Editorial

In the last 25 years, great progress has been made in the development of new materials, which have changed our lives or are in the process of changing them. The advance has been made mainly in work with materials on a nanometric scale, creating so-called nanomaterials because they are made up, in 50...

Full description

Autores:
González Mancilla, Yenny Marlén
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/26844
Acceso en línea:
http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1894
http://hdl.handle.net/11634/26844
Palabra clave:
nanomaterialies
magnetics
materials
nanomateriales
magnéticas
materiales
nanomateriales
Rights
License
Derechos de autor 2020 Ingenio Magno
id SANTOTOMAS_12220d4042c701d1f9d56439c754f438
oai_identifier_str oai:repository.usta.edu.co:11634/26844
network_acronym_str SANTOTOMAS
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Editorial
dc.title.alternative.eng.fl_str_mv Editorial
title Editorial
spellingShingle Editorial
nanomaterialies
magnetics
materials
nanomateriales
magnéticas
materiales
nanomateriales
title_short Editorial
title_full Editorial
title_fullStr Editorial
title_full_unstemmed Editorial
title_sort Editorial
dc.creator.fl_str_mv González Mancilla, Yenny Marlén
dc.contributor.author.spa.fl_str_mv González Mancilla, Yenny Marlén
dc.subject.proposal.eng.fl_str_mv nanomaterialies
magnetics
materials
topic nanomaterialies
magnetics
materials
nanomateriales
magnéticas
materiales
nanomateriales
dc.subject.proposal.spa.fl_str_mv nanomateriales
magnéticas
materiales
dc.subject.proposal.por.fl_str_mv nanomateriales
description In the last 25 years, great progress has been made in the development of new materials, which have changed our lives or are in the process of changing them. The advance has been made mainly in work with materials on a nanometric scale, creating so-called nanomaterials because they are made up, in 50% or more, by particles that have at least one of their external dimensions at 100 nanometers [1]. Some of the applications of these materials are presented in the paragraphs below. In industrial applications, nanomaterials are used to make various products. In biology and medicine, magnetic nanoparticles have been used as drug carriers in the treatment of cancer, pathogen-detecting agents, also in the separation of proteins and as filter objects for molecules. Furthermore, nanowires have been manufactured from these materials, nanofibers and nanotubes, that allow observing and manipulating intracellular biological processes [2]. In the case of agriculture, preliminary studies have been carried out that show the potential of nanomaterials to improve germination and seed growth, plant protection, detection of pathogens and pesticide and herbicide residues [3]. One of the most promising and best developed environmental applications of nanotechnology has been environmental remediation and water treatment, where nanomaterials can help purify water through different mechanisms, including adsorption of heavy metals and other contaminants, contamination and inactivation of pathogens and the transformation of toxic materials into less toxic compounds [4]. Electrochemical energy storage technology is critically important to portable electronics, transportation, and large-scale energy storage systems. There is an increasing demand for energy storage devices with high energy density and high power, long-term stability, security and low cost [5]. As a solution to this demand, nanomaterials are very promising for the future, surface engineering advances in the development of materials with high energy storage capacity, fast recharge capacity and better durability [6] As a military application of nanomaterials, organic explosives are developed in the fine powder state, with submicron to nanoscale particle size distributions. Due to the complexity of manufacturing, a unique industrial method is created to produce these materials: the instant spray evaporation process, however, there is still the challenge of manufacturing objects with these explosive powders due to the balance that must be reached between power, safety and reliability. [7] Nanomaterials have become very useful tools in the fields of chemistry, materials science, physics, and nanotechnology due to their unique physical, chemical, magnetic, optical, and electronic characteristics. Along with the development of these materials, new manufacturing processes are created, as well as characterization techniques that specific their study and modifications.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-06-17T18:25:51Z
dc.date.available.spa.fl_str_mv 2020-06-17T18:25:51Z
dc.date.issued.spa.fl_str_mv 2020-06-11
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.spa.fl_str_mv http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1894
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/26844
url http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1894
http://hdl.handle.net/11634/26844
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1894/1679
dc.relation.citationissue.spa.fl_str_mv Ingenio Magno; Vol. 10 Núm. 2 (2019): Ingenio Magno vol. 10-2; 6-9
2422-2399
2145-9282
dc.rights.spa.fl_str_mv Derechos de autor 2020 Ingenio Magno
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2020 Ingenio Magno
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Santo Tomás Seccional Tunja
institution Universidad Santo Tomás
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv noreply@usta.edu.co
_version_ 1800800474422575104
spelling González Mancilla, Yenny Marlén2020-06-17T18:25:51Z2020-06-17T18:25:51Z2020-06-11http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1894http://hdl.handle.net/11634/26844In the last 25 years, great progress has been made in the development of new materials, which have changed our lives or are in the process of changing them. The advance has been made mainly in work with materials on a nanometric scale, creating so-called nanomaterials because they are made up, in 50% or more, by particles that have at least one of their external dimensions at 100 nanometers [1]. Some of the applications of these materials are presented in the paragraphs below. In industrial applications, nanomaterials are used to make various products. In biology and medicine, magnetic nanoparticles have been used as drug carriers in the treatment of cancer, pathogen-detecting agents, also in the separation of proteins and as filter objects for molecules. Furthermore, nanowires have been manufactured from these materials, nanofibers and nanotubes, that allow observing and manipulating intracellular biological processes [2]. In the case of agriculture, preliminary studies have been carried out that show the potential of nanomaterials to improve germination and seed growth, plant protection, detection of pathogens and pesticide and herbicide residues [3]. One of the most promising and best developed environmental applications of nanotechnology has been environmental remediation and water treatment, where nanomaterials can help purify water through different mechanisms, including adsorption of heavy metals and other contaminants, contamination and inactivation of pathogens and the transformation of toxic materials into less toxic compounds [4]. Electrochemical energy storage technology is critically important to portable electronics, transportation, and large-scale energy storage systems. There is an increasing demand for energy storage devices with high energy density and high power, long-term stability, security and low cost [5]. As a solution to this demand, nanomaterials are very promising for the future, surface engineering advances in the development of materials with high energy storage capacity, fast recharge capacity and better durability [6] As a military application of nanomaterials, organic explosives are developed in the fine powder state, with submicron to nanoscale particle size distributions. Due to the complexity of manufacturing, a unique industrial method is created to produce these materials: the instant spray evaporation process, however, there is still the challenge of manufacturing objects with these explosive powders due to the balance that must be reached between power, safety and reliability. [7] Nanomaterials have become very useful tools in the fields of chemistry, materials science, physics, and nanotechnology due to their unique physical, chemical, magnetic, optical, and electronic characteristics. Along with the development of these materials, new manufacturing processes are created, as well as characterization techniques that specific their study and modifications.En los últimos 25 años se ha presentado un gran avance en el desarrollo de nuevos materiales, que han cambiado nuestras vidas o están en proceso de cambiarlas. El avance se ha dado principalmente a escala nanométrica, creando materiales denominados nanomateriales porque están constituidos, en un 50% o más, por partículas que tienen al menos una de sus dimensiones externas menor a 100 nanómetros [1]. A continuación, se presentan algunas de las aplicaciones de estos materiales. Los nanomateriales se utilizan en numerosos productos y aplicaciones industriales. En biología y medicina, se han utilizado nanopartículas magnéticas como portadores de fármacos en el tratamiento del cáncer, agentes detectores de patógenos, en la separación de proteínas y como objetos de manipulación de moléculas, además, a partir de estos materiales se han fabricado nanocables, nanofibras y nanotubos que permiten observar y manipular procesos biológicos intracelulares [2]. En el caso de la agricultura se han realizado estudios preliminares que muestran el potencial de los nanomateriales para mejorar la germinación y el crecimiento de las semillas, la protección de las plantas, la detección de patógenos y de residuos de pesticidas y herbicidas [3]. Una de las aplicaciones medioambientales más prometedoras y mejor desarrolladas de la nanotecnología ha sido la remediación y el tratamiento del agua, donde diferentes nanomateriales pueden ayudar a purificar el agua a través de diferentes mecanismos, incluida la adsorción de metales pesados y otros contaminantes, la eliminación e inactivación de patógenos y la transformación de materiales tóxicos en compuestos menos tóxicos [4]. La tecnología de almacenamiento de energía electroquímica es de importancia crítica para la electrónica portátil, el transporte y los sistemas de almacenamiento de energía a gran escala. Existe una creciente demanda de dispositivos de almacenamiento de energía con alta densidad de energía y alta potencia, estabilidad a largo plazo, seguridad y bajo costo [5]. Los nanomateriales son muy prometedores para el futuro, la ingeniería de superficies avanza en el desarrollo de materiales con alta capacidad de almacenamiento de energía, capacidad de recarga rápida y mejor durabilidad [6]. Las grandes potencias militares a nivel mundial están desarrollando explosivos orgánicos en el estado de polvos finos con distribuciones de tamaño de partícula submicrónicas a nanoescaladas. para lo cual también se creó un método industrial único para producir estos materiales: el proceso de evaporación por pulverización instantánea, sin embargo, aún se tiene el desafío de fabricar objetos con estos polvos explosivos debido al equilibrio que se debe alcanzar entre potencia, seguridad y fiabilidad. [7] Los nanomateriales se han convertido en herramientas muy útiles en los campos de la química, la ciencia de los materiales, la física y la nanotecnología debido a sus características físicas, químicas, magnéticas, ópticas y electrónicas únicas. A la par con el desarrollo de estos materiales, se crean nuevos procesos de fabricación y también técnicas de caracterización que permitan su estudio y manipulación.application/pdfspaUniversidad Santo Tomás Seccional Tunjahttp://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1894/1679Ingenio Magno; Vol. 10 Núm. 2 (2019): Ingenio Magno vol. 10-2; 6-92422-23992145-9282Derechos de autor 2020 Ingenio Magnohttp://purl.org/coar/access_right/c_abf2EditorialEditorialinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1nanomaterialiesmagneticsmaterialsnanomaterialesmagnéticasmaterialesnanomateriales11634/26844oai:repository.usta.edu.co:11634/268442023-07-14 16:37:55.832metadata only accessRepositorio Universidad Santo Tomásnoreply@usta.edu.co