Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos

El uso de compuestos químicos para combatir diferentes plagas, entre ellas, los insectos, ha generado contaminación ambiental por su uso masivo e indiscriminado. La contaminación química por plaguicidas genera un gran problema ambiental, donde los ecosistemas acuáticos costeros tienen gran riesgo de...

Full description

Autores:
Echeverri Jaramillo, Gustavo Eugenio
Tipo de recurso:
Book
Fecha de publicación:
2025
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/23732
Acceso en línea:
https://hdl.handle.net/10819/23732
Palabra clave:
570 - Biología::571 - Fisiología y temas relacionados
Toxicología ambiental
Ecotoxicología
Clorpirifos
Toxicidad acuática
Ecosistemas acuáticos - toxicología
Contaminación del agua – toxicología
Toxicología ambiental
Ecotoxicología
Clorpirifos
Ecosistemas acuáticos
Contaminación del agua
Toxicidad acuática
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id SANBUENAV2_9869c98f54148e22beacd220a73544d0
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/23732
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos
title Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos
spellingShingle Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos
570 - Biología::571 - Fisiología y temas relacionados
Toxicología ambiental
Ecotoxicología
Clorpirifos
Toxicidad acuática
Ecosistemas acuáticos - toxicología
Contaminación del agua – toxicología
Toxicología ambiental
Ecotoxicología
Clorpirifos
Ecosistemas acuáticos
Contaminación del agua
Toxicidad acuática
title_short Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos
title_full Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos
title_fullStr Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos
title_full_unstemmed Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos
title_sort Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos
dc.creator.fl_str_mv Echeverri Jaramillo, Gustavo Eugenio
dc.contributor.author.none.fl_str_mv Echeverri Jaramillo, Gustavo Eugenio
dc.subject.ddc.none.fl_str_mv 570 - Biología::571 - Fisiología y temas relacionados
topic 570 - Biología::571 - Fisiología y temas relacionados
Toxicología ambiental
Ecotoxicología
Clorpirifos
Toxicidad acuática
Ecosistemas acuáticos - toxicología
Contaminación del agua – toxicología
Toxicología ambiental
Ecotoxicología
Clorpirifos
Ecosistemas acuáticos
Contaminación del agua
Toxicidad acuática
dc.subject.other.none.fl_str_mv Toxicología ambiental
Ecotoxicología
Clorpirifos
Toxicidad acuática
Ecosistemas acuáticos - toxicología
Contaminación del agua – toxicología
dc.subject.proposal.spa.fl_str_mv Toxicología ambiental
Ecotoxicología
Clorpirifos
Ecosistemas acuáticos
Contaminación del agua
Toxicidad acuática
description El uso de compuestos químicos para combatir diferentes plagas, entre ellas, los insectos, ha generado contaminación ambiental por su uso masivo e indiscriminado. La contaminación química por plaguicidas genera un gran problema ambiental, donde los ecosistemas acuáticos costeros tienen gran riesgo de impacto, especialmente en estuarios de grandes centros urbanos e industriales. Los insecticidas organofosforados, ampliamente utilizados en Colombia, son usados en agricultura y otras áreas, acumulándose en aguas, suelos y sedimentos, afectando gran variedad de organismos que no son su objetivo. El clorpirifos (CP) es uno de los insecticidas organofos forados más usados actualmente en todo el mundo, tanto en actividades agrícolas como no agrícolas. Su uso se da en ambientes internos y externos de hogares e industrias para combatir plagas, siendo fuentes de exposición para niños, mascotas, vida silvestre y en general el medio ambiente. En ecotoxicología el uso de modelos estándar de organismos se ha empleado para medir la toxicidad aguda del clorpirifos (CP) y su metabolito principal 3,5,6-tricloro-2-piridinol (TCP) solo y en combinación utilizando una batería de prueba que comprende organismos acuáticos de diferentes niveles tróficos como bacterias marinas luminiscentes Aliivibrio fischeri, alga unicelular de agua dulce Pseudokirchneriella subcapitata y cladoceran Daphnia magna. Ésta última fue el organismo más sensible a los compuestos probados, siendo el CP más tóxico que su metabolito. Por el contrario, se encontró que el TCP era más tóxico que su compuesto parental para A. fis cheri y P. subcapitata. En todos los casos, la mezcla de CP y su metabolito fue más tóxica que los compuestos probados por separado, multiplicándose entre 5 y 200 veces el nivel de toxicidad de CP y hasta 15 veces el nivel de toxicidad de TCP. Estos resultados indican que la coexistencia del producto químico original y su producto de degradación en el medio ambiente puede dar lugar a una interacción sinérgica que implica un alto riesgo para los ecosistemas acuáticos....
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-17T22:42:10Z
dc.date.available.none.fl_str_mv 2025-02-17T22:42:10Z
dc.date.issued.none.fl_str_mv 2025
dc.type.spa.fl_str_mv Libro
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.content.spa.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/other
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_2f33
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv Echeverri Jaramillo, GE. (2024). Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos. Universidad de San Buenaventura; Editorial Bonaventuriana.
dc.identifier.eisbn.none.fl_str_mv 9789585114777
dc.identifier.instname.spa.fl_str_mv instname:Universidad de San Buenaventura
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de San Buenaventura
dc.identifier.repourl.spa.fl_str_mv repourl:https://bibliotecadigital.usb.edu.co/
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/23732
identifier_str_mv Echeverri Jaramillo, GE. (2024). Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos. Universidad de San Buenaventura; Editorial Bonaventuriana.
9789585114777
instname:Universidad de San Buenaventura
reponame:Repositorio Institucional Universidad de San Buenaventura
repourl:https://bibliotecadigital.usb.edu.co/
url https://hdl.handle.net/10819/23732
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Ali, D., & Kumar, S. (2012). Study the effect of chlorpyrifos on acetylcho linesterase and hematological response in freshwater fish Channa punctatus (Bloch). IIOAB Journal, 3(1), 12-18.
Álvarez, M., du Mortier, C., & Fernández Cirelli, A. (2013). Behavior of in secticide chlorpyrifos on soils and sediments with different organic matter content from Provincia de Buenos Aires, República Argenti na. Water, Air, & Soil Pollution, 224, 1453. https://doi.org/10.1007/s112 70-013-1453-0
Andresen, J. A., Grundmann, A., & Bester, K. (2004). Organophosphorus flame retardants and plasticizers in surface waters. Science of The Total Environment, 332(1-3), 155-166. https://doi.org/10.1016/j.scitotenv .2004.04.021
Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand. (2000). Australian and New Zealand guidelines for fresh and marine water quality. Canberra.
Ashauer, R., Boxall, A., & Brown, C. (2006). Uptake and elimination of chlor pyrifos and pentachlorophenol into the freshwater amphipod Gam marus pulex. Archives of Environmental Contamination and Toxicology, 51(4), 542-548. https://doi.org/10.1007/s00244-005-0317-z
Bailey, H. C., DiGiorgio, C., Kroll, K., Hinton, D. E., Miller, J. L., & Starrett, G. (1996). Development of procedures for identifying pesticide toxicity in ambient waters: Carbofuran, diazinon, chlorpyrifos. Environmen tal Toxicology and Chemistry, 15(6), 837-845. https://doi.org/10.1002/etc .5620150604
Barron, M. G., & Woodburn, K. B. (1995). Ecotoxicology of chlorpyrifos. Reviews of Environmental Contamination and Toxicology, 144, 1-93. https://doi.org/10.1007/978-1-4612-2550-8_1
Baskaran, S., Kookana, R. S., & Naidu, R. (2003). Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyri dinol), with depth in soil profiles. Soil Research, 41(6), 749-760. https:// doi.org/10.1071/SR02062
Bhuvaneswari, G. R., Purushothaman, C. S., Pandey, P. K., Gupta, S., & Ku mar, H. S. (2018). Toxicological effects of chlorpyrifos on growth, chlorophyll a synthesis, and enzyme activity of a cyanobacterium, Spirulina (Arthrospira) platensis. International Journal of Current Micro biology and Applied Sciences, 7(6), 2980-2990. https://doi.org/10.20546 /ijcmas.2018.706.351
Bishoff, H. W., & Bold, H. C. (1963). Some soil algae from enchanted rock and related algae species. University of Texas Publication, 6318, 43-59.
Bonifacio, A. F., Ballesteros, M. L., Bonansea, R. I., Filippi, I., Amé, M. V., & Hued, A. C. (2017). Environmentally relevant concentrations of a chlorpyrifos commercial formulation affect two neotropical fish species, Cheirodon interruptus and Cnesterodon decemmaculatus. Chemosphere, 188, 486-493. https://doi.org/10.1016/j.chemosphere.20 17.08.156
Brock, T. (2003). Relevance of ecological protection goals in the evalua tion of aquatic risks of chlorpyrifos. Discussion paper on the workshop exposure and effects of chlorpyrifos following use under southern Euro pean conditions. Catania, Italy.
Cáceres, T., He, W., Naidu, R., & Megharaj, M. (2007). Toxicity of chlorpyri fos and TCP alone and in combination to Daphnia carinata: The in fluence of microbial degradation in natural water. Water Research, 41(21), 4497-4503. https://doi.org/10.1016/j.watres.2007.06.025
Chen, S., Chen, M., Wang, Z., Qiu, W., Wang, J., Shen, Y., Wang, Y., & Ge, S. (2016). Toxicological effects of chlorpyrifos on growth, enzyme activity, and chlorophyll a synthesis of freshwater microalgae. En vironmental Toxicology and Pharmacology, 45, 179-186. https://doi.org /10.1016/j.etap.2016.05.032
Chou, T. C. (2006). Theoretical basis, experimental design, and compute rized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 261-681. https://doi.org/10.11 124/pr.58.3.10
Christensen, K., Harper, B., Luukinen, B., Buhl, K., & Stone, D. (2009). Chlor pyrifos general fact sheet. National Pesticide Information Center, Ore gon State University Extension Services. Http://npic.orst.edu/factsheets /chlorpgen.html
Importancia de la Ecotoxicología Microbiana Acuática. Un Caso con el Insecticida Clorpirifos Importancia de la Ecotoxicología Microbiana Acuática. Un Caso con el Insecticida Clorpirifos
Daam, M. A., Crum, S. J. H., Van den Brink, P. J., & Nogueira, A. J. A. (2008). Fate and effects of the insecticide chlorpyrifos in outdoor plank ton-dominated microcosms in Thailand. Environmental Toxicology and Chemistry, 27(11), 2530-2538. https://doi.org/10.1897/07-628.1 De Lorenzo, M. E., & Serrano, L. (2003). Individual and mixture toxicity of three pesticides: Atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta. Journal of Envi ronmental Science and Health Part B, 38(4), 529-538. https://doi.org/10 .1081/PFC-120023511
De Silva, P. M. C. S., & Samayawardhena, L. (2005). Effects of chlorpyrifos on reproductive performances of guppy (Poecilia reticulata). Che mosphere, 58(9), 1293-1299. https://doi.org/10.1016/j.chemosphere.20 04.10.030
Eisler, R. (2000). Handbook of chemical risk assessment: Health hazards to humans, plants, and animals (Vol. 2: Organics). Lewis Publishers.
Eng, M. L., Stutchbury, B. J. M., & Morrissey, C. A. (2017). Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Scientific Reports, 7, Article number 15176. https://doi.org /10.1038/s41598-017-15446-x
European Food Safety Authority (EFSA). (2013). International framework dealing with human risk assessment of combined exposure to mul tiple chemicals. EFSA Journal, 11, 3313-3382. https://doi.org/10.2903 /j.efsa.2013.3313
Fulton, M. H., & Key, P. B. (2001). Acetylcholinesterase inhibition in estua rine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Che mistry, 20(1), 37-45. https://doi.org/10.1002/etc.5620200104
Ge, J., Lu, M. X., Wang, D. L., Zhang, Z., Liu, X., & Yu, X. (2015). Dissipation and distribution of chlorpyrifos in selected vegeTablas through fo liage and root uptake. Chemosphere, 144, 201-206. https://doi.org/10 .1016/j.chemosphere.2015.08.072
Gebremariam, S. Y., Beutel, M. W., Yonge, D. R., Flury, M., & Harsh, J. B. (2012). Adsorption and desorption of chlorpyrifos to soils and sedi ments. In D. M. Whitacre (Ed.), *Reviews of environmental contamina tion and toxic
Gebremariam, S. Y., Beutel, M. W., Yonge, D. R., Flury, M., & Harsh, J. B. (2012). Adsorption and desorption of chlorpyrifos to soils and sedi ments. In D. M. Whitacre (Ed.), Reviews of environmental contamina tion and toxicology (pp. 123-175). Springer. https://doi.org/10.1007/978 -1-4614-1463-6_3
Giddings, J. M., Williams, W. M., Solomon, K. R., & Giesy, J. P. (2014). Risks to aquatic organisms from use of chlorpyrifos in the United States. In J. P. Giesy & K. R. Solomon (Eds.), Reviews of environmental conta mination and toxicology: Ecological risk assessment of chlorpyrifos (Vol. 231, pp. 119-162). Springer.
Guilhermino, L., Diamantino, T., Silva, M. C., & Soares, A. M. V. M. (2000). Acute toxicity test with Daphnia magna: An alternative to mammals in the prescreening of chemical toxicity? Ecotoxicology and Environ mental Safety, 46(3), 357-362. https://doi.org/10.1006/eesa.2000.1916
Gorzinski, S. J., Mayes, M. A., Ormand, J. R., Weinberg, J. T., & Richardson, C. H. (1991). 3,5,6-Trichloro-2-pyridinol: Acute 96-hr toxicity to the water flea (Daphnia magna Straus). DowElanco.
Gvozdenac, S., Indic, D., & Vukovic, S. (2013). Phytotoxicity of chlorpyrifos to white mustard (Sinapis alba L.) and maize (Zea mays L.): Potential indicators of insecticide presence in water. Pesticidi i Fitomedicina, 28(4), 265-271. https://doi.org/10.2298/PIF1304265G
Han, Y. T., Li, W. M., Dong, F. S., Xu, J., Liu, X. G., Li, Y. B., Kong, Z. Q., Liang, X. Y., & Zheng, Y. Q. (2013). The behavior of chlorpyrifos and its meta bolite 3,5,6-trichloro-2-pyridinol in tomatoes during home canning. Food Control, 31(2), 560-565. https://doi.org/10.1016/j.foodcont.2012 .11.050
International Organization for Standardization (ISO). (2007). ISO 11348-3: Water quality—Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test)—Part 3: Method using freeze-dried bacteria. ISO/TC 147/SC5.
International Organization for Standardization (ISO). (2012a). ISO 8692: Water quality—Fresh water algal growth inhibition test with unicellular green algae.
International Organization for Standardization (ISO). (2012b). ISO 6341: Water quality—Determination of the inhibition of the mobility of Daph nia magna Straus (Cladocera, Crustacea)—Acute toxicity test.
Jin, Y. X., Liu, Z. Z., Peng, T., & Fu, Z. W. (2015). The toxicity of chlorpyrifos on the early life stage of zebrafish: A survey on the endpoints at development, locomotor behavior, oxidative stress, and immuno toxicity. Fish & Shellfish Immunology, 43, 405-414. https://doi.org/10.10 16/j.fsi.2015.01.010
John, E. M., & Shaike, J. M. (2015). Chlorpyrifos: Pollution and remediation. Environmental Chemistry Letters, 13(2), 269-291. https://doi.org/10.10 07/s10311-015-0513-7
Katagi, T. (2010). Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. In D. Whitacre (Ed.). Reviews of Envi ronmental Contamination and Toxicology (Vol. 204, pp. 1-132). Sprin ger.
Li, X., Liu, L., Zhang, Y., Fang, Q., Li, Y., & Li, Y. (2013). Toxic effects of chlor pyrifos on lysozyme activities, the contents of complement C3 and IgM, and IgM and complement C3 expressions in common carp (Cyprinus carpio L.). Chemosphere, 93, 428–433. https://doi.org/10.1016 /j.chemosphere.2013.05.023
Majumder, R., & Kaviraj, A. (2019). Acute and sublethal effects of orga nophosphate insecticide chlorpyrifos on freshwater fish Oreochro mis niloticus. Drug and Chemical Toxicology, 42(4), 487–495. https://doi .org/10.1080/01480545.2018.1425425
Mazanti, L., Rice, C., Bialek, K., Sparling, D., Stevenson, C., Johnson, W. E., Kangas, P., & Rheinstein, J. (2003). Aqueous-phase disappearance of atrazine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms. Archives of Environmental Contamination and Toxicology, 44(1), 67–76. https://doi.org/10.1007/s00244-002-1259-3
Minagh, E., Hernan, R., O’Rourke, K., Lyng, F. M., & Davoren, M. (2009). Aquatic ecotoxicity of the selective serotonin reuptake inhibitor ser traline hydrochloride in a battery of freshwater test species. Ecotoxi cology and Environmental Safety, 72(2), 434–440. https://doi.org/10.10 16/j.ecoenv.2008.05.002
Moore, D. R. J., Teed, R. S., Greer, C. D., Solomon, K. R., & Giesy, J. P. (2014). Refined avian risk assessment for chlorpyrifos in the United States. In J. P. Giesy & K. R. Solomon (Eds.). Ecological risk assessment for chlorpyrifos in terrestrial and aquatic systems in the United States (pp. 163–217). Springer. https://doi.org/10.1007/978-3-319-03865-0_6
Moore, M. T., Huggett, D. B., Gillespie, W. D., Rodgers, J. H., & Cooper, C. M. (1998). Comparative toxicity of chlordane, chlorpyrifos, and al dicarb to four aquatic testing organisms. Archives of Environmental Contamination and Toxicology, 34(2), 152–157. https://doi.org/10.1007 /s002449900299
Moore, M. T., Schulz, R., Cooper, C. M., Smith Jr, S., & Rodgers Jr, J. H. (2002). Mitigation of chlorpyrifos runoff using constructed wetlands. Che mosphere, 46(6), 827–835. https://doi.org/10.1016/S0045-6535(01)001 89-8
Morgan, M., Sheldon, L., Croghan, C., Jones, P. A., Robertson, G. L., Chuang, J. C., Wilson, N. K., & Lyu, C. W. (2005). Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichlo ro-2-pyridinol in their everyday environments. Journal of Exposure Science & Environmental Epidemiology, 15(5), 297–309. https://doi.org /10.1038/sj.jea.7500406
Nikolenko, A. G., & Amirkhanov, D. V. (1993). Comparative hazardousness of various types of insecticides to soil algae. Eurasian Soil Science, 25(1), 103–110.
National Registration Authority for Agricultural and Veterinary Chemicals. (2000). Review of Chlorpyrifos – Environmental Assessment (Section 6).
Na tional Registration Authority for Agricultural and Veterinary Chemicals. Özcan Oruç, E. (2010). Oxidative stress, steroid hormone concentrations, and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pest Biochemistry and Physiology, 96(2), 160–166. https:// doi.org/10.1016/j.pestbp.2009.11.005
Palma, P., Palma, V. L., Fernandes, R. M., Soares, A. M. V. M., & Barbosa, I. R. (2008). Acute toxicity of atrazine, endosulfan sulfate, and chlorpyri fos to Vibrio fischeri, Thamnocephalus platyurus, and Daphnia magna, relative to their concentrations in surface waters from the Alentejo
Region of Portugal. Bulletin of Environmental Contamination and Toxi cology, 81(5), 485–489. https://doi.org/10.1007/s00128-008-9517-3
PubChem Database. (n.d.). Chlorpyrifos, CID=2730. National Center for Biote chnology Information. Retrieved May 10, 2020, from https://pubchem .ncbi.nlm.nih.gov/compound/Chlorpyrifos
Racke, K. D. (1993). Environmental fate of chlorpyrifos. In G. W. Ware (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 131, pp. 1–150). Springer.
Roberts, D. M., & Aaron, C. K. (2007). Management of acute organophos phorus pesticide poisoning. BMJ, 334(7594), 629–634. https://doi.org /10.1136/bmj.39134.566979.BE
Schulz, R., & Liess, M. (1999). A field study of the effects of agriculturally derived input on stream macroinvertebrate dynamics. Aquatic Toxi cology, 46(2), 155–176. https://doi.org/10.1016/S0166-445X(99)00002-8
Sherrard, R. M., Murray-Gulde, C. L., Rodgers, J. H., & Shah, Y. T. (2002). Comparative toxicity of chlorothalonil and chlorpyrifos: Ceriodaph nia dubia and Pimephales promelas. Environmental Toxicology, 17(5), 503–512. https://doi.org/10.1002/tox.10091
Solomon, K. R., Giesy, J. P., Kendall, R. J., Best, L. B., Coats, J. R., Dixon, K. R., Hooper, M. J., Kenaga, E. E., & McMurry, S. T. (2001). Chlor pyrifos: Ecotoxicological risk assessment for birds and mammals in corn agroecosystems. Human and Ecological Risk Assessment, 7(2), 497–632. https://doi.org/10.1080/20018091094510
Somasundaram, L., Coats, J. R., Racke, K. D., & Stahr, H. M. (1990). Applica tion of the Microtox system to assess the toxicity and their hydroly sis metabolites. Bulletin of Environmental Contamination and Toxicolo gy, 44(2), 254–259. https://doi.org/10.1007/BF01700144
Tomlin, C. (2000). The Pesticide Manual: A World Compendium (12th ed.). British Crop Protection Council. Thomas, C. N., & Mansingh, A. (2002). Bioaccumulation, elimination, and tissue distribution of chlorpyrifos by Red Hybrid Tilapia in fresh and brackish waters. Environmental Technology, 23(11), 1313–1323. https://doi.org/10.1080/09593332308618324
United Nations. (2011). Globally Harmonized System of classification and la belling of chemicals (GHS) (4th ed.). United Nations.
United States Environmental Protection Agency. (1999). Registration eligibi lity science chapter for chlorpyrifos: Fate and environmental risk assess ment chapter. United States Environmental Protection Agency.
United States Environmental Protection Agency. (2002). Methods for me asuring the acute toxicity of effluents and receiving waters to freshwa ter and marine organisms. United States Environmental Protection Agency.
United States Environmental Protection Agency. (2008). Registration re view-preliminary problem formulation for ecological risk and environ mental fate, endangered species and drinking water assessments for chlorpyrifos. United States Environmental Protection Agency, Office of Pesticide Programs.
United States Environmental Protection Agency. (2011). Revised chlorpyri fos preliminary registration review drinking water assessment. United States Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention.
Van Wijngaarden, R. P. A., & Leeuwangh, P. (1989). Relationship between toxicity in laboratory and pond: An ecotoxicological study with chlorpyrifos. In Proceedings of the International Symposium on Crop Protection (Vol. 54, pp. 1061–1069). Rijksuniversiteit Gent.
Van Wijngaarden, R., Leeuwangh, P., Lucassen, W. G. H., Romjin, K., Ron day, R., Van der Velde, R., & Willengenburg, W. (1993). Acute toxicity of chlorpyrifos to fish, a newt, and aquatic invertebrates. Bulletin of Environmental Contamination and Toxicology, 51(6), 716–723. https:// doi.org/10.1007/BF00201650
Varó, I., Navarro, J. C., Amat, F., & Guilhermino, L. (2002). Characterisa tion of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia partheno genetica. Chemosphere, 48(5), 563–569. https://doi.org/10.1016/S0045 -6535(02)00075-9
Ventura, C., Ramos Nieto, M. R., Bourguignon, N., Lux-Lantos, V., Rodri guez, H., Cao, G., Randi, A., Cocca, C., & Núñez, M. (2016). Pestici de chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. Journal of Ste roid Biochemistry and Molecular Biology, 156, 1–9. https://doi.org/10.10 16/j.jsbmb.2015.10.010
Wang, J., Wang, J., Zhu, L., Xie, H., Shao, B., & Houet, X. (2014). The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. Ecotoxicology, 23(9), 1858–1869. https://doi .org/10.1007/s10646-014-1321-8
Wightwick, A., & Allinson, G. (2007). Pesticide residues in Victorian wa terways: A review. Australian Journal of Ecotoxicology, 13(2), 91–112.
Wood, B., & Stark, J. D. (2002). Acute toxicity of drainage ditch water from a Washington State cranberry-growing region to Daphnia pulex in laboratory bioassays. Ecotoxicology and Environmental Safety, 53(2), 273–280. https://doi.org/10.1006/eesa.2002.2210
Xu, G., Zheng, W., Li, Y., Wang, S., Zhang, J., & Yan, Y. (2008). Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. International Biodeterioration & Biodegra dation, 62(1), 51–56. https://doi.org/10.1016/j.ibiod.2007.12.001
Yadav, I. C., Devi, N. L., Zhong, G., Li, J., Zhang, G., & Covaci, A. (2017). Oc currence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure. Environmental Pollution, 229, 668–678. https://doi.org/10.10 16/j.envpol.2017.06.089
Yang, G., Chen, C., Wang, Y., Peng, Q., Zhao, H., Guo, D., Wang, Q., & Qian, Y. (2017). Mixture toxicity of four commonly used pesticides at diffe rent effect levels to the epigeic earthworm, Eisenia fetida. Ecotoxico logy and Environmental Safety, 142, 29–39. https://doi.org/10.1016/j.eco env.2017.03.037
Zalizniak, L., & Nugegoda, D. (2006). Effect of sublethal concentrations of chlorpyrifos on three successive generations of Daphnia carinata. Ecotoxicology and Environmental Safety, 64(2), 207–214. https://doi.org /10.1016/j.ecoenv.2005.03.015
Zhang, X., Shen, Y., Yu, X., & Liu, X. (2012). Dissipation of chlorpyrifos and residue analysis in rice, soil, and water under paddy field conditions. Ecotoxicology and Environmental Safety, 78, 276–280. https://doi.org/10 .1016/j.ecoenv.2011.11.036
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.none.fl_str_mv 191 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de San Buenaventura
dc.publisher.branch.spa.fl_str_mv Cartagena
dc.publisher.place.none.fl_str_mv Cartagena
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/469eaa22-20fa-458f-a1a3-42d97616125d/download
https://bibliotecadigital.usb.edu.co/bitstreams/a62028c9-cab9-4f60-9607-b77ad85243d8/download
https://bibliotecadigital.usb.edu.co/bitstreams/2824fd52-59e8-4707-8343-59f0754f00bc/download
https://bibliotecadigital.usb.edu.co/bitstreams/f10af72a-04a7-4e2c-8b7e-68a89b2c1dcb/download
https://bibliotecadigital.usb.edu.co/bitstreams/0a9b8305-292a-45da-86d7-f4bcd58e4da6/download
bitstream.checksum.fl_str_mv 1f6d4b04ce4856f3d08a5e80a1228df5
3b6ce8e9e36c89875e8cf39962fe8920
ce8fd7f912f132cbeb263b9ddc893467
9790e37b60d1d229e9761bc8ff4f9874
2212a0b36b66c006437256011593af26
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1837099167540838400
spelling Echeverri Jaramillo, Gustavo Eugenio2025-02-17T22:42:10Z2025-02-17T22:42:10Z2025El uso de compuestos químicos para combatir diferentes plagas, entre ellas, los insectos, ha generado contaminación ambiental por su uso masivo e indiscriminado. La contaminación química por plaguicidas genera un gran problema ambiental, donde los ecosistemas acuáticos costeros tienen gran riesgo de impacto, especialmente en estuarios de grandes centros urbanos e industriales. Los insecticidas organofosforados, ampliamente utilizados en Colombia, son usados en agricultura y otras áreas, acumulándose en aguas, suelos y sedimentos, afectando gran variedad de organismos que no son su objetivo. El clorpirifos (CP) es uno de los insecticidas organofos forados más usados actualmente en todo el mundo, tanto en actividades agrícolas como no agrícolas. Su uso se da en ambientes internos y externos de hogares e industrias para combatir plagas, siendo fuentes de exposición para niños, mascotas, vida silvestre y en general el medio ambiente. En ecotoxicología el uso de modelos estándar de organismos se ha empleado para medir la toxicidad aguda del clorpirifos (CP) y su metabolito principal 3,5,6-tricloro-2-piridinol (TCP) solo y en combinación utilizando una batería de prueba que comprende organismos acuáticos de diferentes niveles tróficos como bacterias marinas luminiscentes Aliivibrio fischeri, alga unicelular de agua dulce Pseudokirchneriella subcapitata y cladoceran Daphnia magna. Ésta última fue el organismo más sensible a los compuestos probados, siendo el CP más tóxico que su metabolito. Por el contrario, se encontró que el TCP era más tóxico que su compuesto parental para A. fis cheri y P. subcapitata. En todos los casos, la mezcla de CP y su metabolito fue más tóxica que los compuestos probados por separado, multiplicándose entre 5 y 200 veces el nivel de toxicidad de CP y hasta 15 veces el nivel de toxicidad de TCP. Estos resultados indican que la coexistencia del producto químico original y su producto de degradación en el medio ambiente puede dar lugar a una interacción sinérgica que implica un alto riesgo para los ecosistemas acuáticos....Aspectos Generales de Clorpirifos y Ecotoxicología.-- Toxicidad Aguda del Clorpirifos y su Metabolito 3,5,6-Tricloro-2-Piridinol Solo y en Combinación con una Batería de Bioensayos.-- Ensayos Alternativos en Ecotoxicología Microbiana con un Modelo de Levaduras Marinas y Posible Aplicación en Problemas de Contaminación por Clorpirifos.-- Actividad Citotóxica y Estrogénica del Clorpirifos y su Metabolito 3,5,6-Tricloro-2-Piridinol. Estudio de las Levaduras Marinas como Potenciales Indicadores de Toxicidad.-- Conclusiones y Trabajo Futuro191 páginasapplication/pdfEcheverri Jaramillo, GE. (2024). Importancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifos. Universidad de San Buenaventura; Editorial Bonaventuriana.9789585114777instname:Universidad de San Buenaventurareponame:Repositorio Institucional Universidad de San Buenaventurarepourl:https://bibliotecadigital.usb.edu.co/https://hdl.handle.net/10819/23732spaUniversidad de San BuenaventuraCartagenaCartagenaAli, D., & Kumar, S. (2012). Study the effect of chlorpyrifos on acetylcho linesterase and hematological response in freshwater fish Channa punctatus (Bloch). IIOAB Journal, 3(1), 12-18.Álvarez, M., du Mortier, C., & Fernández Cirelli, A. (2013). Behavior of in secticide chlorpyrifos on soils and sediments with different organic matter content from Provincia de Buenos Aires, República Argenti na. Water, Air, & Soil Pollution, 224, 1453. https://doi.org/10.1007/s112 70-013-1453-0Andresen, J. A., Grundmann, A., & Bester, K. (2004). Organophosphorus flame retardants and plasticizers in surface waters. Science of The Total Environment, 332(1-3), 155-166. https://doi.org/10.1016/j.scitotenv .2004.04.021Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand. (2000). Australian and New Zealand guidelines for fresh and marine water quality. Canberra.Ashauer, R., Boxall, A., & Brown, C. (2006). Uptake and elimination of chlor pyrifos and pentachlorophenol into the freshwater amphipod Gam marus pulex. Archives of Environmental Contamination and Toxicology, 51(4), 542-548. https://doi.org/10.1007/s00244-005-0317-zBailey, H. C., DiGiorgio, C., Kroll, K., Hinton, D. E., Miller, J. L., & Starrett, G. (1996). Development of procedures for identifying pesticide toxicity in ambient waters: Carbofuran, diazinon, chlorpyrifos. Environmen tal Toxicology and Chemistry, 15(6), 837-845. https://doi.org/10.1002/etc .5620150604Barron, M. G., & Woodburn, K. B. (1995). Ecotoxicology of chlorpyrifos. Reviews of Environmental Contamination and Toxicology, 144, 1-93. https://doi.org/10.1007/978-1-4612-2550-8_1Baskaran, S., Kookana, R. S., & Naidu, R. (2003). Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyri dinol), with depth in soil profiles. Soil Research, 41(6), 749-760. https:// doi.org/10.1071/SR02062Bhuvaneswari, G. R., Purushothaman, C. S., Pandey, P. K., Gupta, S., & Ku mar, H. S. (2018). Toxicological effects of chlorpyrifos on growth, chlorophyll a synthesis, and enzyme activity of a cyanobacterium, Spirulina (Arthrospira) platensis. International Journal of Current Micro biology and Applied Sciences, 7(6), 2980-2990. https://doi.org/10.20546 /ijcmas.2018.706.351Bishoff, H. W., & Bold, H. C. (1963). Some soil algae from enchanted rock and related algae species. University of Texas Publication, 6318, 43-59.Bonifacio, A. F., Ballesteros, M. L., Bonansea, R. I., Filippi, I., Amé, M. V., & Hued, A. C. (2017). Environmentally relevant concentrations of a chlorpyrifos commercial formulation affect two neotropical fish species, Cheirodon interruptus and Cnesterodon decemmaculatus. Chemosphere, 188, 486-493. https://doi.org/10.1016/j.chemosphere.20 17.08.156Brock, T. (2003). Relevance of ecological protection goals in the evalua tion of aquatic risks of chlorpyrifos. Discussion paper on the workshop exposure and effects of chlorpyrifos following use under southern Euro pean conditions. Catania, Italy.Cáceres, T., He, W., Naidu, R., & Megharaj, M. (2007). Toxicity of chlorpyri fos and TCP alone and in combination to Daphnia carinata: The in fluence of microbial degradation in natural water. Water Research, 41(21), 4497-4503. https://doi.org/10.1016/j.watres.2007.06.025Chen, S., Chen, M., Wang, Z., Qiu, W., Wang, J., Shen, Y., Wang, Y., & Ge, S. (2016). Toxicological effects of chlorpyrifos on growth, enzyme activity, and chlorophyll a synthesis of freshwater microalgae. En vironmental Toxicology and Pharmacology, 45, 179-186. https://doi.org /10.1016/j.etap.2016.05.032Chou, T. C. (2006). Theoretical basis, experimental design, and compute rized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 261-681. https://doi.org/10.11 124/pr.58.3.10Christensen, K., Harper, B., Luukinen, B., Buhl, K., & Stone, D. (2009). Chlor pyrifos general fact sheet. National Pesticide Information Center, Ore gon State University Extension Services. Http://npic.orst.edu/factsheets /chlorpgen.htmlImportancia de la Ecotoxicología Microbiana Acuática. Un Caso con el Insecticida Clorpirifos Importancia de la Ecotoxicología Microbiana Acuática. Un Caso con el Insecticida ClorpirifosDaam, M. A., Crum, S. J. H., Van den Brink, P. J., & Nogueira, A. J. A. (2008). Fate and effects of the insecticide chlorpyrifos in outdoor plank ton-dominated microcosms in Thailand. Environmental Toxicology and Chemistry, 27(11), 2530-2538. https://doi.org/10.1897/07-628.1 De Lorenzo, M. E., & Serrano, L. (2003). Individual and mixture toxicity of three pesticides: Atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta. Journal of Envi ronmental Science and Health Part B, 38(4), 529-538. https://doi.org/10 .1081/PFC-120023511De Silva, P. M. C. S., & Samayawardhena, L. (2005). Effects of chlorpyrifos on reproductive performances of guppy (Poecilia reticulata). Che mosphere, 58(9), 1293-1299. https://doi.org/10.1016/j.chemosphere.20 04.10.030Eisler, R. (2000). Handbook of chemical risk assessment: Health hazards to humans, plants, and animals (Vol. 2: Organics). Lewis Publishers.Eng, M. L., Stutchbury, B. J. M., & Morrissey, C. A. (2017). Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Scientific Reports, 7, Article number 15176. https://doi.org /10.1038/s41598-017-15446-xEuropean Food Safety Authority (EFSA). (2013). International framework dealing with human risk assessment of combined exposure to mul tiple chemicals. EFSA Journal, 11, 3313-3382. https://doi.org/10.2903 /j.efsa.2013.3313Fulton, M. H., & Key, P. B. (2001). Acetylcholinesterase inhibition in estua rine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Che mistry, 20(1), 37-45. https://doi.org/10.1002/etc.5620200104Ge, J., Lu, M. X., Wang, D. L., Zhang, Z., Liu, X., & Yu, X. (2015). Dissipation and distribution of chlorpyrifos in selected vegeTablas through fo liage and root uptake. Chemosphere, 144, 201-206. https://doi.org/10 .1016/j.chemosphere.2015.08.072Gebremariam, S. Y., Beutel, M. W., Yonge, D. R., Flury, M., & Harsh, J. B. (2012). Adsorption and desorption of chlorpyrifos to soils and sedi ments. In D. M. Whitacre (Ed.), *Reviews of environmental contamina tion and toxicGebremariam, S. Y., Beutel, M. W., Yonge, D. R., Flury, M., & Harsh, J. B. (2012). Adsorption and desorption of chlorpyrifos to soils and sedi ments. In D. M. Whitacre (Ed.), Reviews of environmental contamina tion and toxicology (pp. 123-175). Springer. https://doi.org/10.1007/978 -1-4614-1463-6_3Giddings, J. M., Williams, W. M., Solomon, K. R., & Giesy, J. P. (2014). Risks to aquatic organisms from use of chlorpyrifos in the United States. In J. P. Giesy & K. R. Solomon (Eds.), Reviews of environmental conta mination and toxicology: Ecological risk assessment of chlorpyrifos (Vol. 231, pp. 119-162). Springer.Guilhermino, L., Diamantino, T., Silva, M. C., & Soares, A. M. V. M. (2000). Acute toxicity test with Daphnia magna: An alternative to mammals in the prescreening of chemical toxicity? Ecotoxicology and Environ mental Safety, 46(3), 357-362. https://doi.org/10.1006/eesa.2000.1916Gorzinski, S. J., Mayes, M. A., Ormand, J. R., Weinberg, J. T., & Richardson, C. H. (1991). 3,5,6-Trichloro-2-pyridinol: Acute 96-hr toxicity to the water flea (Daphnia magna Straus). DowElanco.Gvozdenac, S., Indic, D., & Vukovic, S. (2013). Phytotoxicity of chlorpyrifos to white mustard (Sinapis alba L.) and maize (Zea mays L.): Potential indicators of insecticide presence in water. Pesticidi i Fitomedicina, 28(4), 265-271. https://doi.org/10.2298/PIF1304265GHan, Y. T., Li, W. M., Dong, F. S., Xu, J., Liu, X. G., Li, Y. B., Kong, Z. Q., Liang, X. Y., & Zheng, Y. Q. (2013). The behavior of chlorpyrifos and its meta bolite 3,5,6-trichloro-2-pyridinol in tomatoes during home canning. Food Control, 31(2), 560-565. https://doi.org/10.1016/j.foodcont.2012 .11.050International Organization for Standardization (ISO). (2007). ISO 11348-3: Water quality—Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test)—Part 3: Method using freeze-dried bacteria. ISO/TC 147/SC5.International Organization for Standardization (ISO). (2012a). ISO 8692: Water quality—Fresh water algal growth inhibition test with unicellular green algae.International Organization for Standardization (ISO). (2012b). ISO 6341: Water quality—Determination of the inhibition of the mobility of Daph nia magna Straus (Cladocera, Crustacea)—Acute toxicity test.Jin, Y. X., Liu, Z. Z., Peng, T., & Fu, Z. W. (2015). The toxicity of chlorpyrifos on the early life stage of zebrafish: A survey on the endpoints at development, locomotor behavior, oxidative stress, and immuno toxicity. Fish & Shellfish Immunology, 43, 405-414. https://doi.org/10.10 16/j.fsi.2015.01.010John, E. M., & Shaike, J. M. (2015). Chlorpyrifos: Pollution and remediation. Environmental Chemistry Letters, 13(2), 269-291. https://doi.org/10.10 07/s10311-015-0513-7Katagi, T. (2010). Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. In D. Whitacre (Ed.). Reviews of Envi ronmental Contamination and Toxicology (Vol. 204, pp. 1-132). Sprin ger.Li, X., Liu, L., Zhang, Y., Fang, Q., Li, Y., & Li, Y. (2013). Toxic effects of chlor pyrifos on lysozyme activities, the contents of complement C3 and IgM, and IgM and complement C3 expressions in common carp (Cyprinus carpio L.). Chemosphere, 93, 428–433. https://doi.org/10.1016 /j.chemosphere.2013.05.023Majumder, R., & Kaviraj, A. (2019). Acute and sublethal effects of orga nophosphate insecticide chlorpyrifos on freshwater fish Oreochro mis niloticus. Drug and Chemical Toxicology, 42(4), 487–495. https://doi .org/10.1080/01480545.2018.1425425Mazanti, L., Rice, C., Bialek, K., Sparling, D., Stevenson, C., Johnson, W. E., Kangas, P., & Rheinstein, J. (2003). Aqueous-phase disappearance of atrazine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms. Archives of Environmental Contamination and Toxicology, 44(1), 67–76. https://doi.org/10.1007/s00244-002-1259-3Minagh, E., Hernan, R., O’Rourke, K., Lyng, F. M., & Davoren, M. (2009). Aquatic ecotoxicity of the selective serotonin reuptake inhibitor ser traline hydrochloride in a battery of freshwater test species. Ecotoxi cology and Environmental Safety, 72(2), 434–440. https://doi.org/10.10 16/j.ecoenv.2008.05.002Moore, D. R. J., Teed, R. S., Greer, C. D., Solomon, K. R., & Giesy, J. P. (2014). Refined avian risk assessment for chlorpyrifos in the United States. In J. P. Giesy & K. R. Solomon (Eds.). Ecological risk assessment for chlorpyrifos in terrestrial and aquatic systems in the United States (pp. 163–217). Springer. https://doi.org/10.1007/978-3-319-03865-0_6Moore, M. T., Huggett, D. B., Gillespie, W. D., Rodgers, J. H., & Cooper, C. M. (1998). Comparative toxicity of chlordane, chlorpyrifos, and al dicarb to four aquatic testing organisms. Archives of Environmental Contamination and Toxicology, 34(2), 152–157. https://doi.org/10.1007 /s002449900299Moore, M. T., Schulz, R., Cooper, C. M., Smith Jr, S., & Rodgers Jr, J. H. (2002). Mitigation of chlorpyrifos runoff using constructed wetlands. Che mosphere, 46(6), 827–835. https://doi.org/10.1016/S0045-6535(01)001 89-8Morgan, M., Sheldon, L., Croghan, C., Jones, P. A., Robertson, G. L., Chuang, J. C., Wilson, N. K., & Lyu, C. W. (2005). Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichlo ro-2-pyridinol in their everyday environments. Journal of Exposure Science & Environmental Epidemiology, 15(5), 297–309. https://doi.org /10.1038/sj.jea.7500406Nikolenko, A. G., & Amirkhanov, D. V. (1993). Comparative hazardousness of various types of insecticides to soil algae. Eurasian Soil Science, 25(1), 103–110.National Registration Authority for Agricultural and Veterinary Chemicals. (2000). Review of Chlorpyrifos – Environmental Assessment (Section 6).Na tional Registration Authority for Agricultural and Veterinary Chemicals. Özcan Oruç, E. (2010). Oxidative stress, steroid hormone concentrations, and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pest Biochemistry and Physiology, 96(2), 160–166. https:// doi.org/10.1016/j.pestbp.2009.11.005Palma, P., Palma, V. L., Fernandes, R. M., Soares, A. M. V. M., & Barbosa, I. R. (2008). Acute toxicity of atrazine, endosulfan sulfate, and chlorpyri fos to Vibrio fischeri, Thamnocephalus platyurus, and Daphnia magna, relative to their concentrations in surface waters from the AlentejoRegion of Portugal. Bulletin of Environmental Contamination and Toxi cology, 81(5), 485–489. https://doi.org/10.1007/s00128-008-9517-3PubChem Database. (n.d.). Chlorpyrifos, CID=2730. National Center for Biote chnology Information. Retrieved May 10, 2020, from https://pubchem .ncbi.nlm.nih.gov/compound/ChlorpyrifosRacke, K. D. (1993). Environmental fate of chlorpyrifos. In G. W. Ware (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 131, pp. 1–150). Springer.Roberts, D. M., & Aaron, C. K. (2007). Management of acute organophos phorus pesticide poisoning. BMJ, 334(7594), 629–634. https://doi.org /10.1136/bmj.39134.566979.BESchulz, R., & Liess, M. (1999). A field study of the effects of agriculturally derived input on stream macroinvertebrate dynamics. Aquatic Toxi cology, 46(2), 155–176. https://doi.org/10.1016/S0166-445X(99)00002-8Sherrard, R. M., Murray-Gulde, C. L., Rodgers, J. H., & Shah, Y. T. (2002). Comparative toxicity of chlorothalonil and chlorpyrifos: Ceriodaph nia dubia and Pimephales promelas. Environmental Toxicology, 17(5), 503–512. https://doi.org/10.1002/tox.10091Solomon, K. R., Giesy, J. P., Kendall, R. J., Best, L. B., Coats, J. R., Dixon, K. R., Hooper, M. J., Kenaga, E. E., & McMurry, S. T. (2001). Chlor pyrifos: Ecotoxicological risk assessment for birds and mammals in corn agroecosystems. Human and Ecological Risk Assessment, 7(2), 497–632. https://doi.org/10.1080/20018091094510Somasundaram, L., Coats, J. R., Racke, K. D., & Stahr, H. M. (1990). Applica tion of the Microtox system to assess the toxicity and their hydroly sis metabolites. Bulletin of Environmental Contamination and Toxicolo gy, 44(2), 254–259. https://doi.org/10.1007/BF01700144Tomlin, C. (2000). The Pesticide Manual: A World Compendium (12th ed.). British Crop Protection Council. Thomas, C. N., & Mansingh, A. (2002). Bioaccumulation, elimination, and tissue distribution of chlorpyrifos by Red Hybrid Tilapia in fresh and brackish waters. Environmental Technology, 23(11), 1313–1323. https://doi.org/10.1080/09593332308618324United Nations. (2011). Globally Harmonized System of classification and la belling of chemicals (GHS) (4th ed.). United Nations.United States Environmental Protection Agency. (1999). Registration eligibi lity science chapter for chlorpyrifos: Fate and environmental risk assess ment chapter. United States Environmental Protection Agency.United States Environmental Protection Agency. (2002). Methods for me asuring the acute toxicity of effluents and receiving waters to freshwa ter and marine organisms. United States Environmental Protection Agency.United States Environmental Protection Agency. (2008). Registration re view-preliminary problem formulation for ecological risk and environ mental fate, endangered species and drinking water assessments for chlorpyrifos. United States Environmental Protection Agency, Office of Pesticide Programs.United States Environmental Protection Agency. (2011). Revised chlorpyri fos preliminary registration review drinking water assessment. United States Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention.Van Wijngaarden, R. P. A., & Leeuwangh, P. (1989). Relationship between toxicity in laboratory and pond: An ecotoxicological study with chlorpyrifos. In Proceedings of the International Symposium on Crop Protection (Vol. 54, pp. 1061–1069). Rijksuniversiteit Gent.Van Wijngaarden, R., Leeuwangh, P., Lucassen, W. G. H., Romjin, K., Ron day, R., Van der Velde, R., & Willengenburg, W. (1993). Acute toxicity of chlorpyrifos to fish, a newt, and aquatic invertebrates. Bulletin of Environmental Contamination and Toxicology, 51(6), 716–723. https:// doi.org/10.1007/BF00201650Varó, I., Navarro, J. C., Amat, F., & Guilhermino, L. (2002). Characterisa tion of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia partheno genetica. Chemosphere, 48(5), 563–569. https://doi.org/10.1016/S0045 -6535(02)00075-9Ventura, C., Ramos Nieto, M. R., Bourguignon, N., Lux-Lantos, V., Rodri guez, H., Cao, G., Randi, A., Cocca, C., & Núñez, M. (2016). Pestici de chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. Journal of Ste roid Biochemistry and Molecular Biology, 156, 1–9. https://doi.org/10.10 16/j.jsbmb.2015.10.010Wang, J., Wang, J., Zhu, L., Xie, H., Shao, B., & Houet, X. (2014). The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. Ecotoxicology, 23(9), 1858–1869. https://doi .org/10.1007/s10646-014-1321-8Wightwick, A., & Allinson, G. (2007). Pesticide residues in Victorian wa terways: A review. Australian Journal of Ecotoxicology, 13(2), 91–112.Wood, B., & Stark, J. D. (2002). Acute toxicity of drainage ditch water from a Washington State cranberry-growing region to Daphnia pulex in laboratory bioassays. Ecotoxicology and Environmental Safety, 53(2), 273–280. https://doi.org/10.1006/eesa.2002.2210Xu, G., Zheng, W., Li, Y., Wang, S., Zhang, J., & Yan, Y. (2008). Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. International Biodeterioration & Biodegra dation, 62(1), 51–56. https://doi.org/10.1016/j.ibiod.2007.12.001Yadav, I. C., Devi, N. L., Zhong, G., Li, J., Zhang, G., & Covaci, A. (2017). Oc currence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure. Environmental Pollution, 229, 668–678. https://doi.org/10.10 16/j.envpol.2017.06.089Yang, G., Chen, C., Wang, Y., Peng, Q., Zhao, H., Guo, D., Wang, Q., & Qian, Y. (2017). Mixture toxicity of four commonly used pesticides at diffe rent effect levels to the epigeic earthworm, Eisenia fetida. Ecotoxico logy and Environmental Safety, 142, 29–39. https://doi.org/10.1016/j.eco env.2017.03.037Zalizniak, L., & Nugegoda, D. (2006). Effect of sublethal concentrations of chlorpyrifos on three successive generations of Daphnia carinata. Ecotoxicology and Environmental Safety, 64(2), 207–214. https://doi.org /10.1016/j.ecoenv.2005.03.015Zhang, X., Shen, Y., Yu, X., & Liu, X. (2012). Dissipation of chlorpyrifos and residue analysis in rice, soil, and water under paddy field conditions. Ecotoxicology and Environmental Safety, 78, 276–280. https://doi.org/10 .1016/j.ecoenv.2011.11.036info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/570 - Biología::571 - Fisiología y temas relacionadosToxicología ambientalEcotoxicologíaClorpirifosToxicidad acuáticaEcosistemas acuáticos - toxicologíaContaminación del agua – toxicologíaToxicología ambientalEcotoxicologíaClorpirifosEcosistemas acuáticosContaminación del aguaToxicidad acuáticaImportancia de la ecotoxicología microbiana acuática: un caso con el insecticida clorpirifosLibrohttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/acceptedVersionComunidad Científica y AcadémicaPublicationORIGINALEcotoxicología Microbiana_Gustavo Echeverri J_2024.pdfEcotoxicología Microbiana_Gustavo Echeverri J_2024.pdfapplication/pdf13716740https://bibliotecadigital.usb.edu.co/bitstreams/469eaa22-20fa-458f-a1a3-42d97616125d/download1f6d4b04ce4856f3d08a5e80a1228df5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://bibliotecadigital.usb.edu.co/bitstreams/a62028c9-cab9-4f60-9607-b77ad85243d8/download3b6ce8e9e36c89875e8cf39962fe8920MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82079https://bibliotecadigital.usb.edu.co/bitstreams/2824fd52-59e8-4707-8343-59f0754f00bc/downloadce8fd7f912f132cbeb263b9ddc893467MD53TEXTEcotoxicología Microbiana_Gustavo Echeverri J_2024.pdf.txtEcotoxicología Microbiana_Gustavo Echeverri J_2024.pdf.txtExtracted texttext/plain101732https://bibliotecadigital.usb.edu.co/bitstreams/f10af72a-04a7-4e2c-8b7e-68a89b2c1dcb/download9790e37b60d1d229e9761bc8ff4f9874MD54THUMBNAILEcotoxicología Microbiana_Gustavo Echeverri J_2024.pdf.jpgEcotoxicología Microbiana_Gustavo Echeverri J_2024.pdf.jpgGenerated Thumbnailimage/jpeg5327https://bibliotecadigital.usb.edu.co/bitstreams/0a9b8305-292a-45da-86d7-f4bcd58e4da6/download2212a0b36b66c006437256011593af26MD5510819/23732oai:bibliotecadigital.usb.edu.co:10819/237322025-02-18 04:30:59.858http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPlJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5JVkVSU0lEQUQgREUgU0FOIEJVRU5BVkVOVFVSQSAtIENPTE9NQklBPC9oMz4KPHA+ClTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBnZW5lcmFsIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWw8L3A+PC9jZW50ZXI+CjxQIEFMSUdOPWNlbnRlcj4KUG9yIG1lZGlvIGRlIGVzdGUgZm9ybWF0byBtYW5pZmllc3RvIG1pIHZvbHVudGFkIGRlIEFVVE9SSVpBUiBhIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIFNlZGUgQm9nb3TDoSB5IDxCUj5TZWNjaW9uYWxlcyBNZWRlbGzDrW4sIENhbGkgeSBDYXJ0YWdlbmEsIGxhIGRpZnVzacOzbiBlbiB0ZXh0byBjb21wbGV0byBkZSBtYW5lcmEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gZW4gZWw8QlI+IFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgZWwgZG9jdW1lbnRvIGFjYWTDqW1pY28gLSBpbnZlc3RpZ2F0aXZvIG9iamV0byBkZSBsYSBwcmVzZW50ZSA8QlI+YXV0b3JpemFjacOzbiwgY29uIGZpbmVzIGVzdHJpY3RhbWVudGUgZWR1Y2F0aXZvcywgY2llbnTDrcKtZmljb3MgeSBjdWx0dXJhbGVzLCBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgPEJSPiAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGRlcmVjaG9zPEJSPiBkZSBhdXRvci4gPEJSPiAKIApDb21vIGF1dG9yIG1hbmlmaWVzdG8gcXVlIGVsIHByZXNlbnRlIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBlcyBvcmlnaW5hbCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyA8QlI+IHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrcKtYSB5IHBvc2VvIGxhIHRpdHVsYXJpZGFkIDxCUj4gc29icmUgbGEgbWlzbWEuIExhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZGUgbmluZ3VuYSB1dGlsaXphY2nDs24gaW5kZWJpZGEgZGVsIGRvY3VtZW50byA8QlI+cG9yIHBhcnRlIGRlIHRlcmNlcm9zIHkgc2Vyw6EgZXhjbHVzaXZhbWVudGUgbWkgcmVzcG9uc2FiaWxpZGFkIGF0ZW5kZXIgcGVyc29uYWxtZW50ZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSBwdWVkYTxCUj4gcHJlc2VudGFyc2UgYSBsYSBVbml2ZXJzaWRhZC4gPEJSPgogCkF1dG9yaXpvIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGFsIGZvcm1hdG8gcXVlIDxCUj5yZXF1aWVyYSAoaW1wcmVzbywgZGlnaXRhbCwgZWxlY3Ryw7NuaWNvIG8gY3VhbHF1aWVyIG90cm8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgbyBjb24gZmluZXMgZGU8QlI+IHByZXNlcnZhY2nDs24gZGlnaXRhbC4gPEJSPgogCkVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHBvc3Rlcmlvcm1lbnRlIGxhIG9icmEsIGVuIGZvcm1hIHRvdGFsIG8gPEJSPnBhcmNpYWwsIHBvciBsbyBjdWFsIHBvZHLDqSwgZGFuZG8gYXZpc28gcG9yIGVzY3JpdG8gY29uIG5vIG1lbm9zIGRlIHVuIG1lcyBkZSBhbnRlbGFjacOzbiwgc29saWNpdGFyIHF1ZSBlbCA8QlI+ZG9jdW1lbnRvIGRlamUgZGUgZXN0YXIgZGlzcG9uaWJsZSBwYXJhIGVsIHDDumJsaWNvIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgPEJSPiBhc8Otwq0gbWlzbW8sIGN1YW5kbyBzZSByZXF1aWVyYSBwb3IgcmF6b25lcyBsZWdhbGVzIHkvbyByZWdsYXMgZGVsIGVkaXRvciBkZSB1bmEgcmV2aXN0YS4gPEJSPjwvUD4K