Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers
Debido a la alta demanda de servicios web y almacenamiento en la nube, es necesario el diseño de ‘Data Centers’ con mayor cantidad de Racks, los cuales alojan servidores y discos duros; en base al crecimiento exponencial de ‘Data Centers’ se estimó que para el año 2030 representaran el consumo del 5...
- Autores:
-
Roncancio Carreño, Brayan Alejandro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/50837
- Acceso en línea:
- http://hdl.handle.net/11634/50837
- Palabra clave:
- Data Centers
PPC
DCx
LMI Control
Frequency Control
PSO Control
Optimization
Efficiency
Electrónica de Potencia
Ingeniería electrónica
Circuitos electrónicos
Data Centers
PPC
DCx
Control LMI
Control frecuencia
Control PSO
Optimización
Eficiencia
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_1f0ae994f759d75750de820f40b5a49d |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/50837 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers |
title |
Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers |
spellingShingle |
Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers Data Centers PPC DCx LMI Control Frequency Control PSO Control Optimization Efficiency Electrónica de Potencia Ingeniería electrónica Circuitos electrónicos Data Centers PPC DCx Control LMI Control frecuencia Control PSO Optimización Eficiencia |
title_short |
Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers |
title_full |
Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers |
title_fullStr |
Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers |
title_full_unstemmed |
Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers |
title_sort |
Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers |
dc.creator.fl_str_mv |
Roncancio Carreño, Brayan Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Torres Pinzón, Carlos Andrés Flores Bahamonde, Freddy Arturo |
dc.contributor.author.none.fl_str_mv |
Roncancio Carreño, Brayan Alejandro |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0001-9643-5057 |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.com/citations?hl=es&user=aCsJYTEAAAAJ |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Santo Tomás |
dc.subject.keyword.spa.fl_str_mv |
Data Centers PPC DCx LMI Control Frequency Control PSO Control Optimization Efficiency |
topic |
Data Centers PPC DCx LMI Control Frequency Control PSO Control Optimization Efficiency Electrónica de Potencia Ingeniería electrónica Circuitos electrónicos Data Centers PPC DCx Control LMI Control frecuencia Control PSO Optimización Eficiencia |
dc.subject.lemb.spa.fl_str_mv |
Electrónica de Potencia Ingeniería electrónica Circuitos electrónicos |
dc.subject.proposal.spa.fl_str_mv |
Data Centers PPC DCx Control LMI Control frecuencia Control PSO Optimización Eficiencia |
description |
Debido a la alta demanda de servicios web y almacenamiento en la nube, es necesario el diseño de ‘Data Centers’ con mayor cantidad de Racks, los cuales alojan servidores y discos duros; en base al crecimiento exponencial de ‘Data Centers’ se estimó que para el año 2030 representaran el consumo del 51% de la energía generada a nivel global. Por ello es necesario elaborar fuentes de suministro de energía con alta eficiencia. Se propone en este trabajo de grado, la implementación de dos tecnologías de convertidores que tienen como característica principal la alta eficiencia, se trata del convertidor DCx y el convertidor PPC. Estos serán utilizados para reducir 12 V al voltaje de la carga, que en este caso está representada por discos duros y servidores, cuyos voltajes de funcionamiento son 1.8 V. El convertidor DCx está compuesto de un generador de onda cuadrada, una red resonante, un transformador y su respectiva rectificación, por ende, no es necesario la elaboración de un sistema de control para este convertidor. Caso contrario se presenta con el convertidor PPC, el cual modifica el voltaje a la salida dependiendo el ancho de pulso de los dispositivos conmutadores; por ello, es necesario realizar control sobre dicha variable para poder obtener la salida requerida. Para el sistema de control, se elaboran 3 técnicas, una básica (control en frecuencia), una avanzada (control LMI) y otra por medio de algoritmos de optimización (PSO). Se realiza el diseño y se procede a simular cada uno de los controladores con el fin de identificar aquel con mejores prestaciones. La estructura del convertidor general está definida por el convertidor PPC y en serie se encuentra conectado el convertidor DCx; en donde el convertidor PPC realiza la reducción de tensión de 12 V a 7.2V y el DCx acota la tensión a 1.8V. Se implementa el convertidor general con cada uno de los controladores mencionados, se realizan simulaciones con perturbaciones y valores de componentes semejantes a la realidad para identificar el correcto funcionamiento del sistema y obtener el controlador que ofrece mejores resultados. Finalmente, se presenta una versión inicial de una PCB para llevar a cabo su implementación física. No es una versión definitiva, ya que ciertos componentes es necesario realizar su fabricación ya que no son comerciales, por ende, las dimensiones plasmadas puede que sean o no acertadas. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-06-26T14:49:33Z |
dc.date.available.none.fl_str_mv |
2023-06-26T14:49:33Z |
dc.date.issued.none.fl_str_mv |
2023-06-15 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Roncancio Carreño, B. A. (2023). Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/50837 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Roncancio Carreño, B. A. (2023). Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/50837 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Xin Li and Shuai Jiang. Google 48V Power Architecture. Apec, 2017 [Online]. Available:http://apec.dev.itswebs.com/Portals/0/APEC 2017 Files/Plenary/APEC Plenary Google.pdf?ver=2017-04-24-091315-930×tamp=1495563027516. Mohamed H. Ahmed, Ahmed Nabih, Fred C. Lee, and Qiang Li. High-efficiency, high-density isolated/Regulated 48V bus converter with a novel planar magnetic structure. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:468–475, 2019 Rojas Villarroel and Julián Ariel. CARGA RÁPIDA DE VEHÍCULOS ELÉCTRICO. 2019. David González Bravo. Cargador De Baterías Mediante Convertidor Cc-Cc Resonante Llc. 2019. CoolMOS benefits in both hard and soft switching SMPS topologies Hard and soft switching topologies , applications and suitable CoolMOS families. Arnau Ibarz Claret. Tesis de Magister Optimizadores de potencia para sistemas fotovoltaicos basados en convertidores de potencia parcial. 2019. Richard Brown, Eric Masanet, Bruce Nordman, Arman Shehabi, John Stanley, Dale Sartor, and Peter Chan. Report to Congress on Server and Data Center Energy Efficiency : Public Law 109-431 Environmental Energy Technologies Division Alliance to Save Energy ICF Incorporated. (August), 2008. Toru Tanaka, Naoki Hanaoka, Akiko Takahashi, Koki Asakimori, Takeshi Iwato, Atsushi Sakurai, and Nobuhiko Yamashita. Concept of new power supply system topology using 380 v and 48 v DC bus for future datacenters and telecommunication buildings. INTELEC, International Telecommunications Energy Conference (Procee-dings), 2016-Septe:3-4, 2016. Shuai Jiang, Stefano Saggini, Chenhao Nan, Xin Li, Chee Chung, and Mobashar Yazdani. Switched Tank Converters. IEEE Transactions on Power Electronics, 34(6):5048–5062, 2019. Luhfw W R Rzq, Uxqhool D Dulq, Jdlq Prgholqj, D Q G Hiilflhqf, and Zloo Eh. Direct 48V to 1V Step-Down DC-DC Converter Stefano Saggini, Shuai Jiang, Mario Ursino, and Chenhao Nan. A 99 % efficient dual-phase resonant switched-Capacitor-buck converter for 48 v data center bus con-versions. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:482-487, 2019 Zichao Ye, Yutian Lei, and Robert C.N. Pilawa-Podgurski. The Cascaded Resonant Converter: A Hybrid Switched-Capacitor Topology with High Power Density and Efficiency. IEEE Transactions on Power Electronics, 35(5):4946-4958, 2020. Arnab Acharya, V. Inder Kumar, and Santanu Kapat. Dynamic bus voltage configu-ration in a two-stage multi-phase buck converter to mitigate transients. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:496-501, 2019 Zichao Ye, Yutia Lei, and Robert C.N. Pilawa-Podgurski. A resonant switched capa-citor based 4-to-1 bus converter achieving 2180 W/in3 power density and 98.9 % peak efficiency. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2018-March:121-126, 2018 Gan Fets and Michael A De Rooij. High-Power Density, for servers Using 900-w llc converters gan FEts. pages 40-47, 2019 Arman Shehabi, Sarah Josephine Smith, Dale A Sartor, Richard E Brown, Magnus Herrlin, Jonathan G Koomey, Eric R Masanet, Nathaniel Horner, Inˆes Lima Azevedo, and William Lintner. United States Data Center Energy Usage Report - Energy Technologies Area. (June):65, 2016 A Case Energy-efficient Datacenters. Energy-Efficient Datacenters. 31(10):1465-1484, 2012 Anders Andrae and Tomas Edler. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges, 6(1):117–157, 2015 Eric R. Masanet, Richard E. Brown, Arman Shehabi, Jonathan G. Koomey, and Bruce Nordman. Estimating the energy use and efficiency potential of U.S. data centers. Proceedings of the IEEE, 99(8):1440-1453, 2011 Reto Christen, Jasmin Smajic, Arvind Sridhar, and Thomas Brunschwiler. Design and optimization of a wide dynamic range programmable power supply for data center applications. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:2210–2217, 2019. Arthur G. Birchenough. A High Efficiency DC Bus Regulator / RPC for Spacecraft Applications. pages 606–613, 2004 Chiayi City. SOLAR POWER CONVERTER WITH MULTIPLE OUTPUTS AND CONVERSION CIRCUIT THEREOF. 1(19), 2011 Carlos Olalla, Daniel Clement, Miguel Rodriguez, and Dragan Maksimovic. Ar-chitectures and control of submodule integrated dc-dc converters for photovoltaic applications. IEEE Transactions on Power Electronics, 28(6):2980-2997, 2013 Jonatan Rafael Rakoski Zientarski, Jose Renes Pinheiro, Mario Lucio Da Silva Mar-tins, and Helio Leaes Hey. Understanding the partial power processing concept: A case-study of buck-boost dc/dc series regulator. 2015 IEEE 13th Brazilian Po-wer Electronics Conference and 1st Southern Power Electronics Conference, CO-BEP/SPEC 2016, (1), 2015 D E Patentes Pct, Mandatario Silva, and C I A Patentes Y Marcas. PARTIAL POWER CONVERTER (PPC) IN AN ELECTRICAL ENERGY SYSTEM. (12), 2018 Fei Xue, Ruiyang Yu, and Alex Huang. Fractional converter for high efficiency high power battery energy storage system. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-January:5144-5150, 2017. Jon Anzola, Iosu Aizpuru, Asier Arruti Romero, Argine Alacano Loiti, Ramon Lopez-Erauskin, Jesus Sergio Artal-Sevil, and Carlos Bernal. Review of Architectures Based on Partial Power Processing for DC-DC Applications. IEEE Access, 8:103405-103418, 2020. Vishnu Mahadeva Iyer, Srinivas Gulur, Subhashish Bhattacharya, and Ramanujam Ramabhadran. A Partial Power Converter Interface for Battery Energy Storage Integration with a DC Microgrid. 2019 IEEE Energy Conversion Congress and Ex-position, ECCE 2019, pages 5783–5790, 2019 Liqun Chen, Hongfei Wu, Peng Xu, Haibing Hu, and Chengan Wan. A high step-down non-isolated bus converter with partial power conversion based on synchronous LLC resonant converter. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2015-May(May):1950–1955, 2015 Junjian Zhao, Kenton Yeates, and Yehui Han. Analysis of high efficiency DC/DC converter processing partial input/output power. 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics, COMPEL 2013, pages 0–7, 2013 Jaime W. Zapata, Samir Kouro, Gonzalo Carrasco, Hugues Renaudineau, and Thierry A. Meynard. Analysis of Partial Power DC-DC Converters for Two-Stage Photovoltaic Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(1):591-603, 2019 Nicolas Muller, Samir Kouro, Pericle Zanchetta, and Patrick Wheeler. Bidirectional partial power converter interface for energy storage systems to provide peak shaving in grid-tied PV plants. Proceedings of the IEEE International Conference on Industrial Technology, 2018-Febru:892-897, 2018 Alexander Morrison, Jaime W. Zapata, Samir Kouro, Marcelo A. Perez, Thierry A. Meynard, and Hugues Renaudineau. Partial power DC-DC converter for photovoltaic two-stage string inverters. ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings, pages 6740–6745, 2016 Ahmad Diab Marzouk, S´ebastien Fournier-Bidoz, Jessica Yablecki, Kenneth McLean, and Olivier Trescases. Analysis of partial power processing distributed MPPT for a PV powered electric aircraft. 2014 International Power Electronics Conference, IPEC-Hiroshima - ECCE Asia 2014, pages 3496–3502, 2014 Cheng Li, Yann E. Bouvier, Antonio Berrios, Pedro Alou, Jesus A. Oliver, and Jose A. Cobos. Revisiting †partial power architectures†from the †differential po-wer†perspective. 2019 IEEE 20th Workshop on Control and Modeling for Power Electronics, COMPEL 2019, 1(1), 2019 Ratul Das and Hanh-phuc Le. Hybrid Converter for POL Applications in Data Centers and Telecommunication Systems. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pages 1997-2001, 2019 Matthias Kasper, Dominik Bortis, and Johann W. Kolar. Novel high voltage con-version ratio Rainstick DC/DC converters. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, pages 789–796, 2013 Enver Candan, Derek Heeger, Pradeep S. Shenoy, and Robert C.N. Pilawa-Podgurski. A series-stacked power delivery architecture with hot-swapping for high-efficiency data centers. 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 31(5):571-578, 2015 Jos A Cobos, Helena Cristbal, Diego Serrano, Regina Ramos, Jess A Oliver, and Pedro Alou. Differential power as a metric to optimize power converters and ar-chitectures. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-January(c):2168-2175, 2017 Abbass Zein Eddine, Iyad Zaarour, Francois Guerin, Abbas Hijazi, and Dimitri Le-febvre. Improving Fault Isolation in DC/DC Converters Based with Bayesian Belief Networks. IFAC-PapersOnLine, 49(5):303–308, 2016 Alvaro Anzueto-Ríos Valeria Álvarez-GarduËœno, Natalia Guadiana-Ramírez. Análisis comparativo de la modificación del parámetro de inercia para la mejora en el des-empeño del algoritmo PSO Comparative Analysis of the Modification of the Inertia Parameter for the Improvement of the PSO Algorithm Performance. 25:1-11, 2021 Maurice Clerc. Capitulo 15. On Parallelism. 2006 H B Llc. Application note HB LLC and SRK2001 , adaptive SR controller. (March 2020):1-51 Infineon Technologies. Resonant LLC Converter: Operation and Design. Application Note, AN2012-09, 1.0(September):1–19, 2012 Xinwei Zhang, Xueye Wei, Xiaodong Wu, and Xiaolong Yu. Design of a Digitally Controlled Full-Bridge LLC Resonant Converter. 147(Ncce):978-984, 2018 Bill Andreycak. Zero Voltage Switching Resonant Power Conversion Carolina Albea, Manuel G Ortega, Francisco Salas, Francisco Rubio, Carolina Albea, Manuel G Ortega, Francisco Salas, Francisco Rubio, D E L Control, and H A L Ppcar. Aplicación del control H infinito al PPCar To cite this version : HAL Id : hal-00604267. 2011 J William Helton, Orlando Merino, and Society for Industrial and Applied Mathe-matics. Classical control using H [infinity] methods : an introduction to design. pages xii, 171 p., 1998 Leidy Tatiana and Poveda Galvis. DiseËœno e implementaci´on de un Control Óptimo LQR con la tarjeta Rasberry Pi. page 104, 2016 Rut M. Ag¨uero, Guillermo Pic´o, Edgardo Guibert, and Juan L. Corchs. Interaction of the organic anion 1-aniline 8-naphthalene sulfonate (ANS) with isolated rat he-patocytes. Comparative Biochemistry and Physiology – Part B: Biochemistry and, 86(1):7–10, 1987 Josep M. Guerrero, Juan C. Vasquez, and Jose Matas. Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. New Zealand Journal of Educational Studies, 58(1):35–51, 2016. |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Electrónica |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/50837/1/2023brayanroncancio.pdf https://repository.usta.edu.co/bitstream/11634/50837/2/Carta%20Aprobacion%20Facultad.pdf https://repository.usta.edu.co/bitstream/11634/50837/3/Carta%20Derechos%20de%20Autor.pdf https://repository.usta.edu.co/bitstream/11634/50837/4/license_rdf https://repository.usta.edu.co/bitstream/11634/50837/5/license.txt https://repository.usta.edu.co/bitstream/11634/50837/6/2023brayanroncancio.pdf.jpg https://repository.usta.edu.co/bitstream/11634/50837/7/Carta%20Aprobacion%20Facultad.pdf.jpg https://repository.usta.edu.co/bitstream/11634/50837/8/Carta%20Derechos%20de%20Autor.pdf.jpg |
bitstream.checksum.fl_str_mv |
b7c6e299e530430b81ffa88af8505da8 e14e9a069ea231126bdac12ce2759cf1 2e999655c40574dcab5df8632276cb8e 217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 98e86468ef042757f666407cb817f19c 254e9ecd1bab041c2f6b27b9b5df024a cacc20e4130826c6903e38249be48a2b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026199791304704 |
spelling |
