A Calibration Function Built From Change Points: a Review

In this work are compared using simulation methods for estimating Breslow, Efron and exact in Cox regression, to find the estimate of the model parameters, obtaining confidence intervals by resampling the Bootstrap, Jackknife and traditional asymptotic. Are generated samples of times using the inverse...

Full description

Autores:
Ramírez Montoya, Javier
Regino, Ever
Guerrero, Stalyn
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/6500
Acceso en línea:
https://revistas.usantotomas.edu.co/index.php/estadistica/article/view/2822
Palabra clave:
Regression of Cox; Bootstrap; Jackknife.
Calibración; modelos mixtos; punto de cambio
Rights
License
Copyright (c) 2017 Comunicaciones en Estadística
Description
Summary:In this work are compared using simulation methods for estimating Breslow, Efron and exact in Cox regression, to find the estimate of the model parameters, obtaining confidence intervals by resampling the Bootstrap, Jackknife and traditional asymptotic. Are generated samples of times using the inverse of the transformation, for models of exponential regression and Weibull. It illustrates the results of the amplitudes of the confidence intervals taking as a reference the regression estimate parametric. Showing the efficiency of these intervals.