Building malware classificators usable by State security agencies
Sandboxing has been used regularly to analyze software samples and determine if these contain suspicious properties or behaviors. Even if sandboxing is a powerful technique to perform malware analysis, it requires that a malware analyst performs a rigorous analysis of the results to determine the na...
- Autores:
-
Useche-Peláez, David Esteban
Díaz-López, Daniel Orlando
Sepúlveda-Alzate, Daniela
Cabuya-Padilla, Diego Edison
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/36191
- Acceso en línea:
- http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2072
http://hdl.handle.net/11634/36191
- Palabra clave:
- Rights
- License
- Copyright (c) 2018 ITECKNE
id |
SANTTOMAS2_00967cdace69a6788190f3dbbb4960d3 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/36191 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
spelling |
Useche-Peláez, David EstebanDíaz-López, Daniel OrlandoSepúlveda-Alzate, DanielaCabuya-Padilla, Diego Edison2021-09-24T13:17:51Z2021-09-24T13:17:51Z2018-12-07http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/207210.15332/iteckne.v15i2.2072http://hdl.handle.net/11634/36191Sandboxing has been used regularly to analyze software samples and determine if these contain suspicious properties or behaviors. Even if sandboxing is a powerful technique to perform malware analysis, it requires that a malware analyst performs a rigorous analysis of the results to determine the nature of the sample: goodware or malware. This paper proposes two machine learning models able to classify samples based on signatures and permissions obtained through Cuckoo sandbox, Androguard and VirusTotal. The developed models are also tested obtaining an acceptable percentage of correctly classified samples, being in this way useful tools for a malware analyst. A proposal of architecture for an IoT sentinel that uses one of the developed machine learning model is also showed. Finally, different approaches, perspectives, and challenges about the use of sandboxing and machine learning by security teams in State security agencies are also shared.El sandboxing ha sido usado de manera regular para analizar muestras de software y determinar si estas contienen propiedades o comportamientos sospechosos. A pesar de que el sandboxing es una técnica poderosa para desarrollar análisis de malware, esta requiere que un analista de malware desarrolle un análisis riguroso de los resultados para determinar la naturaleza de la muestra: goodware o malware. Este artículo propone dos modelos de aprendizaje automáticos capaces de clasificar muestras con base a un análisis de firmas o permisos extraídos por medio de Cuckoo sandbox, Androguard y VirusTotal. En este artículo también se presenta una propuesta de arquitectura de centinela IoT que protege dispositivos IoT, usando uno de los modelos de aprendizaje automáticos desarrollados anteriormente. Finalmente, diferentes enfoques y perspectivas acerca del uso de sandboxing y aprendizaje automático por parte de agencias de seguridad del Estado también son aportados.application/pdfspaUniversidad Santo Tomás. Seccional Bucaramangahttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2072/1612ITECKNE; Vol 15 No 2 (2018); 107-121ITECKNE; Vol 15 No 2 (2018); 107-1212339-34831692-1798Copyright (c) 2018 ITECKNEhttp://purl.org/coar/access_right/c_abf2Building malware classificators usable by State security agenciesConstrucción de clasificadores de malware para agencias de seguridad del Estadoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb111634/36191oai:repository.usta.edu.co:11634/361912023-07-14 16:20:58.553metadata only accessRepositorio Universidad Santo Tomásnoreply@usta.edu.co |
dc.title.spa.fl_str_mv |
Building malware classificators usable by State security agencies |
dc.title.alternative.eng.fl_str_mv |
Construcción de clasificadores de malware para agencias de seguridad del Estado |
title |
Building malware classificators usable by State security agencies |
spellingShingle |
Building malware classificators usable by State security agencies |
title_short |
Building malware classificators usable by State security agencies |
title_full |
Building malware classificators usable by State security agencies |
title_fullStr |
Building malware classificators usable by State security agencies |
title_full_unstemmed |
Building malware classificators usable by State security agencies |
title_sort |
Building malware classificators usable by State security agencies |
dc.creator.fl_str_mv |
Useche-Peláez, David Esteban Díaz-López, Daniel Orlando Sepúlveda-Alzate, Daniela Cabuya-Padilla, Diego Edison |
dc.contributor.author.none.fl_str_mv |
Useche-Peláez, David Esteban Díaz-López, Daniel Orlando Sepúlveda-Alzate, Daniela Cabuya-Padilla, Diego Edison |
description |
Sandboxing has been used regularly to analyze software samples and determine if these contain suspicious properties or behaviors. Even if sandboxing is a powerful technique to perform malware analysis, it requires that a malware analyst performs a rigorous analysis of the results to determine the nature of the sample: goodware or malware. This paper proposes two machine learning models able to classify samples based on signatures and permissions obtained through Cuckoo sandbox, Androguard and VirusTotal. The developed models are also tested obtaining an acceptable percentage of correctly classified samples, being in this way useful tools for a malware analyst. A proposal of architecture for an IoT sentinel that uses one of the developed machine learning model is also showed. Finally, different approaches, perspectives, and challenges about the use of sandboxing and machine learning by security teams in State security agencies are also shared. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018-12-07 |
dc.date.accessioned.none.fl_str_mv |
2021-09-24T13:17:51Z |
dc.date.available.none.fl_str_mv |
2021-09-24T13:17:51Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.none.fl_str_mv |
http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2072 10.15332/iteckne.v15i2.2072 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/36191 |
url |
http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2072 http://hdl.handle.net/11634/36191 |
identifier_str_mv |
10.15332/iteckne.v15i2.2072 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2072/1612 |
dc.relation.citationissue.spa.fl_str_mv |
ITECKNE; Vol 15 No 2 (2018); 107-121 |
dc.relation.citationissue.eng.fl_str_mv |
ITECKNE; Vol 15 No 2 (2018); 107-121 |
dc.relation.citationissue.none.fl_str_mv |
2339-3483 1692-1798 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2018 ITECKNE |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Copyright (c) 2018 ITECKNE http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Universidad Santo Tomás. Seccional Bucaramanga |
institution |
Universidad Santo Tomás |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
noreply@usta.edu.co |
_version_ |
1782026401093779456 |