Regina Ramos, Jess A Oliver, and Pedro Alou. Differential power as a metric to optimize power converters and ar-chitectures. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-January(c):2168-2175, 2017Abbass Zein Eddine, Iyad Zaarour, Francois Guerin, Abbas Hijazi, and Dimitri Le-febvre. Improving Fault Isolation in DC/DC Converters Based with Bayesian Belief Networks. IFAC-PapersOnLine, 49(5):303–308, 2016Alvaro Anzueto-Ríos Valeria Álvarez-GarduËœno, Natalia Guadiana-Ramírez. Análisis comparativo de la modificación del parámetro de inercia para la mejora en el des-empeño del algoritmo PSO Comparative Analysis of the Modification of the Inertia Parameter for the Improvement of the PSO Algorithm Performance. 25:1-11, 2021Maurice Clerc. Capitulo 15. On Parallelism. 2006H B Llc. Application note HB LLC and SRK2001 , adaptive SR controller. (March 2020):1-51Infineon Technologies. Resonant LLC Converter: Operation and Design. Application Note, AN2012-09, 1.0(September):1–19, 2012Xinwei Zhang, Xueye Wei, Xiaodong Wu, and Xiaolong Yu. Design of a Digitally Controlled Full-Bridge LLC Resonant Converter. 147(Ncce):978-984, 2018Bill Andreycak. Zero Voltage Switching Resonant Power ConversionCarolina Albea, Manuel G Ortega, Francisco Salas, Francisco Rubio, Carolina Albea, Manuel G Ortega, Francisco Salas, Francisco Rubio, D E L Control, and H A L Ppcar. Aplicación del control H infinito al PPCar To cite this version : HAL Id : hal-00604267. 2011J William Helton, Orlando Merino, and Society for Industrial and Applied Mathe-matics. Classical control using H [infinity] methods : an introduction to design. pages xii, 171 p., 1998Leidy Tatiana and Poveda Galvis. DiseËœno e implementaci´on de un Control Óptimo LQR con la tarjeta Rasberry Pi. page 104, 2016Rut M. Ag¨uero, Guillermo Pic´o, Edgardo Guibert, and Juan L. Corchs. Interaction of the organic anion 1-aniline 8-naphthalene sulfonate (ANS) with isolated rat he-patocytes. Comparative Biochemistry and Physiology – Part B: Biochemistry and, 86(1):7–10, 1987Josep M. Guerrero, Juan C. Vasquez, and Jose Matas. Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. New Zealand Journal of Educational Studies, 58(1):35–51, 2016.ORIGINAL2023brayanroncancio.pdf2023brayanroncancio.pdfTrabajo de Gradoapplication/pdf12831473https://repository.usta.edu.co/bitstream/11634/50837/1/2023brayanroncancio.pdfb7c6e299e530430b81ffa88af8505da8MD51open accessCarta Aprobacion Facultad.pdfCarta Aprobacion Facultad.pdfCarta Aprobación Facultadapplication/pdf329933https://repository.usta.edu.co/bitstream/11634/50837/2/Carta%20Aprobacion%20Facultad.pdfe14e9a069ea231126bdac12ce2759cf1MD52metadata only accessCarta Derechos de Autor.pdfCarta Derechos de Autor.pdfCarta Derechos de Autorapplication/pdf946427https://repository.usta.edu.co/bitstream/11634/50837/3/Carta%20Derechos%20de%20Autor.pdf2e999655c40574dcab5df8632276cb8eMD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/50837/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/50837/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2023brayanroncancio.pdf.jpg2023brayanroncancio.pdf.jpgIM Thumbnailimage/jpeg5647https://repository.usta.edu.co/bitstream/11634/50837/6/2023brayanroncancio.pdf.jpg98e86468ef042757f666407cb817f19cMD56open accessCarta Aprobacion Facultad.pdf.jpgCarta Aprobacion Facultad.pdf.jpgIM Thumbnailimage/jpeg6842https://repository.usta.edu.co/bitstream/11634/50837/7/Carta%20Aprobacion%20Facultad.pdf.jpg254e9ecd1bab041c2f6b27b9b5df024aMD57open accessCarta Derechos de Autor.pdf.jpgCarta Derechos de Autor.pdf.jpgIM Thumbnailimage/jpeg7753https://repository.usta.edu.co/bitstream/11634/50837/8/Carta%20Derechos%20de%20Autor.pdf.jpgcacc20e4130826c6903e38249be48a2bMD58open access11634/50837oai:repository.usta.edu.co:11634/508372023-06-27 03:04:10.798open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K