Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua.

Los sistemas de drenaje urbano sostenibles son mecanismos que permiten mantener el recurso hídrico a lo largo del tiempo como, por ejemplo, cuando el agua ingresa dentro de las cuencas hidrográficas con dichas estrategias se facilita la mitigación de desastres naturales provocados en las distintas c...

Full description

Autores:
Hernandez Echeverria, Anggi Daniela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/50134
Acceso en línea:
http://hdl.handle.net/11634/50134
Palabra clave:
Sustainability
Water
Soil
Technologies
Urban
Drainage
hidrologia, modelación, investigación
Sostenibilidad
Agua
Suelo
Tecnologías
Urbano
Drenaje
Rights
openAccess
License
Abierto (Texto Completo)
id SANTTOMAS2_00e1a9215744a6e5b3d81f8987dd7f77
oai_identifier_str oai:repository.usta.edu.co:11634/50134
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua.
title Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua.
spellingShingle Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua.
Sustainability
Water
Soil
Technologies
Urban
Drainage
hidrologia, modelación, investigación
Sostenibilidad
Agua
Suelo
Tecnologías
Urbano
Drenaje
title_short Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua.
title_full Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua.
title_fullStr Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua.
title_full_unstemmed Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua.
title_sort Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua.
dc.creator.fl_str_mv Hernandez Echeverria, Anggi Daniela
dc.contributor.advisor.none.fl_str_mv Suarez Castillo, Claudia Rocio
dc.contributor.author.none.fl_str_mv Hernandez Echeverria, Anggi Daniela
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomas-Seccional Tunja
dc.subject.keyword.spa.fl_str_mv Sustainability
Water
Soil
Technologies
Urban
Drainage
topic Sustainability
Water
Soil
Technologies
Urban
Drainage
hidrologia, modelación, investigación
Sostenibilidad
Agua
Suelo
Tecnologías
Urbano
Drenaje
dc.subject.lemb.spa.fl_str_mv hidrologia, modelación, investigación
dc.subject.proposal.spa.fl_str_mv Sostenibilidad
Agua
Suelo
Tecnologías
Urbano
Drenaje
description Los sistemas de drenaje urbano sostenibles son mecanismos que permiten mantener el recurso hídrico a lo largo del tiempo como, por ejemplo, cuando el agua ingresa dentro de las cuencas hidrográficas con dichas estrategias se facilita la mitigación de desastres naturales provocados en las distintas ciudades. Estos sistemas abarcan gran parte de las necesidades por la alta demanda en las corrientes de agua y que son causadas por las fuertes lluvias las cuales generan inundaciones(Distrital Francisco José Caldas Facultad del Medio Ambiente Y Recursos Naturales, n.d.). Estas metodologías de desarrollo sustentable corresponden a las nuevas tecnologías a nivel global que se implementan en la gestión de aguas pluviales para el manejo de los caudales, para realizar análisis hidrológicos e hidráulicos donde se encuentran diseños de prácticas verdes, canales urbanos de retención. De igual manera se tiene en cuenta el recurso suelo debido a que al pasar de las décadas el uso de suelo por la implantación de infraestructuras se ha deteriorado llegándose así a perder cobertura vegetal por el sellado del suelo, en las cuales en las zonas urbanas a causa de la impermeabilización los ambientes urbanos han perdido sus recursos naturales por lo que la ejecución de estos sistemas aporta a que se tengan soluciones sustentables dejando a un lado sistemas convencionales(Cardines, 2019).
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11-28
dc.date.accessioned.none.fl_str_mv 2023-04-10T22:26:16Z
dc.date.available.none.fl_str_mv 2023-04-10T22:26:16Z
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Hernandez, A. (2023).Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua. trabajo de posgrado. Universidad santo tomas. Tunja.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/50134
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Hernandez, A. (2023).Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua. trabajo de posgrado. Universidad santo tomas. Tunja.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/50134
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abu-Rizaiza, O. S., & Sarikaya, H. Z. (1994). Drainage water reuse or disposal, Jeddah, Saudi Arabia. Desalination, 98(1–3), 173–183. https://doi.org/10.1016/0011-9164(94)00142-1 Angelakis, A. N., Koutsoyiannis, D., & Tchobanoglous, G. (2005). Urban wastewater and stormwater technologies in ancient Greece. Water Research, 39(1), 210–220. https://doi.org/https://doi.org/10.1016/j.watres.2004.08.033 Aspegren, H., Hellström, B. G., & Olsson, G. (1997). The urban water system - A future swedish perspective. Water Science and Technology, 35(9), 33–43. https://doi.org/10.1016/S0273-1223(97)00182-0 Burger, G., Bach, P. M., Urich, C., Leonhardt, G., Kleidorfer, M., & Rauch, W. (2016a). Designing and implementing a multi-core capable integrated urban drainage modelling Toolkit:Lessons from CityDrain3. Advances in Engineering Software, 100, 277–289. https://doi.org/https://doi.org/10.1016/j.advengsoft.2016.08.004 Cardines, C. (2019). Estudio de implantación de Sistemas de Drenaje Urbano Sostenible en regiones semiáridas: aplicación a cubiertas verdes y canales urbanos de retención. http://hdl.handle.net/10317/8629 Chen, Z., Lu, J., Gao, S.-H., Jin, M., Bond, P. L., Yang, P., Yuan, Z., & Guo, J. (2018). Silver nanoparticles stimulate the proliferation of sulfate reducing bacterium Desulfovibrio vulgaris. Water Research, 129, 163–171. https://doi.org/https://doi.org/10.1016/j.watres.2017.11.021 Chini, C. M., Canning, J. F., Schreiber, K. L., Peschel, J. M., & Stillwell, A. S. (2017). The green experiment: Cities, green stormwater infrastructure, and sustainability. Sustainability (Switzerland), 9(1), 1–21. https://doi.org/10.3390/su9010105 de la Cruz, A. O., Chávez, C. R. Á., & Llano, D. C. O. (2020). Sustainable stormwater drainage. A rain water management alternative at the University of Sonora. Contexto, 14(20), 53–69. https://doi.org/10.29105/CONTEXTO14.20-4 Devesa, F., Comas, J., Turon, C., Freixó, A., Carrasco, F., & Poch, M. (2009). Scenario analysis for the role of sanitation infrastructures in integrated urban wastewater management. Environmental Modelling & Software, 24(3), 371–380. https://doi.org/https://doi.org/10.1016/j.envsoft.2008.08.003 Distrital Francisco Jose Caldas Facultaddel Medio Ambiente Y Recursos Naturales, U. de. (n.d.). DESCRIPCION DE LOS SISTEMAS URBANOS DE DRENAJE SOSTENIBLE COMO ESTRATEGIA PARA LA MEJORA DE LA CALIDAD DE VIDA HUMANA Y PREVENCION DE INUNDACIONES MONOGRAFÍA PARA OPTAR AL GRADO DE TECNÓLOGO EN SANEAMIENTO. Equipo de Trabajo de las Naciones Unidas sobre el Hábitat III. (2015). Temas Habitat Iii infraestructura urbana Servicios Básicos , Incluida La Energía. Estelrich, M., Vosse, J., Comas, J., Atanasova, N., Costa, J. C., Gattringer, H., & Buttiglieri, G. (2021a). Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. Journal of Environmental Management, 294, 112968. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.112968 Estelrich, M., Vosse, J., Comas, J., Atanasova, N., Costa, J. C., Gattringer, H., & Buttiglieri, G. (2021b). Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. Journal of Environmental Management, 294, 112968. https://doi.org/10.1016/J.JENVMAN.2021.112968 Faivre, N., Fritz, M., Freitas, T., de Boissezon, B., & Vandewoestijne, S. (2017). Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environmental Research, 159(August 2017), 509–518. https://doi.org/10.1016/j.envres.2017.08.032 Fisac, J., de Pazos, M., Rodriguez, S., & Montilla, E. (2019). Reducción de descargas de sistemas de alcantarillado unitario adoptando técnicas de drenaje urbano sostenible. Revista de Obras Publicas, 166(3607). Gambi, G., Maglionico, M., & Tondelli, S. (2011). Water management in local development plans: the case of the old Fruit and Vegetable Market in Bologna. Procedia Engineering, 21, 1110–1117. https://doi.org/https://doi.org/10.1016/j.proeng.2011.11.2118 Gómez-Monsalve, M., Domínguez, I. C., Yan, X., Ward, S., & Oviedo-Ocaña, E. R. (2022). Environmental performance of a hybrid rainwater harvesting and greywater reuse system: A case study on a high water consumption household in Colombia. Journal of Cleaner Production, 345, 131125. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131125 Hacker, M. E., & Binz, C. (2021). Navigating institutional complexity in socio-technical transitions. Environmental Innovation and Societal Transitions, 40, 367–381. https://doi.org/https://doi.org/10.1016/j.eist.2021.09.003 Jiménez-Benítez, A., Ferrer, F. J., Greses, S., Ruiz-Martínez, A., Fatone, F., Eusebi, A. L., Mondéjar, N., Ferrer, J., & Seco, A. (2020). AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative. Journal of Cleaner Production, 270, 122398. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122398 Joshi, P., Leitão, J. P., Maurer, M., & Bach, P. M. (2021). Not all SuDS are created equal: Impact of different approaches on combined sewer overflows. Water Research, 191, 116780. https://doi.org/https://doi.org/10.1016/j.watres.2020.116780 Karpf, C., & Krebs, P. (2011a). Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach. Water Research, 45(10), 3129–3136. https://doi.org/https://doi.org/10.1016/j.watres.2011.03.022 Köster, S. (2021). How the Sponge City becomes a supplementary water supply infrastructure. Water-Energy Nexus, 4, 35–40. https://doi.org/https://doi.org/10.1016/j.wen.2021.02.002 Lafortezza, R., Chen, J., van den Bosch, C. K., & Randrup, T. B. (2018). Nature-based solutions for resilient landscapes and cities. Environmental Research, 165(December 2017), 431–441. https://doi.org/10.1016/j.envres.2017.11.038 Meerow, S., & Newell, J. P. (2017). Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landscape and Urban Planning, 159, 62–75. https://doi.org/10.1016/j.landurbplan.2016.10.005 Murali, M. K., Hipsey, M. R., Ghadouani, A., & Yuan, Z. (2019). The development and application of improved solids modelling to enable resilient urban sewer networks. Journal of Environmental Management, 240, 219–230. https://doi.org/10.1016/J.JENVMAN.2019.03.120 Ocampo-Martínez, C., Ingimundarson, A., Puig, V., & Quevedo, J. (2006). FAULT TOLERANT HYBRID MPC APPLIED ON SEWER NETWORKS1. IFAC Proceedings Volumes, 39(13), 144–149. https://doi.org/https://doi.org/10.3182/20060829-4-CN-2909.00023 Pacetti, T., Cioli, S., Castelli, G., Bresci, E., Pampaloni, M., Pileggi, T., & Caporali, E. (2022). Planning Nature Based Solutions against urban pluvial flooding in heritage cities: A spatial multi criteria approach for the city of Florence (Italy). Journal of Hydrology: Regional Studies, 41, 101081. https://doi.org/https://doi.org/10.1016/j.ejrh.2022.101081 Radhakrishnan, M., Pathirana, A., Ashley, R. M., Gersonius, B., & Zevenbergen, C. (2018). Flexible adaptation planning for water sensitive cities. Cities, 78(January), 87–95. https://doi.org/10.1016/j.cities.2018.01.022 Rebosura, M., Salehin, S., Pikaar, I., Sun, X., Keller, J., Sharma, K., & Yuan, Z. (2018). A comprehensive laboratory assessment of the effects of sewer-dosed iron salts on wastewater treatment processes. Water Research, 146, 109–117. https://doi.org/https://doi.org/10.1016/j.watres.2018.09.021 Rogers, B. C., Dunn, G., Hammer, K., Novalia, W., de Haan, F. J., Brown, L., Brown, R. R., Lloyd, S., Urich, C., Wong, T. H. F., & Chesterfield, C. (2020). Water Sensitive Cities Index: A diagnostic tool to assess water sensitivity and guide management actions. Water Research, 186, 116411. https://doi.org/10.1016/j.watres.2020.116411 Serrao-Neumann, S., Renouf, M. A., Morgan, E., Kenway, S. J., & Low Choy, D. (2019). Urban water metabolism information for planning water sensitive city-regions. Land Use Policy, 88(August), 104144. https://doi.org/10.1016/j.landusepol.2019.104144 Shi, Z., Watanabe, S., Ogawa, K., & Kubo, H. (2018). 5 - Tokyo’s sewer reconstruction and resilience enhancement measures. In Z. Shi, S. Watanabe, K. Ogawa, & H. Kubo (Eds.), Structural Resilience in Sewer Reconstruction (pp. 143–192). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-811552-7.00005-5 Sitzenfrei, R., Möderl, M., & Rauch, W. (2013). Assessing the impact of transitions from centralised to decentralised water solutions on existing infrastructures – Integrated city-scale analysis with VIBe. Water Research, 47(20), 7251–7263. https://doi.org/https://doi.org/10.1016/j.watres.2013.10.038 Tetteh, E. K., Asante-Sackey, D., Armah, E. K., & Rathilal, S. (2022). Chapter 6 - Tapping wastewater resource: why and how? In S. Sahay (Ed.), Handbook of Biofuels (pp. 125–146). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-822810-4.00006-3 Torres, A., Galarza-Molina, S., & Molina-Prieto, L. F. (2019). Bogotá, a city sensitive to the water: Elements for reflection. Cuadernos de Vivienda y Urbanismo, 12(23). https://doi.org/10.11144/JAVERIANA.CVU12-23.BCSA Vermonden, K., van der Velde, G., & Leuven, R. S. E. W. (2012). Key factors for biodiversity of surface waters in climate proof cities. Resources, Conservation and Recycling, 64, 56–62. https://doi.org/https://doi.org/10.1016/j.resconrec.2011.01.003 Villarín, M. C., & Merel, S. (2020). Paradigm shifts and current challenges in wastewater management. Journal of Hazardous Materials, 390, 122139. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.122139 Walsh, C. J. (2022). Urban Streams and Rivers☆. In T. Mehner & K. Tockner (Eds.), Encyclopedia of Inland Waters (Second Edition) (Second Edition, pp. 491–502). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819166-8.00092-X Wang, Y., Zhang, X., Zhang, D., Fu, G., Dong, X., & Zeng, S. (2022). The structure design of integrated urban drainage systems: A view of robust optimization. Journal of Environmental Management, 322, 116050. https://doi.org/10.1016/J.JENVMAN.2022.116050 Weinrich, L., Hubler, J. F., & Spatari, S. (2012). Urban water supply: modeling watersheds and treatment facilities. Metropolitan Sustainability: Understanding and Improving the Urban Environment, 370–389. https://doi.org/10.1533/9780857096463.3.370 Willuweit, L., & O’Sullivan, J. J. (2013). A decision support tool for sustainable planning of urban water systems: Presenting the Dynamic Urban Water Simulation Model. Water Research, 47(20), 7206–7220. https://doi.org/10.1016/J.WATRES.2013.09.060 Zhang, Q., Zheng, F., Jia, Y., Savic, D., & Kapelan, Z. (2021). Real-time foul sewer hydraulic modelling driven by water consumption data from water distribution systems. Water Research, 188, 116544. https://doi.org/https://doi.org/10.1016/j.watres.2020.116544 Zhao, X., Zheng, Y., Hu, S., Qiu, W., Jiang, J., Gao, C., Xiong, J., Lu, H., & Quan, F. (2021). Improving urban drainage systems to mitigate PPCPs pollution in surface water: A watershed perspective. Journal of Hazardous Materials, 411, 125047. https://doi.org/10.1016/J.JHAZMAT.2021.125047
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv text/html
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Tunja
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado de Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/50134/1/2023anggiehernandez.pdf
https://repository.usta.edu.co/bitstream/11634/50134/2/Carta%20derechos%20de%20autor.pdf
https://repository.usta.edu.co/bitstream/11634/50134/4/Carta%20autorizaci%c3%b3n%20facultad.pdf
https://repository.usta.edu.co/bitstream/11634/50134/3/license.txt
https://repository.usta.edu.co/bitstream/11634/50134/5/2023anggiehernandez.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/50134/6/Carta%20derechos%20de%20autor.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/50134/7/Carta%20autorizaci%c3%b3n%20facultad.pdf.jpg
bitstream.checksum.fl_str_mv f65f3cabbf28bb74f206ee78c81af18f
255bbd1ceaeffb361e9d316e630337e6
aad4b15b40f1e3d56dbeebaaaa6498be
aedeaf396fcd827b537c73d23464fc27
7cfedd57767592b3076e6838f56dab8a
792c5b199dd1bdacb95e0f58b9e4730c
23b26fc10b8327e6c1812ebe7a185fe4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026208482951168
spelling Suarez Castillo, Claudia RocioHernandez Echeverria, Anggi DanielaUniversidad Santo Tomas-Seccional Tunja2023-04-10T22:26:16Z2023-04-10T22:26:16Z2022-11-28Hernandez, A. (2023).Análisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua. trabajo de posgrado. Universidad santo tomas. Tunja.http://hdl.handle.net/11634/50134reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coLos sistemas de drenaje urbano sostenibles son mecanismos que permiten mantener el recurso hídrico a lo largo del tiempo como, por ejemplo, cuando el agua ingresa dentro de las cuencas hidrográficas con dichas estrategias se facilita la mitigación de desastres naturales provocados en las distintas ciudades. Estos sistemas abarcan gran parte de las necesidades por la alta demanda en las corrientes de agua y que son causadas por las fuertes lluvias las cuales generan inundaciones(Distrital Francisco José Caldas Facultad del Medio Ambiente Y Recursos Naturales, n.d.). Estas metodologías de desarrollo sustentable corresponden a las nuevas tecnologías a nivel global que se implementan en la gestión de aguas pluviales para el manejo de los caudales, para realizar análisis hidrológicos e hidráulicos donde se encuentran diseños de prácticas verdes, canales urbanos de retención. De igual manera se tiene en cuenta el recurso suelo debido a que al pasar de las décadas el uso de suelo por la implantación de infraestructuras se ha deteriorado llegándose así a perder cobertura vegetal por el sellado del suelo, en las cuales en las zonas urbanas a causa de la impermeabilización los ambientes urbanos han perdido sus recursos naturales por lo que la ejecución de estos sistemas aporta a que se tengan soluciones sustentables dejando a un lado sistemas convencionales(Cardines, 2019).Sustainable urban drainage systems are mechanisms that allow water resources to be maintained over time, such as, for example, when the water enters the hydrographic basins with these strategies, the mitigation of natural disasters caused in the different cities is facilitated. These systems cover a large part of the needs due to the high demand in water currents and that are caused by heavy rains which generate floods (Francisco José Caldas District Faculty of Environment and Natural Resources, n.d.). These sustainable development methodologies correspond to the new technologies at a global level that are implemented in the management of rainwater for the management of flows, to carry out hydrological and hydraulic analyzes where green practices designs, urban retention channels are found. In the same way, the soil resource is taken into account because, over the decades, the use of land due to the implementation of infrastructures has deteriorated, thus losing plant cover due to the sealing of the soil, in which in urban areas Due to waterproofing, urban environments have lost their natural resources, so the execution of these systems contributes to having sustainable solutions, leaving aside conventional systems (Cardines, 2019).Ingeniero AmbientalPregradotext/htmlspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalAnálisis bibliométrico de la investigación sobre los drenajes urbanos sostenibles implementado a ciudades sensibles al agua.SustainabilityWaterSoilTechnologiesUrbanDrainagehidrologia, modelación, investigaciónSostenibilidadAguaSueloTecnologíasUrbanoDrenajeTrabajo de Gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisAbierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CRAI-USTA TunjaAbu-Rizaiza, O. S., & Sarikaya, H. Z. (1994). Drainage water reuse or disposal, Jeddah, Saudi Arabia. Desalination, 98(1–3), 173–183. https://doi.org/10.1016/0011-9164(94)00142-1 Angelakis, A. N., Koutsoyiannis, D., & Tchobanoglous, G. (2005). Urban wastewater and stormwater technologies in ancient Greece. Water Research, 39(1), 210–220. https://doi.org/https://doi.org/10.1016/j.watres.2004.08.033 Aspegren, H., Hellström, B. G., & Olsson, G. (1997). The urban water system - A future swedish perspective. Water Science and Technology, 35(9), 33–43. https://doi.org/10.1016/S0273-1223(97)00182-0 Burger, G., Bach, P. M., Urich, C., Leonhardt, G., Kleidorfer, M., & Rauch, W. (2016a). Designing and implementing a multi-core capable integrated urban drainage modelling Toolkit:Lessons from CityDrain3. Advances in Engineering Software, 100, 277–289. https://doi.org/https://doi.org/10.1016/j.advengsoft.2016.08.004 Cardines, C. (2019). Estudio de implantación de Sistemas de Drenaje Urbano Sostenible en regiones semiáridas: aplicación a cubiertas verdes y canales urbanos de retención. http://hdl.handle.net/10317/8629 Chen, Z., Lu, J., Gao, S.-H., Jin, M., Bond, P. L., Yang, P., Yuan, Z., & Guo, J. (2018). Silver nanoparticles stimulate the proliferation of sulfate reducing bacterium Desulfovibrio vulgaris. Water Research, 129, 163–171. https://doi.org/https://doi.org/10.1016/j.watres.2017.11.021 Chini, C. M., Canning, J. F., Schreiber, K. L., Peschel, J. M., & Stillwell, A. S. (2017). The green experiment: Cities, green stormwater infrastructure, and sustainability. Sustainability (Switzerland), 9(1), 1–21. https://doi.org/10.3390/su9010105 de la Cruz, A. O., Chávez, C. R. Á., & Llano, D. C. O. (2020). Sustainable stormwater drainage. A rain water management alternative at the University of Sonora. Contexto, 14(20), 53–69. https://doi.org/10.29105/CONTEXTO14.20-4 Devesa, F., Comas, J., Turon, C., Freixó, A., Carrasco, F., & Poch, M. (2009). Scenario analysis for the role of sanitation infrastructures in integrated urban wastewater management. Environmental Modelling & Software, 24(3), 371–380. https://doi.org/https://doi.org/10.1016/j.envsoft.2008.08.003 Distrital Francisco Jose Caldas Facultaddel Medio Ambiente Y Recursos Naturales, U. de. (n.d.). DESCRIPCION DE LOS SISTEMAS URBANOS DE DRENAJE SOSTENIBLE COMO ESTRATEGIA PARA LA MEJORA DE LA CALIDAD DE VIDA HUMANA Y PREVENCION DE INUNDACIONES MONOGRAFÍA PARA OPTAR AL GRADO DE TECNÓLOGO EN SANEAMIENTO. Equipo de Trabajo de las Naciones Unidas sobre el Hábitat III. (2015). Temas Habitat Iii infraestructura urbana Servicios Básicos , Incluida La Energía. Estelrich, M., Vosse, J., Comas, J., Atanasova, N., Costa, J. C., Gattringer, H., & Buttiglieri, G. (2021a). Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. Journal of Environmental Management, 294, 112968. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.112968 Estelrich, M., Vosse, J., Comas, J., Atanasova, N., Costa, J. C., Gattringer, H., & Buttiglieri, G. (2021b). Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. Journal of Environmental Management, 294, 112968. https://doi.org/10.1016/J.JENVMAN.2021.112968 Faivre, N., Fritz, M., Freitas, T., de Boissezon, B., & Vandewoestijne, S. (2017). Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environmental Research, 159(August 2017), 509–518. https://doi.org/10.1016/j.envres.2017.08.032 Fisac, J., de Pazos, M., Rodriguez, S., & Montilla, E. (2019). Reducción de descargas de sistemas de alcantarillado unitario adoptando técnicas de drenaje urbano sostenible. Revista de Obras Publicas, 166(3607). Gambi, G., Maglionico, M., & Tondelli, S. (2011). Water management in local development plans: the case of the old Fruit and Vegetable Market in Bologna. Procedia Engineering, 21, 1110–1117. https://doi.org/https://doi.org/10.1016/j.proeng.2011.11.2118 Gómez-Monsalve, M., Domínguez, I. C., Yan, X., Ward, S., & Oviedo-Ocaña, E. R. (2022). Environmental performance of a hybrid rainwater harvesting and greywater reuse system: A case study on a high water consumption household in Colombia. Journal of Cleaner Production, 345, 131125. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131125 Hacker, M. E., & Binz, C. (2021). Navigating institutional complexity in socio-technical transitions. Environmental Innovation and Societal Transitions, 40, 367–381. https://doi.org/https://doi.org/10.1016/j.eist.2021.09.003 Jiménez-Benítez, A., Ferrer, F. J., Greses, S., Ruiz-Martínez, A., Fatone, F., Eusebi, A. L., Mondéjar, N., Ferrer, J., & Seco, A. (2020). AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative. Journal of Cleaner Production, 270, 122398. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122398 Joshi, P., Leitão, J. P., Maurer, M., & Bach, P. M. (2021). Not all SuDS are created equal: Impact of different approaches on combined sewer overflows. Water Research, 191, 116780. https://doi.org/https://doi.org/10.1016/j.watres.2020.116780 Karpf, C., & Krebs, P. (2011a). Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach. Water Research, 45(10), 3129–3136. https://doi.org/https://doi.org/10.1016/j.watres.2011.03.022 Köster, S. (2021). How the Sponge City becomes a supplementary water supply infrastructure. Water-Energy Nexus, 4, 35–40. https://doi.org/https://doi.org/10.1016/j.wen.2021.02.002 Lafortezza, R., Chen, J., van den Bosch, C. K., & Randrup, T. B. (2018). Nature-based solutions for resilient landscapes and cities. Environmental Research, 165(December 2017), 431–441. https://doi.org/10.1016/j.envres.2017.11.038 Meerow, S., & Newell, J. P. (2017). Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landscape and Urban Planning, 159, 62–75. https://doi.org/10.1016/j.landurbplan.2016.10.005 Murali, M. K., Hipsey, M. R., Ghadouani, A., & Yuan, Z. (2019). The development and application of improved solids modelling to enable resilient urban sewer networks. Journal of Environmental Management, 240, 219–230. https://doi.org/10.1016/J.JENVMAN.2019.03.120 Ocampo-Martínez, C., Ingimundarson, A., Puig, V., & Quevedo, J. (2006). FAULT TOLERANT HYBRID MPC APPLIED ON SEWER NETWORKS1. IFAC Proceedings Volumes, 39(13), 144–149. https://doi.org/https://doi.org/10.3182/20060829-4-CN-2909.00023 Pacetti, T., Cioli, S., Castelli, G., Bresci, E., Pampaloni, M., Pileggi, T., & Caporali, E. (2022). Planning Nature Based Solutions against urban pluvial flooding in heritage cities: A spatial multi criteria approach for the city of Florence (Italy). Journal of Hydrology: Regional Studies, 41, 101081. https://doi.org/https://doi.org/10.1016/j.ejrh.2022.101081 Radhakrishnan, M., Pathirana, A., Ashley, R. M., Gersonius, B., & Zevenbergen, C. (2018). Flexible adaptation planning for water sensitive cities. Cities, 78(January), 87–95. https://doi.org/10.1016/j.cities.2018.01.022 Rebosura, M., Salehin, S., Pikaar, I., Sun, X., Keller, J., Sharma, K., & Yuan, Z. (2018). A comprehensive laboratory assessment of the effects of sewer-dosed iron salts on wastewater treatment processes. Water Research, 146, 109–117. https://doi.org/https://doi.org/10.1016/j.watres.2018.09.021 Rogers, B. C., Dunn, G., Hammer, K., Novalia, W., de Haan, F. J., Brown, L., Brown, R. R., Lloyd, S., Urich, C., Wong, T. H. F., & Chesterfield, C. (2020). Water Sensitive Cities Index: A diagnostic tool to assess water sensitivity and guide management actions. Water Research, 186, 116411. https://doi.org/10.1016/j.watres.2020.116411 Serrao-Neumann, S., Renouf, M. A., Morgan, E., Kenway, S. J., & Low Choy, D. (2019). Urban water metabolism information for planning water sensitive city-regions. Land Use Policy, 88(August), 104144. https://doi.org/10.1016/j.landusepol.2019.104144 Shi, Z., Watanabe, S., Ogawa, K., & Kubo, H. (2018). 5 - Tokyo’s sewer reconstruction and resilience enhancement measures. In Z. Shi, S. Watanabe, K. Ogawa, & H. Kubo (Eds.), Structural Resilience in Sewer Reconstruction (pp. 143–192). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-811552-7.00005-5 Sitzenfrei, R., Möderl, M., & Rauch, W. (2013). Assessing the impact of transitions from centralised to decentralised water solutions on existing infrastructures – Integrated city-scale analysis with VIBe. Water Research, 47(20), 7251–7263. https://doi.org/https://doi.org/10.1016/j.watres.2013.10.038 Tetteh, E. K., Asante-Sackey, D., Armah, E. K., & Rathilal, S. (2022). Chapter 6 - Tapping wastewater resource: why and how? In S. Sahay (Ed.), Handbook of Biofuels (pp. 125–146). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-822810-4.00006-3 Torres, A., Galarza-Molina, S., & Molina-Prieto, L. F. (2019). Bogotá, a city sensitive to the water: Elements for reflection. Cuadernos de Vivienda y Urbanismo, 12(23). https://doi.org/10.11144/JAVERIANA.CVU12-23.BCSA Vermonden, K., van der Velde, G., & Leuven, R. S. E. W. (2012). Key factors for biodiversity of surface waters in climate proof cities. Resources, Conservation and Recycling, 64, 56–62. https://doi.org/https://doi.org/10.1016/j.resconrec.2011.01.003 Villarín, M. C., & Merel, S. (2020). Paradigm shifts and current challenges in wastewater management. Journal of Hazardous Materials, 390, 122139. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.122139 Walsh, C. J. (2022). Urban Streams and Rivers☆. In T. Mehner & K. Tockner (Eds.), Encyclopedia of Inland Waters (Second Edition) (Second Edition, pp. 491–502). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819166-8.00092-X Wang, Y., Zhang, X., Zhang, D., Fu, G., Dong, X., & Zeng, S. (2022). The structure design of integrated urban drainage systems: A view of robust optimization. Journal of Environmental Management, 322, 116050. https://doi.org/10.1016/J.JENVMAN.2022.116050 Weinrich, L., Hubler, J. F., & Spatari, S. (2012). Urban water supply: modeling watersheds and treatment facilities. Metropolitan Sustainability: Understanding and Improving the Urban Environment, 370–389. https://doi.org/10.1533/9780857096463.3.370 Willuweit, L., & O’Sullivan, J. J. (2013). A decision support tool for sustainable planning of urban water systems: Presenting the Dynamic Urban Water Simulation Model. Water Research, 47(20), 7206–7220. https://doi.org/10.1016/J.WATRES.2013.09.060 Zhang, Q., Zheng, F., Jia, Y., Savic, D., & Kapelan, Z. (2021). Real-time foul sewer hydraulic modelling driven by water consumption data from water distribution systems. Water Research, 188, 116544. https://doi.org/https://doi.org/10.1016/j.watres.2020.116544 Zhao, X., Zheng, Y., Hu, S., Qiu, W., Jiang, J., Gao, C., Xiong, J., Lu, H., & Quan, F. (2021). Improving urban drainage systems to mitigate PPCPs pollution in surface water: A watershed perspective. Journal of Hazardous Materials, 411, 125047. https://doi.org/10.1016/J.JHAZMAT.2021.125047ORIGINAL2023anggiehernandez.pdf2023anggiehernandez.pdfDocumento Principalapplication/pdf450747https://repository.usta.edu.co/bitstream/11634/50134/1/2023anggiehernandez.pdff65f3cabbf28bb74f206ee78c81af18fMD51metadata only accessCarta derechos de autor.pdfCarta derechos de autor.pdfcarta derechos de autorapplication/pdf440804https://repository.usta.edu.co/bitstream/11634/50134/2/Carta%20derechos%20de%20autor.pdf255bbd1ceaeffb361e9d316e630337e6MD52metadata only accessCarta autorización facultad.pdfCarta autorización facultad.pdfCarta autorización Facultadapplication/pdf414781https://repository.usta.edu.co/bitstream/11634/50134/4/Carta%20autorizaci%c3%b3n%20facultad.pdfaad4b15b40f1e3d56dbeebaaaa6498beMD54metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/50134/3/license.txtaedeaf396fcd827b537c73d23464fc27MD53open accessTHUMBNAIL2023anggiehernandez.pdf.jpg2023anggiehernandez.pdf.jpgIM Thumbnailimage/jpeg7704https://repository.usta.edu.co/bitstream/11634/50134/5/2023anggiehernandez.pdf.jpg7cfedd57767592b3076e6838f56dab8aMD55open accessCarta derechos de autor.pdf.jpgCarta derechos de autor.pdf.jpgIM Thumbnailimage/jpeg8185https://repository.usta.edu.co/bitstream/11634/50134/6/Carta%20derechos%20de%20autor.pdf.jpg792c5b199dd1bdacb95e0f58b9e4730cMD56open accessCarta autorización facultad.pdf.jpgCarta autorización facultad.pdf.jpgIM Thumbnailimage/jpeg9653https://repository.usta.edu.co/bitstream/11634/50134/7/Carta%20autorizaci%c3%b3n%20facultad.pdf.jpg23b26fc10b8327e6c1812ebe7a185fe4MD57open access11634/50134oai:repository.usta.edu.co:11634/501342023-05-09 09:13:48.087metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K