Estimación de las preferencias del consumidor a través de un modelo jerárquico bayesiano logístico multinomial

El uso de las técnicas estadísticas ha cobrado gran importancia en las investigaciones de mercados, es usual que se diseñen estudios donde el objetivo esté orientado a idenfiti car los factores que afectan las decisiones de compra de los consumidores. Existen diversas metodologías en ese sentido, en...

Full description

Autores:
Melo Fuquene, José Danilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2015
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/3845
Acceso en línea:
http://hdl.handle.net/11634/3845
Palabra clave:
Joint analysis
Consumer
Bayesian hierarchical model
Comportamiento del consumidor -- Métodos estadísticos
Comportamiento del consumidor -- Métodos estadísticos
Modelos matemáticos -- Casos
Modelos estadísticos -- Casos
Análisis conjunto
Consumidor
Modelo jerárquico bayesiano
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
Description
Summary:El uso de las técnicas estadísticas ha cobrado gran importancia en las investigaciones de mercados, es usual que se diseñen estudios donde el objetivo esté orientado a idenfiti car los factores que afectan las decisiones de compra de los consumidores. Existen diversas metodologías en ese sentido, entre las más conocidas están: evaluaciones comparativas, análisis conjunto, maxdiff y trade off. Sin embargo las más simples como la evaluación comparativa carece de rigor estadístico y otras como el análisis conjunto suelen ser dispendiosas de llevar a cabo especialmente durante el proceso de levantamiento de información, debido a que en ocasiones a pesar de trabajar con diseños ortogonales el n umero de ofertas que debe evaluar cada entrevistado sigue siendo tan alto que podría ocasionar fatiga y por ende sesgo en los resultados. En este trabajo se propone una metodología de tipo trade off, la misma consiste en empezar con dos ofertas al azar e identi ficar cuál de las dos es más atractiva para el consumidor, posteriormente la oferta ganadora se compara con otra oferta y también se identifi ca la más atractiva, la cual a su vez se compara con otra oferta que no haya sido comparada y así sucesivamente hasta terminar. Si el número de ofertas es k en total, el encuestado tendrá que comparar k-1 pares de ofertas, de esta forma se logra reducir los tiempos de la encuesta evitando los sesgos ocasionados por el cansancio, además de disminuir los costos del proyecto de forma importante. Con el fi n de estimar la probabilidad de que el sujeto i (i = 1; :::; n) elija la oferta j (j = 1; :::; k) se propone realizar un Modelo Jerárquico Bayesiano Logístico Multinomial usando métodos MCMC (Markov Chain Monte Carlo), de esta forma se puede obtener las probabilidades de que cada individuo seleccione una oferta sin la necesidad de comparar todos los pares. Una ventaja de usar el enfoque bayesiano es debido a la gran cantidad de parámetros, que en ocasiones resulta complejo o imposible hacerlo de forma clásica; además con el fi n de mejorar las estimaciones de los parámetros se involucra en la distribución de los mismos la información sociodemográfica de los sujetos. El ajuste del modelo considera un proceso Dirichlet, apropiada para distribuciones multinomiales. Una vez obtenidas las probabilidades para cada sujeto en cada oferta, se aplica un análisis de componentes principales y usando las primeras componentes se realiza una clasifi cación de los de los sujetos con el fin de identifi car los nichos del mercado para las diferentes ofertas.