Clustering as an EDA method: the case of pedestrian directional flow behavior

Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion reg...

Full description

Autores:
Teknomo, Kardi
Estuar, Ma. Regina
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/6449
Acceso en línea:
http://hdl.handle.net/10819/6449
Palabra clave:
Gaussian Mixture
Directional flow pattern
Pedestrian behavior
Trajectory analysis
Mezcla Gaussiana
Patrón de flujo direccional
Comportamiento peatonal
Análisis de trayectoria
Análisis de datos
Rights
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
Description
Summary:Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies.