Comparación de algoritmos tipo feedforward para control activo de ruido industrial en ductos sin flujo

Exposure to high doses of noise is a problem that is becoming increasingly prevalent because it has beenfound to be associated with some health complications. One of the most determining sectors in this areais the industrial sector where it is generally associated with low frequency noise. Active no...

Full description

Autores:
Roldán Escobar, Juan Pablo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/8196
Acceso en línea:
http://hdl.handle.net/10819/8196
Palabra clave:
Control activo de ruido
Filtros adaptativos
LMS
FxLMS
Active noise control
Industrial noise
Adaptative filters
Algoritmos
Ruido industrial
Rights
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANBUENAV2_cab41910f97cfdaa91a0a03951452105
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/8196
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Comparación de algoritmos tipo feedforward para control activo de ruido industrial en ductos sin flujo
title Comparación de algoritmos tipo feedforward para control activo de ruido industrial en ductos sin flujo
spellingShingle Comparación de algoritmos tipo feedforward para control activo de ruido industrial en ductos sin flujo
Control activo de ruido
Filtros adaptativos
LMS
FxLMS
Active noise control
Industrial noise
Adaptative filters
Algoritmos
Ruido industrial
title_short Comparación de algoritmos tipo feedforward para control activo de ruido industrial en ductos sin flujo
title_full Comparación de algoritmos tipo feedforward para control activo de ruido industrial en ductos sin flujo
title_fullStr Comparación de algoritmos tipo feedforward para control activo de ruido industrial en ductos sin flujo
title_full_unstemmed Comparación de algoritmos tipo feedforward para control activo de ruido industrial en ductos sin flujo
title_sort Comparación de algoritmos tipo feedforward para control activo de ruido industrial en ductos sin flujo
dc.creator.fl_str_mv Roldán Escobar, Juan Pablo
dc.contributor.advisor.none.fl_str_mv Yepes Díaz, Mateo
dc.contributor.author.none.fl_str_mv Roldán Escobar, Juan Pablo
dc.subject.spa.fl_str_mv Control activo de ruido
Filtros adaptativos
LMS
FxLMS
Active noise control
Industrial noise
Adaptative filters
topic Control activo de ruido
Filtros adaptativos
LMS
FxLMS
Active noise control
Industrial noise
Adaptative filters
Algoritmos
Ruido industrial
dc.subject.lemb.spa.fl_str_mv Algoritmos
Ruido industrial
description Exposure to high doses of noise is a problem that is becoming increasingly prevalent because it has beenfound to be associated with some health complications. One of the most determining sectors in this areais the industrial sector where it is generally associated with low frequency noise. Active noise controlwas born as a solution to the fact that passive control has limitations in this frequency range. Its objectiveis to obtain attenuation or cancellation by means of a secondary source through destructive interferencebetween the two sources. There are different methodologies that fulfill this function.In this project a comparison is made between 2 feedforward topology algorithms for active controlof industrial noise in ducts without flow. The LMS and FxLMS methodologies are implemented. Theexperiments were performed with 3 sample categories: continuous, interrupted and impulsive. Initially,preliminary simulations are made achieving reductions between 10 and 30 dB. Later, the responses tothe impulse of the measured ducts were included and attenuations were achieved for the LMS between6 dB and 30 dB, and for the FxLMS between 1 and 7 dB. From these algorithms, the outputs of the COMPARACI ́ON DE ALGORITMOS TIPO FEEDFORWARD PARA CONTROL ACTIVO...8adaptive filters were taken as a control signal to bring it to the practical model and that the attenuationwas consequently an acoustic sum. When the expected results are not fulfilled, the parameters of filterlength, convergence factor and delays between signals are studied and evaluated to include them in a nextinvestigation
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-04-05T16:55:23Z
dc.date.available.none.fl_str_mv 2021-04-05T16:55:23Z
dc.date.issued.none.fl_str_mv 2021
dc.date.submitted.none.fl_str_mv 2021-04-05
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.spa.spa.fl_str_mv Trabajo de Grado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.citation.spa.fl_str_mv [1] J. P., Roldán Escobar, ”Comparación de algoritmos tipo feed-forward para control activo de ruido industrial en ductos sin flujo.”, Tesis de Pregrado, Ingeniería de Sonido, Universidad de San Buenaventura, Facultad de Ingenierías, 2021
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10819/8196
identifier_str_mv [1] J. P., Roldán Escobar, ”Comparación de algoritmos tipo feed-forward para control activo de ruido industrial en ductos sin flujo.”, Tesis de Pregrado, Ingeniería de Sonido, Universidad de San Buenaventura, Facultad de Ingenierías, 2021
url http://hdl.handle.net/10819/8196
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.cc.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
dc.format.spa.fl_str_mv pdf
dc.format.extent.spa.fl_str_mv 59 páginas
dc.format.medium.spa.fl_str_mv Recurso en linea
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.faculty.spa.fl_str_mv Ingenierias
dc.publisher.program.spa.fl_str_mv Ingeniería de Sonido
dc.publisher.sede.spa.fl_str_mv Medellín
institution Universidad de San Buenaventura
dc.source.bibliographicCitation.spa.fl_str_mv [1] D. A. Bies, C. Hansen y C. Howard, Engineering noise control. CRC press, 2017.
[2] L. F. Sexto, El control pasivo del ruido como elemento de la seguridad industrial. Centro de Estudio de Innovacion y Mantenimiento (CEIM / CUJAE), 2012.
[3] P. Cobo, M. T. Bravo, M. Cuesta, C. Ranz Guerra y M. Siguero, ✭✭Control activo del ruido✮✮, Revista de Acustica ´ , vol. 31, n.o 3 y 4, 2000.
[4] M. D. Redel-Macıas, A. J. Cubero-Atienza, P. Sas y L. Salas-Morera, ✭✭Algorithms for Active Noise Control✮✮, en International Work-Conference on Artificial Neural Networks, Springer, 2009, pags. 1240-1247
[5] C. H. Hansen, ✭✭Active noise control-from laboratory to industrial implementation✮✮, en NOISE CON, NOISE CONTROL FOUNDATION, 1997, pags. 3-38
[6] C. Hansen, S. Snyder, X. Qiu, L. Brooks y D. Moreau, Active control of noise and vibration. CRC press, 2012.
[7] J. R. C. Miranda, ✭✭Ruido: Efectos sobre la salud y criterio de su evaluacion al interior de recintos ´ ✮✮, Revista ciencia y trabajo, vol. 8, n.o 20, pags. 42-6, 2006.
[8] J. A. Tumialan, F. Murillo R y W. R. Enciso N, ´ ✭✭Metodolog´ıa de control activo de ruido en ductos✮✮, 2010.
[9] G. Downey y J. Parnell, ✭✭Assessing low frequency noise from industry–a practical approach✮✮,
[10] G. Ospina Zapata, O´ıdo Medell´ın: el ruido sigue siendo muy alto, 2018.
[11] V. Vogt, ✭✭El 80 % de las mediciones de ruido en Medell´ın exceden la norma✮✮, 5 de mayo, 2018.
[12] A. Glorig, ✭✭The problem of noise in industry✮✮, American Journal of Public Health and the Nations Health, vol. 51, n.o 9, pags. 1338-1346, 1961.
[13] S. Elliot y P. Nelson, ✭✭Active noise control✮✮, Noise News International, vol. 2, n.o 2, pags. 75-98, 1994.
[14] C. H. Hansen, ✭✭Current and future industrial applications of active noise control✮✮, Noise Control Engineering Journal, vol. 53, n.o 5, pags. 181-196, 2005
[15] C. Hansen, Understanding Active Noise Cancellation. ene. de 2001.
[16] S. J. Elliott y P. A. Nelson, ✭✭Active noise control✮✮, IEEE signal processing magazine, vol. 10, n.o 4, pags. 12-35, 1993
[17] H. F. Olson y E. G. May, ✭✭Electronic sound absorber✮✮, The Journal of the Acoustical Society of America, vol. 25, n.o 6, pags. 1130-1136, 1953.
[18] H. F. Olson, ✭✭Electronic control of noise, vibration, and reverberation✮✮, The Journal of the Acoustical Society of America, vol. 28, n.o 5, pags. 966-972, 1956.
[19] ——, Acoustical engineering. van Nostrand, 1957.
[20] W. B. Conover y R. J. Ringlee, ✭✭Recent Contributions to Transformer Audible Noise Control [includes discussion]✮✮, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 74, n.o 3, pags. 77-90, 1955.
[21] W. B. Conover, ✭✭Fighting noise with noise✮✮, Noise control, vol. 2, n.o 2, pags. 78-92, 1956.
[22] S. Onoda, ✭✭Automatic control of stationary noise by means of directivity synthesis✮✮, Proc. 6th ICA, F-5-13, 1968
[23] K. Kido y S. Onoda, ✭✭ActiveControl of Transformer Noise by Synthesizing Directivity✮✮, en Proc. SeouZ Int. Conf on EZect. EZectron. Eng, 1970.
[24] K. Kido, ✭✭Automatic control of acoustic noise emitted from power transformer by synthesizing directively✮✮, Sci. Reports of Research Institute, Tohoku University, vol. 23, pag. 97, 1972.
[25] K. Kido y col., ✭✭Reduction of noise by use of additional sound sources✮✮, 1975.
[26] N. HESSELMANN, ✭✭Active noise reduction by means of aerial acoustic interference within the framework of personal acoustic protection✮✮, Verein Deutscher Ingenieure Zeitschrift, vol. 119, n.o 7, pags. 351-354, 1977.
[27] C. Ross, ✭✭Experiments on the active control of transformer noise✮✮, Journal of Sound and Vibration, vol. 61, n.o 4, pags. 473-480, 1978.
[28] O. Angevine, P. K. Gupta y F. Rushden, ✭✭Active acoustic absorbers for low-frequency hum✮✮, The Journal of the Acoustical Society of America, vol. 67, n.o S1, S86-S86, 1980.
[29] M. Jessel y O. Angevine, ✭✭Active acoustic attenuation of a complex noise source✮✮, en Inter-noise 80: Noise control for the 80’s, 1980, pags. 689-694.
[30] B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, J. E. Dong y R. C. Goodlin, ✭✭Adaptive noise cancelling: Principles and applications✮✮, Proceedings of the IEEE, vol. 63, n.o 12, pags. 1692-1716, 1975.
[31] S. Elliott, Signal processing for active control. Elsevier, 2000.
[32] D. D. Reynolds, Engineering principles of acoustics: noise and vibration control. Allyn & Bacon, 1981
[33] K. Eghtesadi y H. Leventhall, ✭✭A study of n-source active attenuator arrays for noise in ducts✮✮, Journal of Sound and Vibration, vol. 91, n.o 1, pags. 11-19, 1983.
[34] K. Eghtesadi, W. W. HONG y H. Leventhall, ✭✭Energie conservation by active noise attenuation in ducts✮✮, Noise Control Engineering Journal, vol. 27, n.o 3, pags. 90-94, 1987.
[35] B. Chaplin, ✭✭The cancellation of repetitive noise and vibration✮✮, en Inter-Noise and Noise-Con Congress and Conference Proceedings, Institute of Noise Control Engineering, vol. 1980, 1980, pags. 699-702
[36] G. B. Chaplin, A. R. Powell y R. A. Smith, Method of reducing the adaption time in the cancellation of repetitive vibration, US Patent 4,417,098, nov. de 1983.
[37] S. S. Wise, C. R. Depies y S. H. Dineen, ✭✭Case histories of active noise control on industrial fans and air handlers used for heating, ventilating
[38] J. Guo, J. Pan y M. Hodgson, ✭✭Active control of a moving noise source—Effect of off-axis source position✮✮, Journal of Sound and Vibration, vol. 251, n.o 3, pags. 457-475, 2002.
[39] H. Nam y H. Lee, ✭✭Optimal position selection of microphones and speakers in adaptive noise control system✮✮, Journal of the Korean Institute of Illumination and Electrical Installation Engineers, vol. 18, n.o 1, pags. 90-97, 2004.
[40] P. N. Samarasinghe, W. Zhang y T. D. Abhayapala, ✭✭Recent advances in active noise control inside automobile cabins: Toward quieter cars✮✮, IEEE Signal Processing Magazine, vol. 33, n.o 6, pags. 61-73, 2016.
[41] I. D. Landau, R. Melendez, L. Dugard y G. Buche, ´ ✭✭Robust and adaptive feedback noise attenuation in ducts✮✮, IEEE Transactions on Control Systems Technology, vol. 27, n.o 2, pags. 872-879, 2017.
[42] K. Mazur, S. Wrona y M. Pawelczyk, ✭✭Active noise control for a washing machine✮✮, Applied Acoustics, vol. 146, pags. 89-95, 2019.
[43] W. Bernard y D. S. Samuel, ✭✭Adaptive signal processing✮✮, Englewood Cliffs, NJ: Prentice Hall, 1985.
[44] W. Bauer y G. D. Westfall, Fısica para ingenierıa y ciencias. Volumen 2 . McGraw-Hill Interamericana, 2000.
[45] S. W. Rienstra, ✭✭Fundamentals of duct acoustics✮✮, Von Karman Institute Lecture Notes, 2015.
[46] B. Somek, M. Dadic y M. Maletic, ✭✭Active noise control in ducts✮✮, Automatika-Zagreb-, vol. 42, n.o 1/2, pags. 5-12, 2001.
[47] K. T. Selvan y R. Janaswamy, ✭✭Fraunhofer and Fresnel Distances: Unified derivation for aperture antennas.✮✮, IEEE Antennas and Propagation Magazine, vol. 59, n.o 4, pags. 12-15, 2017.
[48] E. A. Aviles Zavala, ´ ✭✭Diseno y construcci ˜ on de sistema de control activo de ruido en ductos ´ ✮✮, B.S. thesis, Quito: Universidad de las Americas, 2018, 2018.
[49] S. D. Snyder, Active noise control primer. Springer Science & Business Media, 2000.
[50] S. M. Kuo y D. R. Morgan, ✭✭Active noise control: a tutorial review✮✮, Proceedings of the IEEE, vol. 87, n.o 6, pags. 943-973, 1999.
[51] G. Chen, T. Sone, N. Saito, M. Abe y S. Makino, ✭✭The stability and convergence characteristics of the delayed-x LMS algorithm in ANC systems✮✮, Journal of sound and vibration, vol. 216, n.o 4, pags. 637-648, 1998.
[52] S. C. Douglas y M. Rupp, ✭✭Convergence issues in the LMS adaptive filter✮✮, en Digital Signal Processing Fundamentals, CRC Press, 2017, pags. 19-1.
dc.source.instname.spa.fl_str_mv Universidad de San Buenaventura - Medellín
dc.source.other.spa.fl_str_mv Biblioteca USB (San Benito) TG-5996t
dc.source.reponame.spa.fl_str_mv Biblioteca Digital Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/c0614607-eef2-4aaa-a496-905df12ffd2a/download
https://bibliotecadigital.usb.edu.co/bitstreams/e3f5ee31-bba7-40ef-8534-3aa45f170206/download
https://bibliotecadigital.usb.edu.co/bitstreams/dc44a7f3-f3db-4735-9eae-abdb9be20e87/download
https://bibliotecadigital.usb.edu.co/bitstreams/f4844928-2d0b-4750-91bf-58ebfb27f248/download
bitstream.checksum.fl_str_mv f171a8ea02fb2fd1332203c66b4a2965
0c7b7184e7583ec671a5d9e43f0939c0
53e9e15441ab3ebe47468109c45e07cf
ce1e47f3c09af37b849363d84fafe948
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812932487074021376
spelling Comunidad Científica y AcadémicaYepes Díaz, Mateob181e0ce-3d3b-4793-93ad-ecc95c04a275-1Roldán Escobar, Juan Pablo594ce0b8-f11a-4772-9931-7c311319c0c0-12021-04-05T16:55:23Z2021-04-05T16:55:23Z20212021-04-05Exposure to high doses of noise is a problem that is becoming increasingly prevalent because it has beenfound to be associated with some health complications. One of the most determining sectors in this areais the industrial sector where it is generally associated with low frequency noise. Active noise controlwas born as a solution to the fact that passive control has limitations in this frequency range. Its objectiveis to obtain attenuation or cancellation by means of a secondary source through destructive interferencebetween the two sources. There are different methodologies that fulfill this function.In this project a comparison is made between 2 feedforward topology algorithms for active controlof industrial noise in ducts without flow. The LMS and FxLMS methodologies are implemented. Theexperiments were performed with 3 sample categories: continuous, interrupted and impulsive. Initially,preliminary simulations are made achieving reductions between 10 and 30 dB. Later, the responses tothe impulse of the measured ducts were included and attenuations were achieved for the LMS between6 dB and 30 dB, and for the FxLMS between 1 and 7 dB. From these algorithms, the outputs of the COMPARACI ́ON DE ALGORITMOS TIPO FEEDFORWARD PARA CONTROL ACTIVO...8adaptive filters were taken as a control signal to bring it to the practical model and that the attenuationwas consequently an acoustic sum. When the expected results are not fulfilled, the parameters of filterlength, convergence factor and delays between signals are studied and evaluated to include them in a nextinvestigationLa exposición a altas dosis de ruido es una problemática que cada vez toma m ́as fuerza debido a que se ha encontrado una relación con algunas complicaciones en la salud. Uno de los sectores m ́as determinantes en este ámbito es el sector industrial donde se asocia generalmente con ruido de baja frecuencia. El control activo de ruido nace como solución a que el control pasivo tiene limitaciones en este rango de frecuencia. Su objetivo es por medio de una fuente secundaría obtener atenuación o cancelación gracias a una interferencia destructiva entre las dos fuentes. Existen diferentes metodologías que cumplen esta función. En este proyecto se hace una comparación entre 2 algoritmos de topología feedforward para control activo de ruido industrial en ductos sin flujo. Se implementan las metodologías LMS y FxLMS. Los experimentos se realizaron con 3 categorías de muestras: continuas, interrumpidas e impulsivas. Inicialmente se hacen simulaciones preliminares logrando reducciones entre 10 y 30 dB. Posteriormente se incluyeron las respuestas al impulso de los ductos medidos y se lograron atenuaciones para el LMS entre 6 dB y 30dB, y para el FxLMS entre 1 y 7 dB. De estos algoritmos se toman las salidas de los filtros adaptativos como señal de control para llevarlo al modelo práctico y que la atenuación fuera en consecuencia de una sumatoria acústica. Al no cumplir los resultados esperados se estudian y se evalúan los parámetros de longitud de filtro, factor de convergencia y retrasos entre señales para incluirlos en una próxima investigaciónpdf59 páginasRecurso en lineaapplication/pdf[1] J. P., Roldán Escobar, ”Comparación de algoritmos tipo feed-forward para control activo de ruido industrial en ductos sin flujo.”, Tesis de Pregrado, Ingeniería de Sonido, Universidad de San Buenaventura, Facultad de Ingenierías, 2021http://hdl.handle.net/10819/8196spaIngenieriasIngeniería de SonidoMedellínAtribución-NoComercial-SinDerivadas 2.5 ColombiaPor medio de este formato manifiesto mi voluntad de AUTORIZAR a la Universidad de San Buenaventura, Sede Bogotá, Seccionales Medellín, Cali y Cartagena, la difusión en texto completo de manera gratuita y por tiempo indefinido en la Biblioteca Digital Universidad de San Buenaventura, el documento académico-investigativo objeto de la presente autorización, con fines estrictamente educativos, científicos y culturales, en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre derechos de autor. Como autor manifiesto que el presente documento académico-investigativo es original y se realiza sin violar o usurpar derechos de autor de terceros, por lo tanto, la obra es de mi exclusiva autora y poseo la titularidad sobre la misma. La Universidad de San Buenaventura no será responsable de ninguna utilización indebida del documento por parte de terceros y será exclusivamente mi responsabilidad atender personalmente cualquier reclamación que pueda presentarse a la Universidad. Autorizo a la Biblioteca Digital de la Universidad de San Buenaventura convertir el documento al formato que el repositorio lo requiera (impreso, digital, electrónico o cualquier otro conocido o por conocer) o con fines de preservación digital. Esta autorización no implica renuncia a la facultad que tengo de publicar posteriormente la obra, en forma total o parcial, por lo cual podrá, dando aviso por escrito con no menos de un mes de antelación, solicitar que el documento deje de estar disponible para el público en la Biblioteca Digital de la Universidad de San Buenaventura, así mismo, cuando se requiera por razones legales y/o reglas del editor de una revista.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2[1] D. A. Bies, C. Hansen y C. Howard, Engineering noise control. CRC press, 2017.[2] L. F. Sexto, El control pasivo del ruido como elemento de la seguridad industrial. Centro de Estudio de Innovacion y Mantenimiento (CEIM / CUJAE), 2012.[3] P. Cobo, M. T. Bravo, M. Cuesta, C. Ranz Guerra y M. Siguero, ✭✭Control activo del ruido✮✮, Revista de Acustica ´ , vol. 31, n.o 3 y 4, 2000.[4] M. D. Redel-Macıas, A. J. Cubero-Atienza, P. Sas y L. Salas-Morera, ✭✭Algorithms for Active Noise Control✮✮, en International Work-Conference on Artificial Neural Networks, Springer, 2009, pags. 1240-1247[5] C. H. Hansen, ✭✭Active noise control-from laboratory to industrial implementation✮✮, en NOISE CON, NOISE CONTROL FOUNDATION, 1997, pags. 3-38[6] C. Hansen, S. Snyder, X. Qiu, L. Brooks y D. Moreau, Active control of noise and vibration. CRC press, 2012.[7] J. R. C. Miranda, ✭✭Ruido: Efectos sobre la salud y criterio de su evaluacion al interior de recintos ´ ✮✮, Revista ciencia y trabajo, vol. 8, n.o 20, pags. 42-6, 2006.[8] J. A. Tumialan, F. Murillo R y W. R. Enciso N, ´ ✭✭Metodolog´ıa de control activo de ruido en ductos✮✮, 2010.[9] G. Downey y J. Parnell, ✭✭Assessing low frequency noise from industry–a practical approach✮✮,[10] G. Ospina Zapata, O´ıdo Medell´ın: el ruido sigue siendo muy alto, 2018.[11] V. Vogt, ✭✭El 80 % de las mediciones de ruido en Medell´ın exceden la norma✮✮, 5 de mayo, 2018.[12] A. Glorig, ✭✭The problem of noise in industry✮✮, American Journal of Public Health and the Nations Health, vol. 51, n.o 9, pags. 1338-1346, 1961.[13] S. Elliot y P. Nelson, ✭✭Active noise control✮✮, Noise News International, vol. 2, n.o 2, pags. 75-98, 1994.[14] C. H. Hansen, ✭✭Current and future industrial applications of active noise control✮✮, Noise Control Engineering Journal, vol. 53, n.o 5, pags. 181-196, 2005[15] C. Hansen, Understanding Active Noise Cancellation. ene. de 2001.[16] S. J. Elliott y P. A. Nelson, ✭✭Active noise control✮✮, IEEE signal processing magazine, vol. 10, n.o 4, pags. 12-35, 1993[17] H. F. Olson y E. G. May, ✭✭Electronic sound absorber✮✮, The Journal of the Acoustical Society of America, vol. 25, n.o 6, pags. 1130-1136, 1953.[18] H. F. Olson, ✭✭Electronic control of noise, vibration, and reverberation✮✮, The Journal of the Acoustical Society of America, vol. 28, n.o 5, pags. 966-972, 1956.[19] ——, Acoustical engineering. van Nostrand, 1957.[20] W. B. Conover y R. J. Ringlee, ✭✭Recent Contributions to Transformer Audible Noise Control [includes discussion]✮✮, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 74, n.o 3, pags. 77-90, 1955.[21] W. B. Conover, ✭✭Fighting noise with noise✮✮, Noise control, vol. 2, n.o 2, pags. 78-92, 1956.[22] S. Onoda, ✭✭Automatic control of stationary noise by means of directivity synthesis✮✮, Proc. 6th ICA, F-5-13, 1968[23] K. Kido y S. Onoda, ✭✭ActiveControl of Transformer Noise by Synthesizing Directivity✮✮, en Proc. SeouZ Int. Conf on EZect. EZectron. Eng, 1970.[24] K. Kido, ✭✭Automatic control of acoustic noise emitted from power transformer by synthesizing directively✮✮, Sci. Reports of Research Institute, Tohoku University, vol. 23, pag. 97, 1972.[25] K. Kido y col., ✭✭Reduction of noise by use of additional sound sources✮✮, 1975.[26] N. HESSELMANN, ✭✭Active noise reduction by means of aerial acoustic interference within the framework of personal acoustic protection✮✮, Verein Deutscher Ingenieure Zeitschrift, vol. 119, n.o 7, pags. 351-354, 1977.[27] C. Ross, ✭✭Experiments on the active control of transformer noise✮✮, Journal of Sound and Vibration, vol. 61, n.o 4, pags. 473-480, 1978.[28] O. Angevine, P. K. Gupta y F. Rushden, ✭✭Active acoustic absorbers for low-frequency hum✮✮, The Journal of the Acoustical Society of America, vol. 67, n.o S1, S86-S86, 1980.[29] M. Jessel y O. Angevine, ✭✭Active acoustic attenuation of a complex noise source✮✮, en Inter-noise 80: Noise control for the 80’s, 1980, pags. 689-694.[30] B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, J. E. Dong y R. C. Goodlin, ✭✭Adaptive noise cancelling: Principles and applications✮✮, Proceedings of the IEEE, vol. 63, n.o 12, pags. 1692-1716, 1975.[31] S. Elliott, Signal processing for active control. Elsevier, 2000.[32] D. D. Reynolds, Engineering principles of acoustics: noise and vibration control. Allyn & Bacon, 1981[33] K. Eghtesadi y H. Leventhall, ✭✭A study of n-source active attenuator arrays for noise in ducts✮✮, Journal of Sound and Vibration, vol. 91, n.o 1, pags. 11-19, 1983.[34] K. Eghtesadi, W. W. HONG y H. Leventhall, ✭✭Energie conservation by active noise attenuation in ducts✮✮, Noise Control Engineering Journal, vol. 27, n.o 3, pags. 90-94, 1987.[35] B. Chaplin, ✭✭The cancellation of repetitive noise and vibration✮✮, en Inter-Noise and Noise-Con Congress and Conference Proceedings, Institute of Noise Control Engineering, vol. 1980, 1980, pags. 699-702[36] G. B. Chaplin, A. R. Powell y R. A. Smith, Method of reducing the adaption time in the cancellation of repetitive vibration, US Patent 4,417,098, nov. de 1983.[37] S. S. Wise, C. R. Depies y S. H. Dineen, ✭✭Case histories of active noise control on industrial fans and air handlers used for heating, ventilating[38] J. Guo, J. Pan y M. Hodgson, ✭✭Active control of a moving noise source—Effect of off-axis source position✮✮, Journal of Sound and Vibration, vol. 251, n.o 3, pags. 457-475, 2002.[39] H. Nam y H. Lee, ✭✭Optimal position selection of microphones and speakers in adaptive noise control system✮✮, Journal of the Korean Institute of Illumination and Electrical Installation Engineers, vol. 18, n.o 1, pags. 90-97, 2004.[40] P. N. Samarasinghe, W. Zhang y T. D. Abhayapala, ✭✭Recent advances in active noise control inside automobile cabins: Toward quieter cars✮✮, IEEE Signal Processing Magazine, vol. 33, n.o 6, pags. 61-73, 2016.[41] I. D. Landau, R. Melendez, L. Dugard y G. Buche, ´ ✭✭Robust and adaptive feedback noise attenuation in ducts✮✮, IEEE Transactions on Control Systems Technology, vol. 27, n.o 2, pags. 872-879, 2017.[42] K. Mazur, S. Wrona y M. Pawelczyk, ✭✭Active noise control for a washing machine✮✮, Applied Acoustics, vol. 146, pags. 89-95, 2019.[43] W. Bernard y D. S. Samuel, ✭✭Adaptive signal processing✮✮, Englewood Cliffs, NJ: Prentice Hall, 1985.[44] W. Bauer y G. D. Westfall, Fısica para ingenierıa y ciencias. Volumen 2 . McGraw-Hill Interamericana, 2000.[45] S. W. Rienstra, ✭✭Fundamentals of duct acoustics✮✮, Von Karman Institute Lecture Notes, 2015.[46] B. Somek, M. Dadic y M. Maletic, ✭✭Active noise control in ducts✮✮, Automatika-Zagreb-, vol. 42, n.o 1/2, pags. 5-12, 2001.[47] K. T. Selvan y R. Janaswamy, ✭✭Fraunhofer and Fresnel Distances: Unified derivation for aperture antennas.✮✮, IEEE Antennas and Propagation Magazine, vol. 59, n.o 4, pags. 12-15, 2017.[48] E. A. Aviles Zavala, ´ ✭✭Diseno y construcci ˜ on de sistema de control activo de ruido en ductos ´ ✮✮, B.S. thesis, Quito: Universidad de las Americas, 2018, 2018.[49] S. D. Snyder, Active noise control primer. Springer Science & Business Media, 2000.[50] S. M. Kuo y D. R. Morgan, ✭✭Active noise control: a tutorial review✮✮, Proceedings of the IEEE, vol. 87, n.o 6, pags. 943-973, 1999.[51] G. Chen, T. Sone, N. Saito, M. Abe y S. Makino, ✭✭The stability and convergence characteristics of the delayed-x LMS algorithm in ANC systems✮✮, Journal of sound and vibration, vol. 216, n.o 4, pags. 637-648, 1998.[52] S. C. Douglas y M. Rupp, ✭✭Convergence issues in the LMS adaptive filter✮✮, en Digital Signal Processing Fundamentals, CRC Press, 2017, pags. 19-1.Universidad de San Buenaventura - MedellínBiblioteca USB (San Benito) TG-5996tBiblioteca Digital Universidad de San BuenaventuraControl activo de ruidoFiltros adaptativosLMSFxLMSActive noise controlIndustrial noiseAdaptative filtersAlgoritmosRuido industrialIngeniero de SonidoComparación de algoritmos tipo feedforward para control activo de ruido industrial en ductos sin flujoTrabajo de grado - PregradoTrabajo de Gradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fPublicationORIGINALComparacion_Algoritmos_Feedforward_Roldan_2021.pdfComparacion_Algoritmos_Feedforward_Roldan_2021.pdfapplication/pdf3249478https://bibliotecadigital.usb.edu.co/bitstreams/c0614607-eef2-4aaa-a496-905df12ffd2a/downloadf171a8ea02fb2fd1332203c66b4a2965MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82071https://bibliotecadigital.usb.edu.co/bitstreams/e3f5ee31-bba7-40ef-8534-3aa45f170206/download0c7b7184e7583ec671a5d9e43f0939c0MD52TEXTComparacion_Algoritmos_Feedforward_Roldan_2021.pdf.txtComparacion_Algoritmos_Feedforward_Roldan_2021.pdf.txtExtracted texttext/plain89485https://bibliotecadigital.usb.edu.co/bitstreams/dc44a7f3-f3db-4735-9eae-abdb9be20e87/download53e9e15441ab3ebe47468109c45e07cfMD53THUMBNAILComparacion_Algoritmos_Feedforward_Roldan_2021.pdf.jpgComparacion_Algoritmos_Feedforward_Roldan_2021.pdf.jpgGenerated Thumbnailimage/jpeg7191https://bibliotecadigital.usb.edu.co/bitstreams/f4844928-2d0b-4750-91bf-58ebfb27f248/downloadce1e47f3c09af37b849363d84fafe948MD5410819/8196oai:bibliotecadigital.usb.edu.co:10819/81962023-02-24 11:31:36.277http://creativecommons.org/licenses/by-nc-nd/2.5/co/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPkJJQkxJT1RFQ0EgRElHSVRBTCBVTklWRVJTSURBRCBERSBTQU4gQlVFTkFWRU5UVVJBIC0gQ09MT01CSUE8L2gzPgo8cD4KVMOpcm1pbm9zIGRlIGxhIGxpY2VuY2lhIGdlbmVyYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgcmVwb3NpdG9yaW8gaW5zdGl0dWNpb25hbDwvcD48L2NlbnRlcj4KPFAgQUxJR049Y2VudGVyPgpQb3IgbWVkaW8gZGUgZXN0ZSBmb3JtYXRvIG1hbmlmaWVzdG8gbWkgdm9sdW50YWQgZGUgQVVUT1JJWkFSIGEgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgU2VkZSBCb2dvdMOhIHkgPEJSPlNlY2Npb25hbGVzIE1lZGVsbMOtbiwgQ2FsaSB5IENhcnRhZ2VuYSwgbGEgZGlmdXNpw7NuIGVuIHRleHRvIGNvbXBsZXRvIGRlIG1hbmVyYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBlbiBsYTxCUj4gQmlibGlvdGVjYSBEaWdpdGFsIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIGVsIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBvYmpldG8gZGUgbGEgcHJlc2VudGUgPEJSPmF1dG9yaXphY2nDs24sIGNvbiBmaW5lcyBlc3RyaWN0YW1lbnRlIGVkdWNhdGl2b3MsIGNpZW50w63CrWZpY29zIHkgY3VsdHVyYWxlcywgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW4gbGEgTGV5IDIzIGRlIDxCUj4gMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvczxCUj4gZGUgYXV0b3IuIDxCUj4gCiAKQ29tbyBhdXRvciBtYW5pZmllc3RvIHF1ZSBlbCBwcmVzZW50ZSBkb2N1bWVudG8gYWNhZMOpbWljbyAtIGludmVzdGlnYXRpdm8gZXMgb3JpZ2luYWwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gPEJSPiB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgbWkgZXhjbHVzaXZhIGF1dG9yw63CrWEgeSBwb3NlbyBsYSB0aXR1bGFyaWRhZCA8QlI+IHNvYnJlIGxhIG1pc21hLiBMYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIG5vIHNlcsOhIHJlc3BvbnNhYmxlIGRlIG5pbmd1bmEgdXRpbGl6YWNpw7NuIGluZGViaWRhIGRlbCBkb2N1bWVudG8gPEJSPnBvciBwYXJ0ZSBkZSB0ZXJjZXJvcyB5IHNlcsOhIGV4Y2x1c2l2YW1lbnRlIG1pIHJlc3BvbnNhYmlsaWRhZCBhdGVuZGVyIHBlcnNvbmFsbWVudGUgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBxdWUgcHVlZGE8QlI+IHByZXNlbnRhcnNlIGEgbGEgVW5pdmVyc2lkYWQuIDxCUj4KIApBdXRvcml6byBhIGxhIEJpYmxpb3RlY2EgRGlnaXRhbCBkZSBsYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYWwgZm9ybWF0byBxdWUgZWwgPEJSPnJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBvIGNvbiBmaW5lcyBkZTxCUj4gcHJlc2VydmFjacOzbiBkaWdpdGFsLiA8QlI+CiAKRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGVuZ28gZGUgcHVibGljYXIgcG9zdGVyaW9ybWVudGUgbGEgb2JyYSwgZW4gZm9ybWEgdG90YWwgbyA8QlI+cGFyY2lhbCwgcG9yIGxvIGN1YWwgcG9kcsOpLCBkYW5kbyBhdmlzbyBwb3IgZXNjcml0byBjb24gbm8gbWVub3MgZGUgdW4gbWVzIGRlIGFudGVsYWNpw7NuLCBzb2xpY2l0YXIgcXVlIGVsIDxCUj5kb2N1bWVudG8gZGVqZSBkZSBlc3RhciBkaXNwb25pYmxlIHBhcmEgZWwgcMO6YmxpY28gZW4gbGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIDxCUj4gYXPDrcKtIG1pc21vLCBjdWFuZG8gc2UgcmVxdWllcmEgcG9yIHJhem9uZXMgbGVnYWxlcyB5L28gcmVnbGFzIGRlbCBlZGl0b3IgZGUgdW5hIHJldmlzdGEuIDxCUj48L1A+Cg==