Torres Pinzón, Carlos AndrésFlores Bahamonde, Freddy ArturoRoncancio Carreño, Brayan Alejandrohttps://orcid.org/0000-0001-9643-5057https://scholar.google.com/citations?hl=es&user=aCsJYTEAAAAJUniversidad Santo Tomás2023-06-26T14:49:33Z2023-06-26T14:49:33Z2023-06-15Roncancio Carreño, B. A. (2023). Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centers. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.http://hdl.handle.net/11634/50837reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coDebido a la alta demanda de servicios web y almacenamiento en la nube, es necesario el diseño de ‘Data Centers’ con mayor cantidad de Racks, los cuales alojan servidores y discos duros; en base al crecimiento exponencial de ‘Data Centers’ se estimó que para el año 2030 representaran el consumo del 51% de la energía generada a nivel global. Por ello es necesario elaborar fuentes de suministro de energía con alta eficiencia. Se propone en este trabajo de grado, la implementación de dos tecnologías de convertidores que tienen como característica principal la alta eficiencia, se trata del convertidor DCx y el convertidor PPC. Estos serán utilizados para reducir 12 V al voltaje de la carga, que en este caso está representada por discos duros y servidores, cuyos voltajes de funcionamiento son 1.8 V. El convertidor DCx está compuesto de un generador de onda cuadrada, una red resonante, un transformador y su respectiva rectificación, por ende, no es necesario la elaboración de un sistema de control para este convertidor. Caso contrario se presenta con el convertidor PPC, el cual modifica el voltaje a la salida dependiendo el ancho de pulso de los dispositivos conmutadores; por ello, es necesario realizar control sobre dicha variable para poder obtener la salida requerida. Para el sistema de control, se elaboran 3 técnicas, una básica (control en frecuencia), una avanzada (control LMI) y otra por medio de algoritmos de optimización (PSO). Se realiza el diseño y se procede a simular cada uno de los controladores con el fin de identificar aquel con mejores prestaciones. La estructura del convertidor general está definida por el convertidor PPC y en serie se encuentra conectado el convertidor DCx; en donde el convertidor PPC realiza la reducción de tensión de 12 V a 7.2V y el DCx acota la tensión a 1.8V. Se implementa el convertidor general con cada uno de los controladores mencionados, se realizan simulaciones con perturbaciones y valores de componentes semejantes a la realidad para identificar el correcto funcionamiento del sistema y obtener el controlador que ofrece mejores resultados. Finalmente, se presenta una versión inicial de una PCB para llevar a cabo su implementación física. No es una versión definitiva, ya que ciertos componentes es necesario realizar su fabricación ya que no son comerciales, por ende, las dimensiones plasmadas puede que sean o no acertadas.Due to the high demand for web services and cloud storage, it is necessary to design ‘Data Centers’ with a greater number of Racks, which house servers and hard disks; based on the exponential growth of ‘Data Centers’, it is estimated that by 2030 they will represent the consumption of 51% of the energy generated globally. Therefore, it is necessary to develop energy supply sources with high efficiency. It is proposed in this degree work, the implementation of two converter technologies that have as main characteristic the high efficiency, the DCx converter and the PPC converter. These will be used to reduce 12 V to the voltage of the load, which in this case is represented by hard disks and servers, whose operating voltages are 1.8 V. The DCx converter is composed of a square wave generator, a resonant network, a transformer and its respective rectification, therefore, it is not necessary to develop a control system for this converter. The opposite case occurs with the PPC converter, which modifies the output voltage depending on the pulse width of the switching devices; therefore, it is necessary to perform control over this variable to obtain the required output. For the control system, 3 techniques are developed, a basic one (frequency control), an advanced one (LMI control) and another one by means of optimization algorithms (PSO). The design is carried out and each of the controllers is simulated in order to identify the one with the best performance. The structure of the general converter is defined by the PPC converter and the DCx converter is connected in series; where the PPC converter performs the voltage reduction from 12V to 7.2V and the DCx reduces the voltage to 1.8V. The general converter is implemented with each of the mentioned controllers, simulations are performed with disturbances and component values similar to reality to identify the correct operation of the system and obtain the controller that offers the best results. Obtaining the best performance with the PSO controller due to the way of optimizing the values for the control system. Finally, an initial version of a PCB is presented to carry out its physical implementation. It is not a definitive version, since certain components need to be manufactured since they are not commercial, therefore, the dimensions shown may or may not be correct.Ingeniero ElectronicoPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Análisis diseño y control de convertidores DC-DC funcionando como transformadores DC para estructuras de potencia en data centersData CentersPPCDCxLMI ControlFrequency ControlPSO ControlOptimizationEfficiencyElectrónica de PotenciaIngeniería electrónicaCircuitos electrónicosData CentersPPCDCxControl LMIControl frecuenciaControl PSOOptimizaciónEficienciaTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáXin Li and Shuai Jiang. Google 48V Power Architecture. Apec, 2017 [Online]. Available:http://apec.dev.itswebs.com/Portals/0/APEC 2017 Files/Plenary/APEC Plenary Google.pdf?ver=2017-04-24-091315-930×tamp=1495563027516.Mohamed H. Ahmed, Ahmed Nabih, Fred C. Lee, and Qiang Li. High-efficiency, high-density isolated/Regulated 48V bus converter with a novel planar magnetic structure. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:468–475, 2019Rojas Villarroel and Julián Ariel. CARGA RÁPIDA DE VEHÍCULOS ELÉCTRICO. 2019.David González Bravo. Cargador De Baterías Mediante Convertidor Cc-Cc Resonante Llc. 2019.CoolMOS benefits in both hard and soft switching SMPS topologies Hard and soft switching topologies , applications and suitable CoolMOS families.Arnau Ibarz Claret. Tesis de Magister Optimizadores de potencia para sistemas fotovoltaicos basados en convertidores de potencia parcial. 2019.Richard Brown, Eric Masanet, Bruce Nordman, Arman Shehabi, John Stanley, Dale Sartor, and Peter Chan. Report to Congress on Server and Data Center Energy Efficiency : Public Law 109-431 Environmental Energy Technologies Division Alliance to Save Energy ICF Incorporated. (August), 2008.Toru Tanaka, Naoki Hanaoka, Akiko Takahashi, Koki Asakimori, Takeshi Iwato, Atsushi Sakurai, and Nobuhiko Yamashita. Concept of new power supply system topology using 380 v and 48 v DC bus for future datacenters and telecommunication buildings. INTELEC, International Telecommunications Energy Conference (Procee-dings), 2016-Septe:3-4, 2016.Shuai Jiang, Stefano Saggini, Chenhao Nan, Xin Li, Chee Chung, and Mobashar Yazdani. Switched Tank Converters. IEEE Transactions on Power Electronics, 34(6):5048–5062, 2019.Luhfw W R Rzq, Uxqhool D Dulq, Jdlq Prgholqj, D Q G Hiilflhqf, and Zloo Eh. Direct 48V to 1V Step-Down DC-DC ConverterStefano Saggini, Shuai Jiang, Mario Ursino, and Chenhao Nan. A 99 % efficient dual-phase resonant switched-Capacitor-buck converter for 48 v data center bus con-versions. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:482-487, 2019Zichao Ye, Yutian Lei, and Robert C.N. Pilawa-Podgurski. The Cascaded Resonant Converter: A Hybrid Switched-Capacitor Topology with High Power Density and Efficiency. IEEE Transactions on Power Electronics, 35(5):4946-4958, 2020.Arnab Acharya, V. Inder Kumar, and Santanu Kapat. Dynamic bus voltage configu-ration in a two-stage multi-phase buck converter to mitigate transients. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:496-501, 2019Zichao Ye, Yutia Lei, and Robert C.N. Pilawa-Podgurski. A resonant switched capa-citor based 4-to-1 bus converter achieving 2180 W/in3 power density and 98.9 % peak efficiency. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2018-March:121-126, 2018Gan Fets and Michael A De Rooij. High-Power Density, for servers Using 900-w llc converters gan FEts. pages 40-47, 2019Arman Shehabi, Sarah Josephine Smith, Dale A Sartor, Richard E Brown, Magnus Herrlin, Jonathan G Koomey, Eric R Masanet, Nathaniel Horner, Inˆes Lima Azevedo, and William Lintner. United States Data Center Energy Usage Report - Energy Technologies Area. (June):65, 2016A Case Energy-efficient Datacenters. Energy-Efficient Datacenters. 31(10):1465-1484, 2012Anders Andrae and Tomas Edler. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges, 6(1):117–157, 2015Eric R. Masanet, Richard E. Brown, Arman Shehabi, Jonathan G. Koomey, and Bruce Nordman. Estimating the energy use and efficiency potential of U.S. data centers. Proceedings of the IEEE, 99(8):1440-1453, 2011Reto Christen, Jasmin Smajic, Arvind Sridhar, and Thomas Brunschwiler. Design and optimization of a wide dynamic range programmable power supply for data center applications. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March:2210–2217, 2019.Arthur G. Birchenough. A High Efficiency DC Bus Regulator / RPC for Spacecraft Applications. pages 606–613, 2004Chiayi City. SOLAR POWER CONVERTER WITH MULTIPLE OUTPUTS AND CONVERSION CIRCUIT THEREOF. 1(19), 2011Carlos Olalla, Daniel Clement, Miguel Rodriguez, and Dragan Maksimovic. Ar-chitectures and control of submodule integrated dc-dc converters for photovoltaic applications. IEEE Transactions on Power Electronics, 28(6):2980-2997, 2013Jonatan Rafael Rakoski Zientarski, Jose Renes Pinheiro, Mario Lucio Da Silva Mar-tins, and Helio Leaes Hey. Understanding the partial power processing concept: A case-study of buck-boost dc/dc series regulator. 2015 IEEE 13th Brazilian Po-wer Electronics Conference and 1st Southern Power Electronics Conference, CO-BEP/SPEC 2016, (1), 2015D E Patentes Pct, Mandatario Silva, and C I A Patentes Y Marcas. PARTIAL POWER CONVERTER (PPC) IN AN ELECTRICAL ENERGY SYSTEM. (12), 2018Fei Xue, Ruiyang Yu, and Alex Huang. Fractional converter for high efficiency high power battery energy storage system. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-January:5144-5150, 2017.Jon Anzola, Iosu Aizpuru, Asier Arruti Romero, Argine Alacano Loiti, Ramon Lopez-Erauskin, Jesus Sergio Artal-Sevil, and Carlos Bernal. Review of Architectures Based on Partial Power Processing for DC-DC Applications. IEEE Access, 8:103405-103418, 2020.Vishnu Mahadeva Iyer, Srinivas Gulur, Subhashish Bhattacharya, and Ramanujam Ramabhadran. A Partial Power Converter Interface for Battery Energy Storage Integration with a DC Microgrid. 2019 IEEE Energy Conversion Congress and Ex-position, ECCE 2019, pages 5783–5790, 2019Liqun Chen, Hongfei Wu, Peng Xu, Haibing Hu, and Chengan Wan. A high step-down non-isolated bus converter with partial power conversion based on synchronous LLC resonant converter. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2015-May(May):1950–1955, 2015Junjian Zhao, Kenton Yeates, and Yehui Han. Analysis of high efficiency DC/DC converter processing partial input/output power. 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics, COMPEL 2013, pages 0–7, 2013Jaime W. Zapata, Samir Kouro, Gonzalo Carrasco, Hugues Renaudineau, and Thierry A. Meynard. Analysis of Partial Power DC-DC Converters for Two-Stage Photovoltaic Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(1):591-603, 2019Nicolas Muller, Samir Kouro, Pericle Zanchetta, and Patrick Wheeler. Bidirectional partial power converter interface for energy storage systems to provide peak shaving in grid-tied PV plants. Proceedings of the IEEE International Conference on Industrial Technology, 2018-Febru:892-897, 2018Alexander Morrison, Jaime W. Zapata, Samir Kouro, Marcelo A. Perez, Thierry A. Meynard, and Hugues Renaudineau. Partial power DC-DC converter for photovoltaic two-stage string inverters. ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings, pages 6740–6745, 2016Ahmad Diab Marzouk, S´ebastien Fournier-Bidoz, Jessica Yablecki, Kenneth McLean, and Olivier Trescases. Analysis of partial power processing distributed MPPT for a PV powered electric aircraft. 2014 International Power Electronics Conference, IPEC-Hiroshima - ECCE Asia 2014, pages 3496–3502, 2014Cheng Li, Yann E. Bouvier, Antonio Berrios, Pedro Alou, Jesus A. Oliver, and Jose A. Cobos. Revisiting †partial power architectures†from the †differential po-wer†perspective. 2019 IEEE 20th Workshop on Control and Modeling for Power Electronics, COMPEL 2019, 1(1), 2019Ratul Das and Hanh-phuc Le. Hybrid Converter for POL Applications in Data Centers and Telecommunication Systems. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pages 1997-2001, 2019Matthias Kasper, Dominik Bortis, and Johann W. Kolar. Novel high voltage con-version ratio Rainstick DC/DC converters. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, pages 789–796, 2013Enver Candan, Derek Heeger, Pradeep S. Shenoy, and Robert C.N. Pilawa-Podgurski. A series-stacked power delivery architecture with hot-swapping for high-efficiency data centers. 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 31(5):571-578, 2015Jos A Cobos, Helena Cristbal, Diego Serrano, Regina Ramos, Jess A Oliver, and Pedro Alou. Differential power as a metric to optimize power converters and ar-chitectures. 2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017, 2017-January(c):2168-2175, 2017Abbass Zein Eddine, Iyad Zaarour, Francois Guerin, Abbas Hijazi, and Dimitri Le-febvre. Improving Fault Isolation in DC/DC Converters Based with Bayesian Belief Networks. IFAC-PapersOnLine, 49(5):303–308, 2016Alvaro Anzueto-Ríos Valeria Álvarez-GarduËœno, Natalia Guadiana-Ramírez. Análisis comparativo de la modificación del parámetro de inercia para la mejora en el des-empeño del algoritmo PSO Comparative Analysis of the Modification of the Inertia Parameter for the Improvement of the PSO Algorithm Performance. 25:1-11, 2021Maurice Clerc. Capitulo 15. On Parallelism. 2006H B Llc. Application note HB LLC and SRK2001 , adaptive SR controller. (March 2020):1-51Infineon Technologies. Resonant LLC Converter: Operation and Design. Application Note, AN2012-09, 1.0(September):1–19, 2012Xinwei Zhang, Xueye Wei, Xiaodong Wu, and Xiaolong Yu. Design of a Digitally Controlled Full-Bridge LLC Resonant Converter. 147(Ncce):978-984, 2018Bill Andreycak. Zero Voltage Switching Resonant Power ConversionCarolina Albea, Manuel G Ortega, Francisco Salas, Francisco Rubio, Carolina Albea, Manuel G Ortega, Francisco Salas, Francisco Rubio, D E L Control, and H A L Ppcar. Aplicación del control H infinito al PPCar To cite this version : HAL Id : hal-00604267. 2011J William Helton, Orlando Merino, and Society for Industrial and Applied Mathe-matics. Classical control using H [infinity] methods : an introduction to design. pages xii, 171 p., 1998Leidy Tatiana and Poveda Galvis. DiseËœno e implementaci´on de un Control Óptimo LQR con la tarjeta Rasberry Pi. page 104, 2016Rut M. Ag¨uero, Guillermo Pic´o, Edgardo Guibert, and Juan L. Corchs. Interaction of the organic anion 1-aniline 8-naphthalene sulfonate (ANS) with isolated rat he-patocytes. Comparative Biochemistry and Physiology – Part B: Biochemistry and, 86(1):7–10, 1987Josep M. Guerrero, Juan C. Vasquez, and Jose Matas. Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. New Zealand Journal of Educational Studies, 58(1):35–51, 2016.ORIGINAL2023brayanroncancio.pdf2023brayanroncancio.pdfTrabajo de Gradoapplication/pdf12831473https://repository.usta.edu.co/bitstream/11634/50837/1/2023brayanroncancio.pdfb7c6e299e530430b81ffa88af8505da8MD51open accessCarta Aprobacion Facultad.pdfCarta Aprobacion Facultad.pdfCarta Aprobación Facultadapplication/pdf329933https://repository.usta.edu.co/bitstream/11634/50837/2/Carta%20Aprobacion%20Facultad.pdfe14e9a069ea231126bdac12ce2759cf1MD52metadata only accessCarta Derechos de Autor.pdfCarta Derechos de Autor.pdfCarta Derechos de Autorapplication/pdf946427https://repository.usta.edu.co/bitstream/11634/50837/3/Carta%20Derechos%20de%20Autor.pdf2e999655c40574dcab5df8632276cb8eMD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/50837/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/50837/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2023brayanroncancio.pdf.jpg2023brayanroncancio.pdf.jpgIM Thumbnailimage/jpeg5647https://repository.usta.edu.co/bitstream/11634/50837/6/2023brayanroncancio.pdf.jpg98e86468ef042757f666407cb817f19cMD56open accessCarta Aprobacion Facultad.pdf.jpgCarta Aprobacion Facultad.pdf.jpgIM Thumbnailimage/jpeg6842https://repository.usta.edu.co/bitstream/11634/50837/7/Carta%20Aprobacion%20Facultad.pdf.jpg254e9ecd1bab041c2f6b27b9b5df024aMD57open accessCarta Derechos de Autor.pdf.jpgCarta Derechos de Autor.pdf.jpgIM Thumbnailimage/jpeg7753https://repository.usta.edu.co/bitstream/11634/50837/8/Carta%20Derechos%20de%20Autor.pdf.jpgcacc20e4130826c6903e38249be48a2bMD58open access11634/50837oai:repository.usta.edu.co:11634/508372023-06-27 03:04:10.798open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |