Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física.
El desarrollo de este trabajo de grado tiene como objeto la construcción del estado del arte de la tecnología 5G enfocado a la capa física, de manera que se dé a conocer las diferencias existentes entre la nueva tecnología y las generaciones anteriores de comunicaciones móviles, así mismo los desafí...
- Autores:
-
Barrera Cortes, María Camila
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/42900
- Acceso en línea:
- http://hdl.handle.net/11634/42900
- Palabra clave:
- IoT
Massive MIMO
Multiplexing
5G Technology
Mobile communications
Physical Layer
Comunicaciones móviles
Tecnología 5G
Multiplexación
MIMO masivo
IoT
Capa física
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
SANTTOMAS2_0284da4bdc4c07ffd8a9a6d18a8f0610 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/42900 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. |
title |
Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. |
spellingShingle |
Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. IoT Massive MIMO Multiplexing 5G Technology Mobile communications Physical Layer Comunicaciones móviles Tecnología 5G Multiplexación MIMO masivo IoT Capa física |
title_short |
Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. |
title_full |
Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. |
title_fullStr |
Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. |
title_full_unstemmed |
Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. |
title_sort |
Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. |
dc.creator.fl_str_mv |
Barrera Cortes, María Camila |
dc.contributor.advisor.none.fl_str_mv |
Salazar Madrigal, Angelica María |
dc.contributor.author.none.fl_str_mv |
Barrera Cortes, María Camila |
dc.contributor.corporatename.spa.fl_str_mv |
Univesidad Santo Tomas |
dc.subject.keyword.spa.fl_str_mv |
IoT Massive MIMO Multiplexing 5G Technology Mobile communications Physical Layer |
topic |
IoT Massive MIMO Multiplexing 5G Technology Mobile communications Physical Layer Comunicaciones móviles Tecnología 5G Multiplexación MIMO masivo IoT Capa física |
dc.subject.proposal.spa.fl_str_mv |
Comunicaciones móviles Tecnología 5G Multiplexación MIMO masivo IoT Capa física |
description |
El desarrollo de este trabajo de grado tiene como objeto la construcción del estado del arte de la tecnología 5G enfocado a la capa física, de manera que se dé a conocer las diferencias existentes entre la nueva tecnología y las generaciones anteriores de comunicaciones móviles, así mismo los desafíos y soluciones planteados a nivel internacional y finalmente el futuro de las próximas generaciones. Para el proceso de desarrollo se llevó a cabo la metodología de investigación mediante revisión documental de las divulgaciones realizadas internacionalmente, de manera que se tuviera un acercamiento a los avances desarrollados hasta ahora. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-02-01T20:47:45Z |
dc.date.available.none.fl_str_mv |
2022-02-01T20:47:45Z |
dc.date.issued.none.fl_str_mv |
2022-02-03 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Barrera,M. (2021). Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. Tesis de pregrado. Universidad Santo Tomas. Tunja. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/42900 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Barrera,M. (2021). Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. Tesis de pregrado. Universidad Santo Tomas. Tunja. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/42900 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ashutosh Dutta, E. H. (2020). 5G Security Challenges and Opportunities: A System Approach. USA: IEEE. Carmen, U. S. (2018). Estudio de la tecnología 5G y el impacto que tendrá en el país. Guayaquil. COMMISSION, E. (2019). Cybersecurity of 5G networks. Strasbourg. Commission, E. (2019). Member States publish a report on EU coordinated risk assessment of 5G networks security. Brussels. Dr K Anitha Kumari, D. G. (2018). Approach for End-to-End (E2E) Security of 5G Applications. India. Europea, C. (2020). Despliegue seguro de 5G en la UE - aplicación de la caja de herramientas de la UE. Bruselas. GSMA. (2020). 5G y el Rango 3,3-3,8 GHz en América Latina. Londres: GSMA. Orlando, R. R. (2019). Nuevos desafíos en seguridad para 5G. Bogotá. A. Gupta, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE. Garcia, J. D. (2019). Estudio del estado del arte de la telefonía móvil. Piura, Perú: Universidad Nacional de Piura. M. Tahir, M. H. (2020). A review on application of blockchain in 5G and beyond networks: Taxonomy, Field-Trials, Challenges and Opportunities.IEEE. MinTIC. (2019). Plan 5G Colombia. Siverio, E. H. (2018). Seguridad de la capa física para redes inalámbricas. Santa clara. Vaca, A. e. (2016). Análisis del estado del arte e innovación en las tecnologías de sistemas de comunicaciones inalámbricas 5G. Quito. 23.501, 3. T. (2021). 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects: System architecture for the 5G System (5Gs) Release 17. Valbonne,Francia. 3GPP. (Ocubre de 2021). 3GPP. Obtenido de https://www.3gpp.org/about-3gpp 3GPP, J. W. (Junio de 2013). 3GPP a global initiative . Obtenido de https://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced A. Gupta, R. K. (2015). A survey of 5G network: Architecture and emerging tecnologies . IEEE. Abdulaziz Abdulghaffar, A. M.-A. (2021). Modeling and Evaluation of Software Defined Networking Based 5G Core Network Architecture . Arabia Saudita: IEEE. Achaleshwar Sahai, G. P. (2011). Pushing the limitis of full - duplex: Desing and Real-time Implementation. Texas, USA: Technical Report TREE1104. Ahmad, I., Shahabuddin, S., Kumar, T., Okwuibe, J., Gurtov, A., & Ylianttila, M. (2019). Security for 5G and Beyond. FInlandia: IEEE. Albreem, M. A., Juntti, M., & Shahabuddin, S. (2019). Massive MIMO Detection Techniques: A Survey . Finlandia: IEEE. Alcardo Alex Barakabitze, A. A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Irlanda: Computer Networks . Aleksandra Checko, H. L. (2015). Cloud RN for Mobile Networks - A Technology Overview . Dinamarca: IEEE. Al-Shaer, E., & Al-Haj, S. (2010). FlowChecker: Configuration analysis and verification of federated OpenFlow infrastructures. Basile, A. L., Pitscheider, C., Valenza, F., & Vallini, M. (2015). A novel approach for integrating security policy enforcement with dynamic network virtualization. Bejerano, P. G. (Junio de 2021). ThinkBIG: Cellular V2X: Así conseguirá el 5G que los coches<<hablen>> entre sí . Obtenido de https://blogthinkbig.com/cellular-v2x-asi-conseguira-el-5g-que-los-coches-hablen-entre-si Beltran, Ó. L. (2020). Términos de referencia para la migración de LTE a 5G en colombia. Bogotá : Universidad Distrital Francisco José de Caldas. Buckley, B. D. (1998). Beamforming: A versatile approach to spatial filtering . IEEE . Cáceres, C. I. (2013). Estudio y análisis técnico comparativo entre las tecnologías 4G long term evolution (LTE) y LTE Advanced . Ecuador. Calle, C., & Jiménez, M. S. (2014). Estudio y análisis técnico comparativo enre las tecnologías LTE y LTE Advanced . Quito, Ecuador . Campos, L. (2017). Estudo das caracterÍsticas de ondas milimÉtricas para os sistemas 5G . Niterói - RJ. Cao, J., Yu, P., Ma, M., & Gao, W. (2019). Fast authentication and data transfer scheme for massive NB-IoT devices in 3GPP 5G network. IEEE. Catherin Nayer Tadros, M. R. (2020). Software Defined Network- Based management architecture for Enhanced 5G Network Services . Egipto: IEEE . Contreras, I. D. (2017). Estudio comparativo entre redes LTE Advanced y LTE a nivel de core . Santiago, Guayaquil. Córdoba, F. A. (2018). Comparativo entre la tecnología de redes 4G y 5G y los beneficios de su implementación en Colombia . Santiago de Cali: Universidad Santiago de Cali. Cortes, J. C. (2019). Análisis de la tecnología Massive MIMO para las redes 5G en Colombia . Bogotá: Universidad Santo Tomás . Chaer, A., Salah, K., Lima, C., Ray, P. P., & Sheltami, T. (2020). Blockchain for 5G: Opportunities and Challenges . USA: IEEE. Chen, H., Wu, J., & Shimomura, T. (2018). New Reference SIgnal Design for URLLC and eMBB Multiplexing in New Radio Wireless Comunications . Italia: IEEE. Chen, W. C. (2014). 5G mmWAVE Technology Desing Challenges and Development Trends. Taiwan: IEEE. Chettri, L., & Bera., R. (2019). A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems . India: IEEE. Chocliourus, I. P., Spiliopoulou, A. S., Kostopoulus, A., Arvanitozisis, D., Yi, N., Chen, T., . . . Spada, M.-R. (2018). Use Cases for Developing enhanced Mobile Broadband Services for the Promotion of 5G. Italia. Chonka, A., & Abawajy, J. (2012). Detecting and mitigating HX-DoS attacks against cloud Web services. IEEE. CRC. (2020). Estudio sobre las condiciones regulatorias para favorecer la adopción de la tecnología 5G en Colombia. Colombia Diana Carolina Ortíz Casallas, J. J. (2016). Estudio de carrier aggregation para optimizar el uso del espectro asignado a los operadores móviles en Colombia. Bogotá : Universidad Piloto de Colombia. Dogra, A., Jha, R. K., & Jain., S. (2020). A survey on beyond 5G Network with the advent of 6G. India: IEEE. Ejaz, W., Sharma, S. K., Saadat, S., Naeem, M., Anpalagan, A., & Chughtai, N. (2020). A comprehensive survey on resource allocation for CRAN in 5G and beyond networks. Canada: Science Direct. Engobo, S. (2019). Las nuevas tecnologías de radio ara el despliegue de la 5G. Principales requerimientos tecnológicos y dificultades de implementación. . Santa Clara. Garcia, J. D. (2019). Estudio del estado del arte de la telefonía móvil . Piura, Perú : Universidad Nacional de Piura . Gavrilovska, L., Rakovic, V., Ichkov, A., Todorovski, D., & Marinova, S. (2018). Flexible C-RAN: Radio technology for 5G. Serbia: IEEE. Go, I. (2014). Tutorial LTE . Obtenido de http://www.ipv6go.net/lte/arquitectura_red_lte.php Guefry Leider Agredo, P. e. (2015). Sistemas MIMO con un elevado número de antenas: para la 5G inalámbrica . Cali. Gyawali, S., Xu, S., Qian, Y., & Hu, R. Q. (2020). Challenges and Solutions for Cellular Based V2X Communications. Estados Unidos: IEEE. Hassan, E. H. (2015). 5G Cellular: Key Enabling Technologies and Research Challenges . Canada: IEEE. Ibrahim Afolabi, T. T. (2018). Network Slicing and Softwarization: A survey on Principles, Enabling Technologies, and solutions . Finlandia : IEEE. Ing. Yezid E. Donoso Meisel, P. (14 de Septiembre de 2021). Arquitectura, Nuevos servicios y Ciberseguridad en Redes 5G. Bogotá . Irfan Ahmed, H. K. (2018). A survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives . IEEE. J. M. Hamamreh, E. B. (2017). OFDM-subcarrier index selection for enhancing security and reliability of 5G URLLC services. IEEE. Jia Liu, E. S. (2019). Hybrid - Beamfroming - Based Millimeter - Wave Cellular Network Optimization. IEEE. Jimenez, C. A., & Rizo, F. R. (2013). Arquitectura general del sistema LTE . Revista digital de las tecnologías de la información y comunicaciones , 81-90. Juan Aranda, E. J. (2021). 5G Networks: A review from the perspectives of architecture, business models, cybersecurity, and research developments. Bogotá, Colombia. Khurpade, J. M., Rao, D., & Sanghavi, P. D. (2018). A Survey on IoT and 5G Network . India: IEEE. Lenovo. (01 de 09 de 2021). Lenovo . Obtenido de https://www.lenovo.com/co/es/faqs/pc-vida-faqs/que-es-4g/ Lindstrom, P. (2008). The Laws of Virtualization Security: Baselinemag.com Driving Business Success With Technology. Liu, G., Huang, Y., Chen, Z., Liu, L., & LI, Q. W. (2020). 5G Deployment: Standalone vs Non-Standalone from the Operator Perspective . Beijing : IEEE. Lusani Mamushiane, S. D. (2017). Leveraging SDN/VNF as key stepping stones to the 5G era in emerging markets . Sur áfrica : IEEE. Lv, T., Ma, Y., Zeng, J., & Mathiopoulos, P. T. (2018). Millimeter-wave NOMA transmission in cellular M2M communications for Internet of Things. IEEE. M. Tahir, M. H. (2020). A review on application of blockchain in 5G and beyond networks:: Taxonomy, Field-Trials, Challenges and Oportunities. . IEEE. Ma, T., Zhang, Y., Wang, F., Wang, D., & Guo, D. (2020). Slicing Resource Alloaation for eMBB and URLLC in 5G RAN. China. Mathew, A. (2020). Network Slicing in 5G and the Security Concerns . India : IEEE. Muhammad Nauman Irshad, L. D. (2019). A Hybris Solution of SDN Architecture for 5G Mobile Communication to Improve Data Rate Transmission. China: IEEE. Mukherjee, A., Fakoorian, S. A., & Swindlehurst, J. H. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE. Murillo, O. P. (2021). Estudio de cobertura de la tecnología 5G para las zonas metropolitanas de la ciudad de Bogota D.C. Bogotá: Universidad Nacional de Colombia . Muteba, K., Djouani, K., & Olwal, T. (2020). Opportunistic Resource Allocation for Narrowband Internet of Things: A literature Review. Turkia : IEEE. Nour, B., Ksentini, A., Herbaut, N., Frangoudis, P. A., & Moungla, H. (2019). A Blockchain-Based Network Slice Broker for 5G Services. Fracia: IEEE. Núñez, C. J. (2018). Caracterización de lsa ondas milimétricas para determinar su posible aplicación en la Quinta geneación de comunicaciones inalámbricas. Guayaquil, Ecuador. Nurul H. Mahmood, M. G. (2017). Full Duplex Comunications in 5G Small Cells. IEEE. Otros, R. S. (2005). sHype: Secure hypervisor approach to trusted virtualized systems. P.L.S.C Leslie Fernanda Monter, P. D. (2021). Comunicaciones en redes. Obtenido de http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro27/24_multiplexacin.html P.L.S.C. Leslie Fernanda Monter Martínez, P. D. (2021). Comunicaciones en redes. Obtenido de http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro27/241_tcnicas_de_multiplexacin.html Pastor, J. (Noviembe de 2017). Xataka . Obtenido de https://www.xataka.com/especiales/que-es-blockchain-la-explicacion-definitiva-para-la-tecnologia-mas-de-moda Plokiko. (2 de Agosto de 2019). Xakata. Obtenido de xataka.com/moviles/que-significa-que-existan-dos-tipos-de-5g-diferencias-compatibilidades-5g-nsa-5g-sa Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., & Gu, G. (2012). A security enforcement kernel for OpenFlow networks. Ramos, O. C. (2013). Descripción del estándar LTE-Advanced . Santa Clara . Raza, H. (2013). A brief survey of radio access network backhaul evolution: Part II. IEEE. RHAYOUR, A. E., & MAZRI, T. (2019). 5G Architecture: Deployment scenarios and options. Roma, italia : IEEE. Sahrish Khan Tayyaba, M. A. (2017). 5G Cellular network integration with SDN: Challenges, issues and beyond. Pakistan : IEEE. Samsung. (2021). 5G Standalone Architecture . Santos, A. (16 de Enero de 2018). Ciena . Obtenido de https://www.ciena.com.mx/insights/what-is/What-is-Network-Functions-Virtualization_es_LA.html Security-Enhanced Floodlight. (2018). Obtenido de http://www.sdncentral.com/education/toward-secure-sdn-control-layer/2013/10 Siverio, E. H. (2018). Seguridad de la capa física para redes inalámbricas . Santa clara. Suárez, L. L. (2017). Estudio de Prospectia en el uso de la tecnología 5G en Colombia al 2025. Bogotá : Universidad Santo Tómas. Tanab, M. E., & Hamouda, W. (2019). Machine to Machine communications with massive access: Congestion control . IEEE. Van-Giang Nguyen, A. B.-J. (2017). SDN/NFV-Based Mobile Packet Core Network Architectures: A Survey . Iran: IEEE. Wei Wang, Y. C. (2016). A software-defined wireless networking enables spectrum management architecture . China: IEEE. Wen, X., Chen, Y., Hu, C., & Shi, C. W. (s.f.). Towards a secure controller platform for OpenFlow applications. Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw. Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K.-K., & Gao, X. (2018). A survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead . China: IEEE. Yang, W., & Fung, C. (2016). A survey on security in network functions virtualization. IEEE. Zhang, X., Guo, X., & Zhang., H. (2021). RB Allocation Scheme for eMBB and URLLC Coexistence in 5G and Beyond. China: Telmo reis Cunha. Zhongshan Zhang, X. C. (2015). Full Duplex tecniques for 5G Networks: Self - Interfernce cancellation, Protocol Design and Relay Selection. China: IEEE. Liu, G., Huang, Y., Chen, Z., Liu, L., & LI, Q. W. (2020). 5G Deployment: Standalone vs Non-Standalone from the Operator Perspective . Beijing : IEEE Chen, W. C. (2014). 5G mmWAVE Technology Desing Challenges and Development Trends. Taiwan: IEEE. Campos, L. (2017). Estudo das caracterÍsticas de ondas milimÉtricas para os sistemas 5G . Niterói - RJ. Buckley, B. D. (1998). Beamforming: A versatile approach to spatial filtering . IEEE . Irfan Ahmed, H. K. (2018). A survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives . IEEE. Guefry Leider Agredo, P. e. (2015). Sistemas MIMO con un elevado número de antenas: para la 5G inalámbrica . Cali. Jia Liu, E. S. (2019). Hybrid - Beamfroming - Based Millimeter - Wave Cellular Network Optimization. IEEE. Achaleshwar Sahai, G. P. (2011). Pushing the limitis of full - duplex: Desing and Real-time Implementation. Texas, USA: Technical Report TREE1104. Zhongshan Zhang, X. C. (2015). Full Duplex tecniques for 5G Networks: Self - Interfernce cancellation, Protocol Design and Relay Selection. China: IEEE. Sahrish Khan Tayyaba, M. A. (2017). 5G Cellular network integration with SDN: Challenges, issues and beyond. Pakistan: IEEE. 3GPP. (Ocubre de 2021). 3GPP. Obtenido de https://www.3gpp.org/about-3gpp Ibrahim Afolabi, T. T. (2018). Network Slicing and Softwarization: A survey on Principles, Enabling Technologies, and solutions . Finlandia : IEEE. Muhammad Nauman Irshad, L. D. (2019). A Hybris Solution of SDN Architecture for 5G Mobile Communication to Improve Data Rate Transmission. China: IEEE. Lusani Mamushiane, S. D. (2017). Leveraging SDN/VNF as key stepping stones to the 5G era in emerging markets. Sur Africa: IEEE. Van-Giang Nguyen, A. B.-J. (2017). SDN/NFV-Based Mobile Packet Core Network Architectures: A Survey. Iran: IEEE. Alcardo Alex Barakabitze, A. A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Irlanda: Computer Networks . Aleksandra Checko, H. L. (2015). Cloud RN for Mobile Networks - A Technology Overview. Dinamarca: IEEE. Raza, H. (2013). A brief survey of radio access network backhaul evolution: Part II. IEEE. Ijaz Ahmad, S. S. (2019). Security for 5G and Beyond. FInlandia : IEEE. A. Mukherjee, S. A. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE. P.L.S.C Leslie Fernanda Monter, P. D. (2021). Comunicaciones en redes. Obtenido de http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro27/24_multiplexacin.html P.L.S.C. Leslie Fernanda Monter Martínez, P. D. (2021). Comunicaciones en redes. Obtenido de http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro27/241_tcnicas_de_multiplexacin.html. Beltran, Ó. L. (2020). Términos de referencia para la migración de LTE a 5G en colombia. Bogotá : Universidad Distrital Francisco José de Caldas. Córdoba, F. A. (2018). Comparativo entre la tecnología de redes 4G y 5G y los beneficios de su implementación en Colombia . Santiago de Cali: Universidad Santiago de Cali. Suárez, L. L. (2017). Estudio de Prospectia en el uso de la tecnología 5G en Colombia al 2025. Bogotá : Universidad Santo Tómas. Murillo, O. P. (2021). Estudio de cobertura de la tecnología 5G para las zonas metropolitanas de la ciudad de Bogota D.C. Bogotá: Universidad Nacional de Colombia. Mathew, A. (2020). Network Slicing in 5G and the Security Concerns . India : IEEE. J. Cao, P. Y. (2019). Fast authentication and data transfer scheme for massive NB-IoT devices in 3GPP 5G network. IEEE. Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K.-K., & Gao, X. (2018). A survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead . China: IEEE. Albreem, M. A., Juntti, M., & Shahabuddin, S. (2019). Massive MIMO Detection Techniques: A Survey . Finlandia: IEEE. Security-Enhanced Floodlight. (2018). Obtenido de http://www.sdncentral.com/education/toward-secure-sdn-control-layer/2013/10 Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K.-K., & Gao, X. (2018). A survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead . China: IEEE. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., & Gu, G. (2012). A security enforcement kernel for OpenFlow networks Al-Shaer, E., & Al-Haj, S. (2010). FlowChecker: Configuration analysis and verification of federated OpenFlow infrastructures. Yang, W., & Fung, C. (2016). A survey on security in network functions virtualization. IEEE. Basile, A. L., Pitscheider, C., Valenza, F., & Vallini, M. (2015). A novel approach for integrating security policy enforcement with dynamic network virtualization. Lindstrom, P. (2008). The Laws of Virtualization Security: Baselinemag.com Driving Business Success With Technology. Otros, R. S. (2005). sHype: Secure hypervisor approach to trusted virtualized systems Chonka, A., & Abawajy, J. (2012). Detecting and mitigating HX-DoS attacks against cloud Web services. IEEE. Pastor, J. (Noviembe de 2017). Xataka . Obtenido de https://www.xataka.com/especiales/que-es-blockchain-la-explicacion-definitiva-para-la-tecnologia-mas-de-moda Chaer, A., Salah, K., Lima, C., Ray, P. P., & Sheltami, T. (2020). Blockchain for 5G: Opportunities and Challenges . USA: IEEE. Dogra, A., Jha, R. K., & Jain., S. (2020). A survey on beyond 5G Network with the advent of 6G. India: IEEE. Chen, H., Wu, J., & Shimomura, T. (2018). New Reference SIgnal Design for URLLC and eMBB Multiplexing in New Radio Wireless Comunications . Italia: IEEE Zhang, X., Guo, X., & Zhang., H. (2021). RB Allocation Scheme for eMBB and URLLC Coexistence in 5G and Beyond. China: Telmo reis Cunha. Tanab, M. E., & Hamouda, W. (2019). Machine to Machine communications with massive access: Congestion control . IEEE. Lv, T., Ma, Y., Zeng, J., & Mathiopoulos, P. T. (2018). Millimeter-wave NOMA transmission in cellular M2M communications for Internet of Things. IEEE Khurpade, J. M., Rao, D., & Sanghavi, P. D. (2018). A Survey on IoT and 5G Network . India: IEEE. Muteba, K., Djouani, K., & Olwal, T. (2020). Opportunistic Resource Allocation for Narrowband Internet of Things: A literature Review. Turkia : IEEE. Chettri, L., & Bera., R. (2019). A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems . India: IEEE. Bejerano, P. G. (Junio de 2021). ThinkBIG: Cellular V2X: Así conseguirá el 5G que los coches<<hablen>> entre sí . Obtenido de https://blogthinkbig.com/cellular-v2x-asi-conseguira-el-5g-que-los-coches-hablen-entre-si Gyawali, S., Xu, S., Qian, Y., & Hu, R. Q. (2020). Challenges and Solutions for Cellular Based V2X Communications. Estados Unidos: IEEE. Dogra, A., Jha, R. K., & Jain., S. (2020). A survey on beyond 5G Network with the advent of 6G. India: IEEE. Jiang, W., Han, B., Habibi, M. A., & Schotten, H. D. (2021). The Road Towards 6G: A Comprenhensive Survey . Alemania: IEEE 5G, O. N. (2021). Observatorio Nacional de 5G. Obtenido de https://on5g.es/el-nucleo-de-las-redes-5g-se-empieza-a-abrir-a-multiples-suministradores/ 5G, O. n. (25 de agosto de 2021). Observatorio nacional de 5G . Obtenido de https://on5g.es/china-amplia-su-dominio-mundial-en-redes-5g-ahora-con-la-banda-de-700-mhz/ GSMA. (2016). Espectro 5G: Posición de la GSMA sobre políticas públicas. GSM Association. HUAWEI. (2021). HUAWEI. Obtenido de https://www.huawei.com/en/news/2021/9/5g-core-leadership-award Iulio, A. A. (2021). OESIA. Obtenido de https://ciberseguridad.oesia.com/seguridad-en-redes-5g/ Mundo, T. (2020). Qué es la tecnología 5G: beneficios y rumores. Obtenido de https://www.tvmundogt.com/tecnologia/que-es-la-tecnologia-5g-beneficios-y-rumores/ Rui, L. (2020). ZTE. Obtenido de https://www.zte.com.cn/global/about/magazine/zte-technologies/2020/5-en/Success-Stories/2.html Vara, D. J. (2020). Revolución hegemónica china: El 5g y la gobernanza digital. Universidad de león. Digitales. (2021). Digitales. Obtenido de https://www.digitales.es/blog-post/5-preguntas-para-entender-como-se-va-a-desplegar-el-5g-y-que-cambios-nos-traera/ Remmert, H. (19 de marzo de 2021). DIGI. Obtenido de https://es.digi.com/blog/post/5g-network-architecture |
dc.rights.*.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Tunja |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Electrónica |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/42900/1/2021Mar%c3%adaBarrera.pdf https://repository.usta.edu.co/bitstream/11634/42900/4/Carta%20aprobaci%c3%b3n%20facultad.pdf https://repository.usta.edu.co/bitstream/11634/42900/5/Carta%20derechos%20de%20autor.pdf https://repository.usta.edu.co/bitstream/11634/42900/2/license_rdf https://repository.usta.edu.co/bitstream/11634/42900/3/license.txt https://repository.usta.edu.co/bitstream/11634/42900/6/2021Mar%c3%adaBarrera.pdf.jpg https://repository.usta.edu.co/bitstream/11634/42900/7/Carta%20aprobaci%c3%b3n%20facultad.pdf.jpg https://repository.usta.edu.co/bitstream/11634/42900/8/Carta%20derechos%20de%20autor.pdf.jpg |
bitstream.checksum.fl_str_mv |
660471bb8cabc5c712ff15b16e7ad71d 664dbebfbf9cdace1ccb3f8cdf4a9742 ee7287839e9f1574bc353ef1ed6f12aa 42fd4ad1e89814f5e4a476b409eb708c aedeaf396fcd827b537c73d23464fc27 bae5e860d8e53726b808f53b48581a14 de10232a6ae1512d1e063ac10c05dcf8 0d540850e420734f5c921fa2197fd5ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026308757225472 |
spelling |
Salazar Madrigal, Angelica MaríaBarrera Cortes, María CamilaUnivesidad Santo Tomas2022-02-01T20:47:45Z2022-02-01T20:47:45Z2022-02-03Barrera,M. (2021). Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física. Tesis de pregrado. Universidad Santo Tomas. Tunja.http://hdl.handle.net/11634/42900reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl desarrollo de este trabajo de grado tiene como objeto la construcción del estado del arte de la tecnología 5G enfocado a la capa física, de manera que se dé a conocer las diferencias existentes entre la nueva tecnología y las generaciones anteriores de comunicaciones móviles, así mismo los desafíos y soluciones planteados a nivel internacional y finalmente el futuro de las próximas generaciones. Para el proceso de desarrollo se llevó a cabo la metodología de investigación mediante revisión documental de las divulgaciones realizadas internacionalmente, de manera que se tuviera un acercamiento a los avances desarrollados hasta ahora.The development of this degree work aims to build the state of the art of 5G technology focused on the physical layer, so that the differences between the new technology and previous generations of mobile communications are disclosed, as well as the challenges and solutions raised at the international level and finally the future of the next generations. For the development process, the research methodology was carried out through documentary review of the disclosures made internationally, so that an approach was taken to the advances developed so far.Ingeniero ElectronicoPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Estado del arte de la infraestructura de la tecnología 5G enfocada a la capa física.IoTMassive MIMOMultiplexing5G TechnologyMobile communicationsPhysical LayerComunicaciones móvilesTecnología 5GMultiplexaciónMIMO masivoIoTCapa físicaTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA TunjaAshutosh Dutta, E. H. (2020). 5G Security Challenges and Opportunities: A System Approach. USA: IEEE.Carmen, U. S. (2018). Estudio de la tecnología 5G y el impacto que tendrá en el país. Guayaquil.COMMISSION, E. (2019). Cybersecurity of 5G networks. Strasbourg.Commission, E. (2019). Member States publish a report on EU coordinated risk assessment of 5G networks security. Brussels.Dr K Anitha Kumari, D. G. (2018). Approach for End-to-End (E2E) Security of 5G Applications. India.Europea, C. (2020). Despliegue seguro de 5G en la UE - aplicación de la caja de herramientas de la UE. Bruselas.GSMA. (2020). 5G y el Rango 3,3-3,8 GHz en América Latina. Londres: GSMA.Orlando, R. R. (2019). Nuevos desafíos en seguridad para 5G. Bogotá.A. Gupta, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE.Garcia, J. D. (2019). Estudio del estado del arte de la telefonía móvil. Piura, Perú: Universidad Nacional de Piura.M. Tahir, M. H. (2020). A review on application of blockchain in 5G and beyond networks: Taxonomy, Field-Trials, Challenges and Opportunities.IEEE.MinTIC. (2019). Plan 5G Colombia.Siverio, E. H. (2018). Seguridad de la capa física para redes inalámbricas. Santa clara.Vaca, A. e. (2016). Análisis del estado del arte e innovación en las tecnologías de sistemas de comunicaciones inalámbricas 5G. Quito.23.501, 3. T. (2021). 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects: System architecture for the 5G System (5Gs) Release 17. Valbonne,Francia.3GPP. (Ocubre de 2021). 3GPP. Obtenido de https://www.3gpp.org/about-3gpp3GPP, J. W. (Junio de 2013). 3GPP a global initiative . Obtenido de https://www.3gpp.org/technologies/keywords-acronyms/97-lte-advancedA. Gupta, R. K. (2015). A survey of 5G network: Architecture and emerging tecnologies . IEEE.Abdulaziz Abdulghaffar, A. M.-A. (2021). Modeling and Evaluation of Software Defined Networking Based 5G Core Network Architecture . Arabia Saudita: IEEE.Achaleshwar Sahai, G. P. (2011). Pushing the limitis of full - duplex: Desing and Real-time Implementation. Texas, USA: Technical Report TREE1104.Ahmad, I., Shahabuddin, S., Kumar, T., Okwuibe, J., Gurtov, A., & Ylianttila, M. (2019). Security for 5G and Beyond. FInlandia: IEEE.Albreem, M. A., Juntti, M., & Shahabuddin, S. (2019). Massive MIMO Detection Techniques: A Survey . Finlandia: IEEE.Alcardo Alex Barakabitze, A. A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Irlanda: Computer Networks .Aleksandra Checko, H. L. (2015). Cloud RN for Mobile Networks - A Technology Overview . Dinamarca: IEEE.Al-Shaer, E., & Al-Haj, S. (2010). FlowChecker: Configuration analysis and verification of federated OpenFlow infrastructures.Basile, A. L., Pitscheider, C., Valenza, F., & Vallini, M. (2015). A novel approach for integrating security policy enforcement with dynamic network virtualization.Bejerano, P. G. (Junio de 2021). ThinkBIG: Cellular V2X: Así conseguirá el 5G que los coches<<hablen>> entre sí . Obtenido de https://blogthinkbig.com/cellular-v2x-asi-conseguira-el-5g-que-los-coches-hablen-entre-siBeltran, Ó. L. (2020). Términos de referencia para la migración de LTE a 5G en colombia. Bogotá : Universidad Distrital Francisco José de Caldas.Buckley, B. D. (1998). Beamforming: A versatile approach to spatial filtering . IEEE .Cáceres, C. I. (2013). Estudio y análisis técnico comparativo entre las tecnologías 4G long term evolution (LTE) y LTE Advanced . Ecuador.Calle, C., & Jiménez, M. S. (2014). Estudio y análisis técnico comparativo enre las tecnologías LTE y LTE Advanced . Quito, Ecuador .Campos, L. (2017). Estudo das caracterÍsticas de