Ultrasound wave transmission between human tissues using the boundary element method

The ultrasound wave transmission between human tissue layers was investigated in this project, aiming for a focal stimulation of the auditory nerve on the cochlea. A simulation of the transmission was implemented with the boundary element method in order to visualize the behavior of the ultrasound w...

Full description

Autores:
Morales Del Corral, Juan Diego
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/3236
Acceso en línea:
http://hdl.handle.net/10819/3236
Palabra clave:
Oído
Método de elementos de frontera
BEM
Ear
Boundary element method
Ultrasound
[45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations"
Acústica
Procesamiento de señales
Ultrasonido
Transmisión del sonido
Transmisión de ondas
Ondas sonoras
Rights
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANBUENAV2_87e754f45890f17dace303a181f4b0f1
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/3236
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Ultrasound wave transmission between human tissues using the boundary element method
dc.title.alternative.spa.fl_str_mv Transmisión de ondas de ultrasonido entre tejidos humanos empleando el método de elementos de frontera
title Ultrasound wave transmission between human tissues using the boundary element method
spellingShingle Ultrasound wave transmission between human tissues using the boundary element method
Oído
Método de elementos de frontera
BEM
Ear
Boundary element method
Ultrasound
[45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations"
Acústica
Procesamiento de señales
Ultrasonido
Transmisión del sonido
Transmisión de ondas
Ondas sonoras
title_short Ultrasound wave transmission between human tissues using the boundary element method
title_full Ultrasound wave transmission between human tissues using the boundary element method
title_fullStr Ultrasound wave transmission between human tissues using the boundary element method
title_full_unstemmed Ultrasound wave transmission between human tissues using the boundary element method
title_sort Ultrasound wave transmission between human tissues using the boundary element method
dc.creator.fl_str_mv Morales Del Corral, Juan Diego
dc.contributor.advisor.none.fl_str_mv García Mayén, Héctor
dc.contributor.author.none.fl_str_mv Morales Del Corral, Juan Diego
dc.subject.spa.fl_str_mv Oído
Método de elementos de frontera
BEM
Ear
Boundary element method
Ultrasound
topic Oído
Método de elementos de frontera
BEM
Ear
Boundary element method
Ultrasound
[45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations"
Acústica
Procesamiento de señales
Ultrasonido
Transmisión del sonido
Transmisión de ondas
Ondas sonoras
dc.subject.classification.eng.fl_str_mv [45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations"
dc.subject.other.spa.fl_str_mv Acústica
Procesamiento de señales
Ultrasonido
Transmisión del sonido
Transmisión de ondas
Ondas sonoras
description The ultrasound wave transmission between human tissue layers was investigated in this project, aiming for a focal stimulation of the auditory nerve on the cochlea. A simulation of the transmission was implemented with the boundary element method in order to visualize the behavior of the ultrasound wave. The ear and some basic information about its function are presented. Some acoustic parameters for the boundary conditions are written. The results obtained show transmission between layers and a 30 dB attenuation on the cochlea caused by the transmission. It is proposed a source array with multiple ultrasound sources, using phase differences between the sources to focus this way the area desired for stimulation, because the results with one acoustic piston source, producing a plane wave are not satisfactory for a focused stimulation.-- Grupo GIMSC.-- Línea de Investigación: acústica y procesamiento de señales.-- Área: acústica.-- Tema: ultrasonido
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2016-11-19T00:56:20Z
dc.date.available.none.fl_str_mv 2016-11-19T00:56:20Z
dc.date.issued.none.fl_str_mv 2016
dc.date.submitted.none.fl_str_mv 2016-11-18
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.spa.epa.fl_str_mv Trabajo de Grado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10819/3236
url http://hdl.handle.net/10819/3236
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.cc.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
dc.format.spa.fl_str_mv pdf
dc.format.extent.spa.fl_str_mv 30 páginas.
dc.format.medium.spa.fl_str_mv Recurso en linea
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.faculty.spa.fl_str_mv Ingenierias
dc.publisher.program.spa.fl_str_mv Ingeniería de Sonido
dc.publisher.sede.spa.fl_str_mv Medellín
institution Universidad de San Buenaventura
dc.source.bibliographicCitation.eng.fl_str_mv [1] L. R. Garilov, E. M. Tsirulnikov, I. ab I. Davies, "Application of focused ultrasound for the stimulation of neural structures," Ultrasound in Medicine & Biology, vol. 22, 1996.
[2] P. H. Tsui, S. H. Wang, C. C. Huang, "In vitro effects of ultrasound with different energies on the conduction properties of neural tissue," Ultrasonics, vol. 43, 2005.
[3] R. L. King et al. "Effective Parameters for Ultrasound-Induced In Vivo Neurostimulation," Ultrasound in medicine & Biology, vol. 39, 2013.
[4] T. J. Mason. J. P. Lorimer. "Introduction to Applied Ultrasonics". Applied Sonochemistry the Uses of Power Ultrasound in Chemistry and Processing. Coventry, UK: Wiley-vch. 2002, ch. 1, pp 1-22.
[5] M. Vinatoru. Sonochemistry. Available: http://www.innovationpei.com/photos/original/ftc_sonochemist.pdf
[6] R. L. Drake, A. W. Vogl and A. W. M. Mitchell. Gray's Anatomy for Students. 2nd ed. Philadelphia, USA: Churchill Livingstone Elsevier. 2010.
[7] R. P. Schlenk. R. J. Kowalski. E. C. Benzel. "Biomechanics of Spinal Deformity," Department of Neurosurgery, Cleveland.
[8] HeadNeckBrainSpine. "Anatomy” Available: http://headneckbrainspine.com/Neuroanatomymodules.php
[9] B. C. J. Moore. Hearing Handbook of Perception and Cognition. 2nd ed. Cambridge, England: Academic Press. 1995.
10] J. O. Pickles. "The Cochlea". An introduction to the physiology of hearing. 4th ed. Queensland, Australia: Emerald Group Publishing Limited. 2012. ch. 3
[11] S. A. Gelfand. "Anatomy". Hearing an introduction to psychological and physiological acoustics. 5th ed. New York, USA: Informa Healthcare. 2010, ch. 2, pp. 34-35
[12] C. S. Katalinic, "Octavo nervio craneal. Audición. Equilibrio". Available: http://www.med.ufro.cl/Recursos/neurologia/doc/c6.pdf
[13] A.R. Palmer. "How the Ear Works and Why Lou Sounds Cause Hearing Loss," MRC Institute of Hearing Research, Nottingham.
[14] B. Hu et al. “Low-Intensity Pulsed Ultrasound Stimulation Facilitates Osteogenic Differentiation of Human Periodontal Ligament Cells,” PLoS ONE. 2014.
[15] W. Xia et al. “Reversal Effect of Low-Intensity Ultrasound on Adriamycin-Resistant Human Hepatoma Cells In Vitro and In Vivo”, International Journal of Imaging Systems & Technology, 2014
[16] D.N. Ankrett et al. “The effect of ultrasound-related stimuli on cell viability in microfluidic channels,” Journal of Nanobiotechnology, 2013.
[17] S. A. Goss, R. L. Johnston, F. Dunn. "Compilation of empirical ultrasonic properties of human tissues. II," Ultrasound Research Division, Indianapolis
[18] C. R. Hill. J. C. Bamber. G. R. ter Haar. "Speed of Sound". Physical Principles of Medical Ultrasonics. 2nd ed. Chochester, England: John Wiley & Sons Ltd. 2004. ch. 5
[19] G. D. Ludwig. "The velocity of sound through Tissues and the Acoustic Impedance of Tissues," Naval Medical Research Institute, Bethesda.
[20] T. Li et al. "Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection"
[21] G. Pellacani, S. Seidenari. "Variations in Facial Skin Thickness and Echogenicity with Site and Age," Department of Dermatology, Modena.
[22] S. Pichardo. V. W. Sin. K. Hynynen. "Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excides human skulls," Physics in Medicine and Biology, vol. 56, 2010.
[23] L. Demkowicz et al. "Modeling bone conduction of sound in the human head using hp-finite elements: Code design and verification"
[24] G. Volandri et al. "Boimechanics of the tympanic membrane," Department of Mechanical, Nuclear and Production Engineering, Pisa.
[25] D. De Greef et al. "Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling"
[26] F. Aernouts. J. R. M. Aerts. J. J. J Dirckx. "Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements," Laboratory of Biomedical Physics, Antwerpen.
[27] S. Hemilä. S. Nummela. T. Reuter. "What middle ear parameters tell about impedance matching and high frequency hearing"
[28] H. Rask-Andersen et al. "Human Cochlea: Anatomical Characteristics and Their Relevance for Cochlear Implantation"
[29] B. Escudé et al. "The Size of the Cochlea end Predictions of Insertion Depth Angles for Cochlear Implant Electrodes"
[30] N. Bauman. "The Hearing Aids of Yesteryear A brief history of hearing aids from then to now", Available: http://www.hearingaidmuseum.com/resources/The%20Hearing%20Aids%20of%20Yesteryear.p df
[31] J. Zamora. Historia del Implante Coclear: los primeros años. Available: http://implantecoclear.org/documentos/implante/Historia%20IC%20R50.pdf
[32] Oregon Health & Science University. Cochlear implant basics. Available: http://www.ohsu.edu/xd/health/services/ent/for-patients/upload/CochlearImplantBasics0001.pdf
[33] L. G. Rubin. B. Papsin. Commitee of Infectious Diseases and Section on Otolaryngology - Head and Neck Surgery. "Policy Statement - Cochlear Implants in Children: Surgical Site Infections and Prevention and Treatment of Acute Otitis Media and Meningitis," American Academy of Pediatrics.
[34] S. Kirkup. The boundary element method in acoustics a development in Fortran. 1st ed. Integrated Sound Software. 2007.
[35] M. Iskandarani. "Chapter 16 Boundary Element Method". Available: http://www.rsmas.miami.edu/personal/miskandarani/Courses/MSC321/lectBEM.pdf
[36] M. J. Crocker. "Boundary Element Modeling". Handbook of Noise and Vibration Control. New Jersey, USA: John Wiley & Sons. 2007, ch 8.
[37] D. M. Misljenovie. "Boundary element method and wave equation," Mathematical Institute, Beogrand, 1982.
[38] S. Kirkup. J. Yazdani. "A General Introduction to the Boundary Element Method in Matlab/Freemat"
[39] M. Messner. "Fast Boundary Element Methods in Acoustics," Institute of applied Mechanics, Graz, 2012.
[40] M. Costabel. "Principles of Boundary Element Methods"
[41] F. Kaiser. "'The boundary element method in acoustics - An internship report"
[42] V. C. Henríquez, P. M. Juhl. "OpenBEM - An open source Boundary Element Method software in Acoustics," Institute of Sensors, Signals and Electrotechnics, Odense
[43] H. Espinoza, R. Codina, S. Badia. "A Sommerfeld non-reflecting boundary condition for the wave equation in mixed form"
[44] C. Stover. Green's function. Available: http://mathworld.wolfram.com/GreensFunction.html
[45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations"
46] P. Juhl. V. C. Henriquez. OpenBEM. Available: http://www.openbem.dk
[47] J. Fessler. Ultrasound arrays, Available: https://www.imt.liu.se/edu/courses/TBMT02/ultra/ca-array.pdf
48] X. Zeng. “Ultrasound Phased Array Simulations For Hyperthermia”, 2008
dc.source.instname.spa.fl_str_mv Universidad de San Buenaventura - Medellín
dc.source.other.spa.fl_str_mv Biblioteca USB Medellín (San Benito): CD-3797t
dc.source.reponame.spa.fl_str_mv Biblioteca Digital Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/06801567-64dd-46d7-abd9-e4fb89c17ba4/download
https://bibliotecadigital.usb.edu.co/bitstreams/d9d9956f-203c-427e-bdcd-d6f868447939/download
https://bibliotecadigital.usb.edu.co/bitstreams/3c794bcb-15c7-479a-9411-44addccfb264/download
https://bibliotecadigital.usb.edu.co/bitstreams/765d5127-bd2d-41a6-a726-63d31f045e39/download
bitstream.checksum.fl_str_mv f0901ca6a838f32c38ca001410065004
0c7b7184e7583ec671a5d9e43f0939c0
3712a4ea2f87df283669b6dc5a06ec45
cb7558b2bee3ff1ce226fccc569832bd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812932437623177216
spelling Comunidad Científica y Académica[30] N. Bauman. "The Hearing Aids of Yesteryear A brief history of hearing aids from then to now", Available: http://www.hearingaidmuseum.com/resources/The%20Hearing%20Aids%20of%20Yesteryear.p dfGarcía Mayén, Héctorc9f7f0f0-2c79-4e02-ac5f-666a81321543-1Morales Del Corral, Juan Diego2191cb3a-7c5b-4719-a8ef-c1437a44fd01-12016-11-19T00:56:20Z2016-11-19T00:56:20Z20162016-11-18The ultrasound wave transmission between human tissue layers was investigated in this project, aiming for a focal stimulation of the auditory nerve on the cochlea. A simulation of the transmission was implemented with the boundary element method in order to visualize the behavior of the ultrasound wave. The ear and some basic information about its function are presented. Some acoustic parameters for the boundary conditions are written. The results obtained show transmission between layers and a 30 dB attenuation on the cochlea caused by the transmission. It is proposed a source array with multiple ultrasound sources, using phase differences between the sources to focus this way the area desired for stimulation, because the results with one acoustic piston source, producing a plane wave are not satisfactory for a focused stimulation.-- Grupo GIMSC.-- Línea de Investigación: acústica y procesamiento de señales.-- Área: acústica.-- Tema: ultrasonidoEn este proyecto se investigó la transmisión entre capas de tejidos humanos con miras a la estimulación focal neuronal del nervio auditivo en la cóclea. Se implementó una simulación de la transmisión mediante el método de fronteras para visualizar el comportamiento de las ondas de ultrasonido. Se presentará información básica sobre el oído su funcionamiento. Se escriben algunos parámetros acústicos para las condiciones de frontera. Los resultados obtenidos muestran transmisión entre capas y una atenuación de 30 dB en la cóclea causada por ésta transmisión. Se propone un arreglo de fuentes con múltiples emisores de ultrasonido, empleando diferencias de fases entre las fuentes para focalizar de esta manera el área de estimulación deseada, debido a que los resultados con un pistón acústico como fuente producen ondas planas, las cuales no son satisfactorias para una estimulación focalpdf30 páginas.Recurso en lineaapplication/pdfhttp://hdl.handle.net/10819/3236engIngenieriasIngeniería de SonidoMedellínAtribución-NoComercial-SinDerivadas 2.5 ColombiaPor medio de este formato manifiesto mi voluntad de AUTORIZAR a la Universidad de San Buenaventura, Sede Bogotá, Seccionales Medellín, Cali y Cartagena, la difusión en texto completo de manera gratuita y por tiempo indefinido en la Biblioteca Digital Universidad de San Buenaventura, el documento académico-investigativo objeto de la presente autorización, con fines estrictamente educativos, científicos y culturales, en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre derechos de autor. Como autor manifiesto que el presente documento académico-investigativo es original y se realiza sin violar o usurpar derechos de autor de terceros, por lo tanto, la obra es de mi exclusiva autora y poseo la titularidad sobre la misma. La Universidad de San Buenaventura no será responsable de ninguna utilización indebida del documento por parte de terceros y será exclusivamente mi responsabilidad atender personalmente cualquier reclamación que pueda presentarse a la Universidad. Autorizo a la Biblioteca Digital de la Universidad de San Buenaventura convertir el documento al formato que el repositorio lo requiera (impreso, digital, electrónico o cualquier otro conocido o por conocer) o con fines de preservación digital. Esta autorización no implica renuncia a la facultad que tengo de publicar posteriormente la obra, en forma total o parcial, por lo cual podrá, dando aviso por escrito con no menos de un mes de antelación, solicitar que el documento deje de estar disponible para el público en la Biblioteca Digital de la Universidad de San Buenaventura, así mismo, cuando se requiera por razones legales y/o reglas del editor de una revista.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2[1] L. R. Garilov, E. M. Tsirulnikov, I. ab I. Davies, "Application of focused ultrasound for the stimulation of neural structures," Ultrasound in Medicine & Biology, vol. 22, 1996.[2] P. H. Tsui, S. H. Wang, C. C. Huang, "In vitro effects of ultrasound with different energies on the conduction properties of neural tissue," Ultrasonics, vol. 43, 2005.[3] R. L. King et al. "Effective Parameters for Ultrasound-Induced In Vivo Neurostimulation," Ultrasound in medicine & Biology, vol. 39, 2013.[4] T. J. Mason. J. P. Lorimer. "Introduction to Applied Ultrasonics". Applied Sonochemistry the Uses of Power Ultrasound in Chemistry and Processing. Coventry, UK: Wiley-vch. 2002, ch. 1, pp 1-22.[5] M. Vinatoru. Sonochemistry. Available: http://www.innovationpei.com/photos/original/ftc_sonochemist.pdf[6] R. L. Drake, A. W. Vogl and A. W. M. Mitchell. Gray's Anatomy for Students. 2nd ed. Philadelphia, USA: Churchill Livingstone Elsevier. 2010.[7] R. P. Schlenk. R. J. Kowalski. E. C. Benzel. "Biomechanics of Spinal Deformity," Department of Neurosurgery, Cleveland.[8] HeadNeckBrainSpine. "Anatomy” Available: http://headneckbrainspine.com/Neuroanatomymodules.php[9] B. C. J. Moore. Hearing Handbook of Perception and Cognition. 2nd ed. Cambridge, England: Academic Press. 1995.10] J. O. Pickles. "The Cochlea". An introduction to the physiology of hearing. 4th ed. Queensland, Australia: Emerald Group Publishing Limited. 2012. ch. 3[11] S. A. Gelfand. "Anatomy". Hearing an introduction to psychological and physiological acoustics. 5th ed. New York, USA: Informa Healthcare. 2010, ch. 2, pp. 34-35[12] C. S. Katalinic, "Octavo nervio craneal. Audición. Equilibrio". Available: http://www.med.ufro.cl/Recursos/neurologia/doc/c6.pdf[13] A.R. Palmer. "How the Ear Works and Why Lou Sounds Cause Hearing Loss," MRC Institute of Hearing Research, Nottingham.[14] B. Hu et al. “Low-Intensity Pulsed Ultrasound Stimulation Facilitates Osteogenic Differentiation of Human Periodontal Ligament Cells,” PLoS ONE. 2014.[15] W. Xia et al. “Reversal Effect of Low-Intensity Ultrasound on Adriamycin-Resistant Human Hepatoma Cells In Vitro and In Vivo”, International Journal of Imaging Systems & Technology, 2014[16] D.N. Ankrett et al. “The effect of ultrasound-related stimuli on cell viability in microfluidic channels,” Journal of Nanobiotechnology, 2013.[17] S. A. Goss, R. L. Johnston, F. Dunn. "Compilation of empirical ultrasonic properties of human tissues. II," Ultrasound Research Division, Indianapolis[18] C. R. Hill. J. C. Bamber. G. R. ter Haar. "Speed of Sound". Physical Principles of Medical Ultrasonics. 2nd ed. Chochester, England: John Wiley & Sons Ltd. 2004. ch. 5[19] G. D. Ludwig. "The velocity of sound through Tissues and the Acoustic Impedance of Tissues," Naval Medical Research Institute, Bethesda.[20] T. Li et al. "Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection"[21] G. Pellacani, S. Seidenari. "Variations in Facial Skin Thickness and Echogenicity with Site and Age," Department of Dermatology, Modena.[22] S. Pichardo. V. W. Sin. K. Hynynen. "Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excides human skulls," Physics in Medicine and Biology, vol. 56, 2010.[23] L. Demkowicz et al. "Modeling bone conduction of sound in the human head using hp-finite elements: Code design and verification"[24] G. Volandri et al. "Boimechanics of the tympanic membrane," Department of Mechanical, Nuclear and Production Engineering, Pisa.[25] D. De Greef et al. "Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling"[26] F. Aernouts. J. R. M. Aerts. J. J. J Dirckx. "Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements," Laboratory of Biomedical Physics, Antwerpen.[27] S. Hemilä. S. Nummela. T. Reuter. "What middle ear parameters tell about impedance matching and high frequency hearing"[28] H. Rask-Andersen et al. "Human Cochlea: Anatomical Characteristics and Their Relevance for Cochlear Implantation"[29] B. Escudé et al. "The Size of the Cochlea end Predictions of Insertion Depth Angles for Cochlear Implant Electrodes"[30] N. Bauman. "The Hearing Aids of Yesteryear A brief history of hearing aids from then to now", Available: http://www.hearingaidmuseum.com/resources/The%20Hearing%20Aids%20of%20Yesteryear.p df[31] J. Zamora. Historia del Implante Coclear: los primeros años. Available: http://implantecoclear.org/documentos/implante/Historia%20IC%20R50.pdf[32] Oregon Health & Science University. Cochlear implant basics. Available: http://www.ohsu.edu/xd/health/services/ent/for-patients/upload/CochlearImplantBasics0001.pdf[33] L. G. Rubin. B. Papsin. Commitee of Infectious Diseases and Section on Otolaryngology - Head and Neck Surgery. "Policy Statement - Cochlear Implants in Children: Surgical Site Infections and Prevention and Treatment of Acute Otitis Media and Meningitis," American Academy of Pediatrics.[34] S. Kirkup. The boundary element method in acoustics a development in Fortran. 1st ed. Integrated Sound Software. 2007.[35] M. Iskandarani. "Chapter 16 Boundary Element Method". Available: http://www.rsmas.miami.edu/personal/miskandarani/Courses/MSC321/lectBEM.pdf[36] M. J. Crocker. "Boundary Element Modeling". Handbook of Noise and Vibration Control. New Jersey, USA: John Wiley & Sons. 2007, ch 8.[37] D. M. Misljenovie. "Boundary element method and wave equation," Mathematical Institute, Beogrand, 1982.[38] S. Kirkup. J. Yazdani. "A General Introduction to the Boundary Element Method in Matlab/Freemat"[39] M. Messner. "Fast Boundary Element Methods in Acoustics," Institute of applied Mechanics, Graz, 2012.[40] M. Costabel. "Principles of Boundary Element Methods"[41] F. Kaiser. "'The boundary element method in acoustics - An internship report"[42] V. C. Henríquez, P. M. Juhl. "OpenBEM - An open source Boundary Element Method software in Acoustics," Institute of Sensors, Signals and Electrotechnics, Odense[43] H. Espinoza, R. Codina, S. Badia. "A Sommerfeld non-reflecting boundary condition for the wave equation in mixed form"[44] C. Stover. Green's function. Available: http://mathworld.wolfram.com/GreensFunction.html[45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations"46] P. Juhl. V. C. Henriquez. OpenBEM. Available: http://www.openbem.dk[47] J. Fessler. Ultrasound arrays, Available: https://www.imt.liu.se/edu/courses/TBMT02/ultra/ca-array.pdf48] X. Zeng. “Ultrasound Phased Array Simulations For Hyperthermia”, 2008Universidad de San Buenaventura - MedellínBiblioteca USB Medellín (San Benito): CD-3797tBiblioteca Digital Universidad de San BuenaventuraOídoMétodo de elementos de fronteraBEMEarBoundary element methodUltrasound[45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations"AcústicaProcesamiento de señalesUltrasonidoTransmisión del sonidoTransmisión de ondasOndas sonorasIngeniero de SonidoUltrasound wave transmission between human tissues using the boundary element methodTransmisión de ondas de ultrasonido entre tejidos humanos empleando el método de elementos de fronteraTrabajo de grado - PregradoTrabajo de Gradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fPublicationORIGINALUltrasound_Wave_Transmission_Morales_2016.pdfUltrasound_Wave_Transmission_Morales_2016.pdfapplication/pdf1802907https://bibliotecadigital.usb.edu.co/bitstreams/06801567-64dd-46d7-abd9-e4fb89c17ba4/downloadf0901ca6a838f32c38ca001410065004MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-82071https://bibliotecadigital.usb.edu.co/bitstreams/d9d9956f-203c-427e-bdcd-d6f868447939/download0c7b7184e7583ec671a5d9e43f0939c0MD58TEXTUltrasound_Wave_Transmission_Morales_2016.pdf.txtUltrasound_Wave_Transmission_Morales_2016.pdf.txtExtracted texttext/plain57671https://bibliotecadigital.usb.edu.co/bitstreams/3c794bcb-15c7-479a-9411-44addccfb264/download3712a4ea2f87df283669b6dc5a06ec45MD59THUMBNAILUltrasound_Wave_Transmission_Morales_2016.pdf.jpgUltrasound_Wave_Transmission_Morales_2016.pdf.jpgGenerated Thumbnailimage/jpeg5896https://bibliotecadigital.usb.edu.co/bitstreams/765d5127-bd2d-41a6-a726-63d31f045e39/downloadcb7558b2bee3ff1ce226fccc569832bdMD51010819/3236oai:bibliotecadigital.usb.edu.co:10819/32362023-02-24 11:31:33.682http://creativecommons.org/licenses/by-nc-nd/2.5/co/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPkJJQkxJT1RFQ0EgRElHSVRBTCBVTklWRVJTSURBRCBERSBTQU4gQlVFTkFWRU5UVVJBIC0gQ09MT01CSUE8L2gzPgo8cD4KVMOpcm1pbm9zIGRlIGxhIGxpY2VuY2lhIGdlbmVyYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgcmVwb3NpdG9yaW8gaW5zdGl0dWNpb25hbDwvcD48L2NlbnRlcj4KPFAgQUxJR049Y2VudGVyPgpQb3IgbWVkaW8gZGUgZXN0ZSBmb3JtYXRvIG1hbmlmaWVzdG8gbWkgdm9sdW50YWQgZGUgQVVUT1JJWkFSIGEgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgU2VkZSBCb2dvdMOhIHkgPEJSPlNlY2Npb25hbGVzIE1lZGVsbMOtbiwgQ2FsaSB5IENhcnRhZ2VuYSwgbGEgZGlmdXNpw7NuIGVuIHRleHRvIGNvbXBsZXRvIGRlIG1hbmVyYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBlbiBsYTxCUj4gQmlibGlvdGVjYSBEaWdpdGFsIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIGVsIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBvYmpldG8gZGUgbGEgcHJlc2VudGUgPEJSPmF1dG9yaXphY2nDs24sIGNvbiBmaW5lcyBlc3RyaWN0YW1lbnRlIGVkdWNhdGl2b3MsIGNpZW50w63CrWZpY29zIHkgY3VsdHVyYWxlcywgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW4gbGEgTGV5IDIzIGRlIDxCUj4gMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvczxCUj4gZGUgYXV0b3IuIDxCUj4gCiAKQ29tbyBhdXRvciBtYW5pZmllc3RvIHF1ZSBlbCBwcmVzZW50ZSBkb2N1bWVudG8gYWNhZMOpbWljbyAtIGludmVzdGlnYXRpdm8gZXMgb3JpZ2luYWwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gPEJSPiB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgbWkgZXhjbHVzaXZhIGF1dG9yw63CrWEgeSBwb3NlbyBsYSB0aXR1bGFyaWRhZCA8QlI+IHNvYnJlIGxhIG1pc21hLiBMYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIG5vIHNlcsOhIHJlc3BvbnNhYmxlIGRlIG5pbmd1bmEgdXRpbGl6YWNpw7NuIGluZGViaWRhIGRlbCBkb2N1bWVudG8gPEJSPnBvciBwYXJ0ZSBkZSB0ZXJjZXJvcyB5IHNlcsOhIGV4Y2x1c2l2YW1lbnRlIG1pIHJlc3BvbnNhYmlsaWRhZCBhdGVuZGVyIHBlcnNvbmFsbWVudGUgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBxdWUgcHVlZGE8QlI+IHByZXNlbnRhcnNlIGEgbGEgVW5pdmVyc2lkYWQuIDxCUj4KIApBdXRvcml6byBhIGxhIEJpYmxpb3RlY2EgRGlnaXRhbCBkZSBsYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYWwgZm9ybWF0byBxdWUgZWwgPEJSPnJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBvIGNvbiBmaW5lcyBkZTxCUj4gcHJlc2VydmFjacOzbiBkaWdpdGFsLiA8QlI+CiAKRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGVuZ28gZGUgcHVibGljYXIgcG9zdGVyaW9ybWVudGUgbGEgb2JyYSwgZW4gZm9ybWEgdG90YWwgbyA8QlI+cGFyY2lhbCwgcG9yIGxvIGN1YWwgcG9kcsOpLCBkYW5kbyBhdmlzbyBwb3IgZXNjcml0byBjb24gbm8gbWVub3MgZGUgdW4gbWVzIGRlIGFudGVsYWNpw7NuLCBzb2xpY2l0YXIgcXVlIGVsIDxCUj5kb2N1bWVudG8gZGVqZSBkZSBlc3RhciBkaXNwb25pYmxlIHBhcmEgZWwgcMO6YmxpY28gZW4gbGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIDxCUj4gYXPDrcKtIG1pc21vLCBjdWFuZG8gc2UgcmVxdWllcmEgcG9yIHJhem9uZXMgbGVnYWxlcyB5L28gcmVnbGFzIGRlbCBlZGl0b3IgZGUgdW5hIHJldmlzdGEuIDxCUj48L1A+Cg==