ondas milimÉtricas para os sistemas 5G . Niterói - RJ.Cao, J., Yu, P., Ma, M., & Gao, W. (2019). Fast authentication and data transfer scheme for massive NB-IoT devices in 3GPP 5G network. IEEE.Catherin Nayer Tadros, M. R. (2020). Software Defined Network- Based management architecture for Enhanced 5G Network Services . Egipto: IEEE .Contreras, I. D. (2017). Estudio comparativo entre redes LTE Advanced y LTE a nivel de core . Santiago, Guayaquil.Córdoba, F. A. (2018). Comparativo entre la tecnología de redes 4G y 5G y los beneficios de su implementación en Colombia . Santiago de Cali: Universidad Santiago de Cali.Cortes, J. C. (2019). Análisis de la tecnología Massive MIMO para las redes 5G en Colombia . Bogotá: Universidad Santo Tomás .Chaer, A., Salah, K., Lima, C., Ray, P. P., & Sheltami, T. (2020). Blockchain for 5G: Opportunities and Challenges . USA: IEEE.Chen, H., Wu, J., & Shimomura, T. (2018). New Reference SIgnal Design for URLLC and eMBB Multiplexing in New Radio Wireless Comunications . Italia: IEEE.Chen, W. C. (2014). 5G mmWAVE Technology Desing Challenges and Development Trends. Taiwan: IEEE.Chettri, L., & Bera., R. (2019). A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems . India: IEEE.Chocliourus, I. P., Spiliopoulou, A. S., Kostopoulus, A., Arvanitozisis, D., Yi, N., Chen, T., . . . Spada, M.-R. (2018). Use Cases for Developing enhanced Mobile Broadband Services for the Promotion of 5G. Italia.Chonka, A., & Abawajy, J. (2012). Detecting and mitigating HX-DoS attacks against cloud Web services. IEEE.CRC. (2020). Estudio sobre las condiciones regulatorias para favorecer la adopción de la tecnología 5G en Colombia. ColombiaDiana Carolina Ortíz Casallas, J. J. (2016). Estudio de carrier aggregation para optimizar el uso del espectro asignado a los operadores móviles en Colombia. Bogotá : Universidad Piloto de Colombia.Dogra, A., Jha, R. K., & Jain., S. (2020). A survey on beyond 5G Network with the advent of 6G. India: IEEE.Ejaz, W., Sharma, S. K., Saadat, S., Naeem, M., Anpalagan, A., & Chughtai, N. (2020). A comprehensive survey on resource allocation for CRAN in 5G and beyond networks. Canada: Science Direct.Engobo, S. (2019). Las nuevas tecnologías de radio ara el despliegue de la 5G. Principales requerimientos tecnológicos y dificultades de implementación. . Santa Clara.Garcia, J. D. (2019). Estudio del estado del arte de la telefonía móvil . Piura, Perú : Universidad Nacional de Piura .Gavrilovska, L., Rakovic, V., Ichkov, A., Todorovski, D., & Marinova, S. (2018). Flexible C-RAN: Radio technology for 5G. Serbia: IEEE.Go, I. (2014). Tutorial LTE . Obtenido de http://www.ipv6go.net/lte/arquitectura_red_lte.phpGuefry Leider Agredo, P. e. (2015). Sistemas MIMO con un elevado número de antenas: para la 5G inalámbrica . Cali.Gyawali, S., Xu, S., Qian, Y., & Hu, R. Q. (2020). Challenges and Solutions for Cellular Based V2X Communications. Estados Unidos: IEEE.Hassan, E. H. (2015). 5G Cellular: Key Enabling Technologies and Research Challenges . Canada: IEEE.Ibrahim Afolabi, T. T. (2018). Network Slicing and Softwarization: A survey on Principles, Enabling Technologies, and solutions . Finlandia : IEEE.Ing. Yezid E. Donoso Meisel, P. (14 de Septiembre de 2021). Arquitectura, Nuevos servicios y Ciberseguridad en Redes 5G. Bogotá .Irfan Ahmed, H. K. (2018). A survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives . IEEE.J. M. Hamamreh, E. B. (2017). OFDM-subcarrier index selection for enhancing security and reliability of 5G URLLC services. IEEE.Jia Liu, E. S. (2019). Hybrid - Beamfroming - Based Millimeter - Wave Cellular Network Optimization. IEEE.Jimenez, C. A., & Rizo, F. R. (2013). Arquitectura general del sistema LTE . Revista digital de las tecnologías de la información y comunicaciones , 81-90.Juan Aranda, E. J. (2021). 5G Networks: A review from the perspectives of architecture, business models, cybersecurity, and research developments. Bogotá, Colombia.Khurpade, J. M., Rao, D., & Sanghavi, P. D. (2018). A Survey on IoT and 5G Network . India: IEEE.Lenovo. (01 de 09 de 2021). Lenovo . Obtenido de https://www.lenovo.com/co/es/faqs/pc-vida-faqs/que-es-4g/Lindstrom, P. (2008). The Laws of Virtualization Security: Baselinemag.com Driving Business Success With Technology.Liu, G., Huang, Y., Chen, Z., Liu, L., & LI, Q. W. (2020). 5G Deployment: Standalone vs Non-Standalone from the Operator Perspective . Beijing : IEEE.Lusani Mamushiane, S. D. (2017). Leveraging SDN/VNF as key stepping stones to the 5G era in emerging markets . Sur áfrica : IEEE.Lv, T., Ma, Y., Zeng, J., & Mathiopoulos, P. T. (2018). Millimeter-wave NOMA transmission in cellular M2M communications for Internet of Things. IEEE.M. Tahir, M. H. (2020). A review on application of blockchain in 5G and beyond networks:: Taxonomy, Field-Trials, Challenges and Oportunities. . IEEE.Ma, T., Zhang, Y., Wang, F., Wang, D., & Guo, D. (2020). Slicing Resource Alloaation for eMBB and URLLC in 5G RAN. China.Mathew, A. (2020). Network Slicing in 5G and the Security Concerns . India : IEEE.Muhammad Nauman Irshad, L. D. (2019). A Hybris Solution of SDN Architecture for 5G Mobile Communication to Improve Data Rate Transmission. China: IEEE.Mukherjee, A., Fakoorian, S. A., & Swindlehurst, J. H. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE.Murillo, O. P. (2021). Estudio de cobertura de la tecnología 5G para las zonas metropolitanas de la ciudad de Bogota D.C. Bogotá: Universidad Nacional de Colombia .Muteba, K., Djouani, K., & Olwal, T. (2020). Opportunistic Resource Allocation for Narrowband Internet of Things: A literature Review. Turkia : IEEE.Nour, B., Ksentini, A., Herbaut, N., Frangoudis, P. A., & Moungla, H. (2019). A Blockchain-Based Network Slice Broker for 5G Services. Fracia: IEEE.Núñez, C. J. (2018). Caracterización de lsa ondas milimétricas para determinar su posible aplicación en la Quinta geneación de comunicaciones inalámbricas. Guayaquil, Ecuador.Nurul H. Mahmood, M. G. (2017). Full Duplex Comunications in 5G Small Cells. IEEE.Otros, R. S. (2005). sHype: Secure hypervisor approach to trusted virtualized systems.P.L.S.C Leslie Fernanda Monter, P. D. (2021). Comunicaciones en redes. Obtenido de http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro27/24_multiplexacin.htmlP.L.S.C. Leslie Fernanda Monter Martínez, P. D. (2021). Comunicaciones en redes. Obtenido de http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro27/241_tcnicas_de_multiplexacin.htmlPastor, J. (Noviembe de 2017). Xataka . Obtenido de https://www.xataka.com/especiales/que-es-blockchain-la-explicacion-definitiva-para-la-tecnologia-mas-de-modaPlokiko. (2 de Agosto de 2019). Xakata. Obtenido de xataka.com/moviles/que-significa-que-existan-dos-tipos-de-5g-diferencias-compatibilidades-5g-nsa-5g-saPorras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., & Gu, G. (2012). A security enforcement kernel for OpenFlow networks.Ramos, O. C. (2013). Descripción del estándar LTE-Advanced . Santa Clara .Raza, H. (2013). A brief survey of radio access network backhaul evolution: Part II. IEEE.RHAYOUR, A. E., & MAZRI, T. (2019). 5G Architecture: Deployment scenarios and options. Roma, italia : IEEE.Sahrish Khan Tayyaba, M. A. (2017). 5G Cellular network integration with SDN: Challenges, issues and beyond. Pakistan : IEEE.Samsung. (2021). 5G Standalone Architecture .Santos, A. (16 de Enero de 2018). Ciena . Obtenido de https://www.ciena.com.mx/insights/what-is/What-is-Network-Functions-Virtualization_es_LA.htmlSecurity-Enhanced Floodlight. (2018). Obtenido de http://www.sdncentral.com/education/toward-secure-sdn-control-layer/2013/10Siverio, E. H. (2018). Seguridad de la capa física para redes inalámbricas . Santa clara.Suárez, L. L. (2017). Estudio de Prospectia en el uso de la tecnología 5G en Colombia al 2025. Bogotá : Universidad Santo Tómas.Tanab, M. E., & Hamouda, W. (2019). Machine to Machine communications with massive access: Congestion control . IEEE.Van-Giang Nguyen, A. B.-J. (2017). SDN/NFV-Based Mobile Packet Core Network Architectures: A Survey . Iran: IEEE.Wei Wang, Y. C. (2016). A software-defined wireless networking enables spectrum management architecture . China: IEEE.Wen, X., Chen, Y., Hu, C., & Shi, C. W. (s.f.). Towards a secure controller platform for OpenFlow applications. Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw.Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K.-K., & Gao, X. (2018). A survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead . China: IEEE.Yang, W., & Fung, C. (2016). A survey on security in network functions virtualization. IEEE.Zhang, X., Guo, X., & Zhang., H. (2021). RB Allocation Scheme for eMBB and URLLC Coexistence in 5G and Beyond. China: Telmo reis Cunha.Zhongshan Zhang, X. C. (2015). Full Duplex tecniques for 5G Networks: Self - Interfernce cancellation, Protocol Design and Relay Selection. China: IEEE.Liu, G., Huang, Y., Chen, Z., Liu, L., & LI, Q. W. (2020). 5G Deployment: Standalone vs Non-Standalone from the Operator Perspective . Beijing : IEEEChen, W. C. (2014). 5G mmWAVE Technology Desing Challenges and Development Trends. Taiwan: IEEE.Campos, L. (2017). Estudo das caracterÍsticas de ondas milimÉtricas para os sistemas 5G . Niterói - RJ.Buckley, B. D. (1998). Beamforming: A versatile approach to spatial filtering . IEEE .Irfan Ahmed, H. K. (2018). A survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives . IEEE.Guefry Leider Agredo, P. e. (2015). Sistemas MIMO con un elevado número de antenas: para la 5G inalámbrica . Cali.Jia Liu, E. S. (2019). Hybrid - Beamfroming - Based Millimeter - Wave Cellular Network Optimization. IEEE.Achaleshwar Sahai, G. P. (2011). Pushing the limitis of full - duplex: Desing and Real-time Implementation. Texas, USA: Technical Report TREE1104.Zhongshan Zhang, X. C. (2015). Full Duplex tecniques for 5G Networks: Self - Interfernce cancellation, Protocol Design and Relay Selection. China: IEEE.Sahrish Khan Tayyaba, M. A. (2017). 5G Cellular network integration with SDN: Challenges, issues and beyond. Pakistan: IEEE.3GPP. (Ocubre de 2021). 3GPP. Obtenido de https://www.3gpp.org/about-3gppIbrahim Afolabi, T. T. (2018). Network Slicing and Softwarization: A survey on Principles, Enabling Technologies, and solutions . Finlandia : IEEE.Muhammad Nauman Irshad, L. D. (2019). A Hybris Solution of SDN Architecture for 5G Mobile Communication to Improve Data Rate Transmission. China: IEEE.Lusani Mamushiane, S. D. (2017). Leveraging SDN/VNF as key stepping stones to the 5G era in emerging markets. Sur Africa: IEEE.Van-Giang Nguyen, A. B.-J. (2017). SDN/NFV-Based Mobile Packet Core Network Architectures: A Survey. Iran: IEEE.Alcardo Alex Barakabitze, A. A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Irlanda: Computer Networks .Aleksandra Checko, H. L. (2015). Cloud RN for Mobile Networks - A Technology Overview. Dinamarca: IEEE.Raza, H. (2013). A brief survey of radio access network backhaul evolution: Part II. IEEE.Ijaz Ahmad, S. S. (2019). Security for 5G and Beyond. FInlandia : IEEE.A. Mukherjee, S. A. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE.P.L.S.C Leslie Fernanda Monter, P. D. (2021). Comunicaciones en redes. Obtenido de http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro27/24_multiplexacin.htmlP.L.S.C. Leslie Fernanda Monter Martínez, P. D. (2021). Comunicaciones en redes. Obtenido de http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro27/241_tcnicas_de_multiplexacin.html.Beltran, Ó. L. (2020). Términos de referencia para la migración de LTE a 5G en colombia. Bogotá : Universidad Distrital Francisco José de Caldas.Córdoba, F. A. (2018). Comparativo entre la tecnología de redes 4G y 5G y los beneficios de su implementación en Colombia . Santiago de Cali: Universidad Santiago de Cali.Suárez, L. L. (2017). Estudio de Prospectia en el uso de la tecnología 5G en Colombia al 2025. Bogotá : Universidad Santo Tómas.Murillo, O. P. (2021). Estudio de cobertura de la tecnología 5G para las zonas metropolitanas de la ciudad de Bogota D.C. Bogotá: Universidad Nacional de Colombia.Mathew, A. (2020). Network Slicing in 5G and the Security Concerns . India : IEEE.J. Cao, P. Y. (2019). Fast authentication and data transfer scheme for massive NB-IoT devices in 3GPP 5G network. IEEE.Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K.-K., & Gao, X. (2018). A survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead . China: IEEE.Albreem, M. A., Juntti, M., & Shahabuddin, S. (2019). Massive MIMO Detection Techniques: A Survey . Finlandia: IEEE.Security-Enhanced Floodlight. (2018). Obtenido de http://www.sdncentral.com/education/toward-secure-sdn-control-layer/2013/10Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K.-K., & Gao, X. (2018). A survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead . China: IEEE.Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., & Gu, G. (2012). A security enforcement kernel for OpenFlow networksAl-Shaer, E., & Al-Haj, S. (2010). FlowChecker: Configuration analysis and verification of federated OpenFlow infrastructures.Yang, W., & Fung, C. (2016). A survey on security in network functions virtualization. IEEE.Basile, A. L., Pitscheider, C., Valenza, F., & Vallini, M. (2015). A novel approach for integrating security policy enforcement with dynamic network virtualization.Lindstrom, P. (2008). The Laws of Virtualization Security: Baselinemag.com Driving Business Success With Technology.Otros, R. S. (2005). sHype: Secure hypervisor approach to trusted virtualized systemsChonka, A., & Abawajy, J. (2012). Detecting and mitigating HX-DoS attacks against cloud Web services. IEEE.Pastor, J. (Noviembe de 2017). Xataka . Obtenido de https://www.xataka.com/especiales/que-es-blockchain-la-explicacion-definitiva-para-la-tecnologia-mas-de-modaChaer, A., Salah, K., Lima, C., Ray, P. P., & Sheltami, T. (2020). Blockchain for 5G: Opportunities and Challenges . USA: IEEE.Dogra, A., Jha, R. K., & Jain., S. (2020). A survey on beyond 5G Network with the advent of 6G. India: IEEE.Chen, H., Wu, J., & Shimomura, T. (2018). New Reference SIgnal Design for URLLC and eMBB Multiplexing in New Radio Wireless Comunications . Italia: IEEEZhang, X., Guo, X., & Zhang., H. (2021). RB Allocation Scheme for eMBB and URLLC Coexistence in 5G and Beyond. China: Telmo reis Cunha.Tanab, M. E., & Hamouda, W. (2019). Machine to Machine communications with massive access: Congestion control . IEEE.Lv, T., Ma, Y., Zeng, J., & Mathiopoulos, P. T. (2018). Millimeter-wave NOMA transmission in cellular M2M communications for Internet of Things. IEEEKhurpade, J. M., Rao, D., & Sanghavi, P. D. (2018). A Survey on IoT and 5G Network . India: IEEE.Muteba, K., Djouani, K., & Olwal, T. (2020). Opportunistic Resource Allocation for Narrowband Internet of Things: A literature Review. Turkia : IEEE.Chettri, L., & Bera., R. (2019). A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems . India: IEEE.Bejerano, P. G. (Junio de 2021). ThinkBIG: Cellular V2X: Así conseguirá el 5G que los coches<<hablen>> entre sí . Obtenido de https://blogthinkbig.com/cellular-v2x-asi-conseguira-el-5g-que-los-coches-hablen-entre-siGyawali, S., Xu, S., Qian, Y., & Hu, R. Q. (2020). Challenges and Solutions for Cellular Based V2X Communications. Estados Unidos: IEEE.Dogra, A., Jha, R. K., & Jain., S. (2020). A survey on beyond 5G Network with the advent of 6G. India: IEEE.Jiang, W., Han, B., Habibi, M. A., & Schotten, H. D. (2021). The Road Towards 6G: A Comprenhensive Survey . Alemania: IEEE5G, O. N. (2021). Observatorio Nacional de 5G. Obtenido de https://on5g.es/el-nucleo-de-las-redes-5g-se-empieza-a-abrir-a-multiples-suministradores/5G, O. n. (25 de agosto de 2021). Observatorio nacional de 5G . Obtenido de https://on5g.es/china-amplia-su-dominio-mundial-en-redes-5g-ahora-con-la-banda-de-700-mhz/GSMA. (2016). Espectro 5G: Posición de la GSMA sobre políticas públicas. GSM Association.HUAWEI. (2021). HUAWEI. Obtenido de https://www.huawei.com/en/news/2021/9/5g-core-leadership-awardIulio, A. A. (2021). OESIA. Obtenido de https://ciberseguridad.oesia.com/seguridad-en-redes-5g/Mundo, T. (2020). Qué es la tecnología 5G: beneficios y rumores. Obtenido de https://www.tvmundogt.com/tecnologia/que-es-la-tecnologia-5g-beneficios-y-rumores/Rui, L. (2020). ZTE. Obtenido de https://www.zte.com.cn/global/about/magazine/zte-technologies/2020/5-en/Success-Stories/2.htmlVara, D. J. (2020). Revolución hegemónica china: El 5g y la gobernanza digital. Universidad de león.Digitales. (2021). Digitales. Obtenido de https://www.digitales.es/blog-post/5-preguntas-para-entender-como-se-va-a-desplegar-el-5g-y-que-cambios-nos-traera/Remmert, H. (19 de marzo de 2021). DIGI. Obtenido de https://es.digi.com/blog/post/5g-network-architectureORIGINAL2021MaríaBarrera.pdf2021MaríaBarrera.pdfDocumento Principalapplication/pdf1897952https://repository.usta.edu.co/bitstream/11634/42900/1/2021Mar%c3%adaBarrera.pdf660471bb8cabc5c712ff15b16e7ad71dMD51open accessCarta aprobación facultad.pdfCarta aprobación facultad.pdfCarta autorización Facultadapplication/pdf477273https://repository.usta.edu.co/bitstream/11634/42900/4/Carta%20aprobaci%c3%b3n%20facultad.pdf664dbebfbf9cdace1ccb3f8cdf4a9742MD54metadata only accessCarta derechos de autor.pdfCarta derechos de autor.pdfCarta derechos de autorapplication/pdf1018109https://repository.usta.edu.co/bitstream/11634/42900/5/Carta%20derechos%20de%20autor.pdfee7287839e9f1574bc353ef1ed6f12aaMD55metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repository.usta.edu.co/bitstream/11634/42900/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/42900/3/license.txtaedeaf396fcd827b537c73d23464fc27MD53open accessTHUMBNAIL2021MaríaBarrera.pdf.jpg2021MaríaBarrera.pdf.jpgIM Thumbnailimage/jpeg6038https://repository.usta.edu.co/bitstream/11634/42900/6/2021Mar%c3%adaBarrera.pdf.jpgbae5e860d8e53726b808f53b48581a14MD56open accessCarta aprobación facultad.pdf.jpgCarta aprobación facultad.pdf.jpgIM Thumbnailimage/jpeg9163https://repository.usta.edu.co/bitstream/11634/42900/7/Carta%20aprobaci%c3%b3n%20facultad.pdf.jpgde10232a6ae1512d1e063ac10c05dcf8MD57open accessCarta derechos de autor.pdf.jpgCarta derechos de autor.pdf.jpgIM Thumbnailimage/jpeg7632https://repository.usta.edu.co/bitstream/11634/42900/8/Carta%20derechos%20de%20autor.pdf.jpg0d540850e420734f5c921fa2197fd5adMD58open access11634/42900oai:repository.usta.edu.co:11634/429002022-11-25 03:11:44.095open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |