Ultrasound wave transmission between human tissues using the boundary element method
The ultrasound wave transmission between human tissue layers was investigated in this project, aiming for a focal stimulation of the auditory nerve on the cochlea. A simulation of the transmission was implemented with the boundary element method in order to visualize the behavior of the ultrasound w...
- Autores:
-
Morales Del Corral, Juan Diego
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/3236
- Acceso en línea:
- http://hdl.handle.net/10819/3236
- Palabra clave:
- Oído
Método de elementos de frontera
BEM
Ear
Boundary element method
Ultrasound
[45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations"
Acústica
Procesamiento de señales
Ultrasonido
Transmisión del sonido
Transmisión de ondas
Ondas sonoras
- Rights
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANBUENAV2_87e754f45890f17dace303a181f4b0f1 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/3236 |
network_acronym_str |
SANBUENAV2 |
network_name_str |
Repositorio USB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Ultrasound wave transmission between human tissues using the boundary element method |
dc.title.alternative.spa.fl_str_mv |
Transmisión de ondas de ultrasonido entre tejidos humanos empleando el método de elementos de frontera |
title |
Ultrasound wave transmission between human tissues using the boundary element method |
spellingShingle |
Ultrasound wave transmission between human tissues using the boundary element method Oído Método de elementos de frontera BEM Ear Boundary element method Ultrasound [45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations" Acústica Procesamiento de señales Ultrasonido Transmisión del sonido Transmisión de ondas Ondas sonoras |
title_short |
Ultrasound wave transmission between human tissues using the boundary element method |
title_full |
Ultrasound wave transmission between human tissues using the boundary element method |
title_fullStr |
Ultrasound wave transmission between human tissues using the boundary element method |
title_full_unstemmed |
Ultrasound wave transmission between human tissues using the boundary element method |
title_sort |
Ultrasound wave transmission between human tissues using the boundary element method |
dc.creator.fl_str_mv |
Morales Del Corral, Juan Diego |
dc.contributor.advisor.none.fl_str_mv |
García Mayén, Héctor |
dc.contributor.author.none.fl_str_mv |
Morales Del Corral, Juan Diego |
dc.subject.spa.fl_str_mv |
Oído Método de elementos de frontera BEM Ear Boundary element method Ultrasound |
topic |
Oído Método de elementos de frontera BEM Ear Boundary element method Ultrasound [45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations" Acústica Procesamiento de señales Ultrasonido Transmisión del sonido Transmisión de ondas Ondas sonoras |
dc.subject.classification.eng.fl_str_mv |
[45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations" |
dc.subject.other.spa.fl_str_mv |
Acústica Procesamiento de señales Ultrasonido Transmisión del sonido Transmisión de ondas Ondas sonoras |
description |
The ultrasound wave transmission between human tissue layers was investigated in this project, aiming for a focal stimulation of the auditory nerve on the cochlea. A simulation of the transmission was implemented with the boundary element method in order to visualize the behavior of the ultrasound wave. The ear and some basic information about its function are presented. Some acoustic parameters for the boundary conditions are written. The results obtained show transmission between layers and a 30 dB attenuation on the cochlea caused by the transmission. It is proposed a source array with multiple ultrasound sources, using phase differences between the sources to focus this way the area desired for stimulation, because the results with one acoustic piston source, producing a plane wave are not satisfactory for a focused stimulation.-- Grupo GIMSC.-- Línea de Investigación: acústica y procesamiento de señales.-- Área: acústica.-- Tema: ultrasonido |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2016-11-19T00:56:20Z |
dc.date.available.none.fl_str_mv |
2016-11-19T00:56:20Z |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.submitted.none.fl_str_mv |
2016-11-18 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.spa.epa.fl_str_mv |
Trabajo de Grado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10819/3236 |
url |
http://hdl.handle.net/10819/3236 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.cc.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.spa.fl_str_mv |
pdf |
dc.format.extent.spa.fl_str_mv |
30 páginas. |
dc.format.medium.spa.fl_str_mv |
Recurso en linea |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.faculty.spa.fl_str_mv |
Ingenierias |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Sonido |
dc.publisher.sede.spa.fl_str_mv |
Medellín |
institution |
Universidad de San Buenaventura |
dc.source.bibliographicCitation.eng.fl_str_mv |
[1] L. R. Garilov, E. M. Tsirulnikov, I. ab I. Davies, "Application of focused ultrasound for the stimulation of neural structures," Ultrasound in Medicine & Biology, vol. 22, 1996. [2] P. H. Tsui, S. H. Wang, C. C. Huang, "In vitro effects of ultrasound with different energies on the conduction properties of neural tissue," Ultrasonics, vol. 43, 2005. [3] R. L. King et al. "Effective Parameters for Ultrasound-Induced In Vivo Neurostimulation," Ultrasound in medicine & Biology, vol. 39, 2013. [4] T. J. Mason. J. P. Lorimer. "Introduction to Applied Ultrasonics". Applied Sonochemistry the Uses of Power Ultrasound in Chemistry and Processing. Coventry, UK: Wiley-vch. 2002, ch. 1, pp 1-22. [5] M. Vinatoru. Sonochemistry. Available: http://www.innovationpei.com/photos/original/ftc_sonochemist.pdf [6] R. L. Drake, A. W. Vogl and A. W. M. Mitchell. Gray's Anatomy for Students. 2nd ed. Philadelphia, USA: Churchill Livingstone Elsevier. 2010. [7] R. P. Schlenk. R. J. Kowalski. E. C. Benzel. "Biomechanics of Spinal Deformity," Department of Neurosurgery, Cleveland. [8] HeadNeckBrainSpine. "Anatomy” Available: http://headneckbrainspine.com/Neuroanatomymodules.php [9] B. C. J. Moore. Hearing Handbook of Perception and Cognition. 2nd ed. Cambridge, England: Academic Press. 1995. 10] J. O. Pickles. "The Cochlea". An introduction to the physiology of hearing. 4th ed. Queensland, Australia: Emerald Group Publishing Limited. 2012. ch. 3 [11] S. A. Gelfand. "Anatomy". Hearing an introduction to psychological and physiological acoustics. 5th ed. New York, USA: Informa Healthcare. 2010, ch. 2, pp. 34-35 [12] C. S. Katalinic, "Octavo nervio craneal. Audición. Equilibrio". Available: http://www.med.ufro.cl/Recursos/neurologia/doc/c6.pdf [13] A.R. Palmer. "How the Ear Works and Why Lou Sounds Cause Hearing Loss," MRC Institute of Hearing Research, Nottingham. [14] B. Hu et al. “Low-Intensity Pulsed Ultrasound Stimulation Facilitates Osteogenic Differentiation of Human Periodontal Ligament Cells,” PLoS ONE. 2014. [15] W. Xia et al. “Reversal Effect of Low-Intensity Ultrasound on Adriamycin-Resistant Human Hepatoma Cells In Vitro and In Vivo”, International Journal of Imaging Systems & Technology, 2014 [16] D.N. Ankrett et al. “The effect of ultrasound-related stimuli on cell viability in microfluidic channels,” Journal of Nanobiotechnology, 2013. [17] S. A. Goss, R. L. Johnston, F. Dunn. "Compilation of empirical ultrasonic properties of human tissues. II," Ultrasound Research Division, Indianapolis [18] C. R. Hill. J. C. Bamber. G. R. ter Haar. "Speed of Sound". Physical Principles of Medical Ultrasonics. 2nd ed. Chochester, England: John Wiley & Sons Ltd. 2004. ch. 5 [19] G. D. Ludwig. "The velocity of sound through Tissues and the Acoustic Impedance of Tissues," Naval Medical Research Institute, Bethesda. [20] T. Li et al. "Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection" [21] G. Pellacani, S. Seidenari. "Variations in Facial Skin Thickness and Echogenicity with Site and Age," Department of Dermatology, Modena. [22] S. Pichardo. V. W. Sin. K. Hynynen. "Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excides human skulls," Physics in Medicine and Biology, vol. 56, 2010. [23] L. Demkowicz et al. "Modeling bone conduction of sound in the human head using hp-finite elements: Code design and verification" [24] G. Volandri et al. "Boimechanics of the tympanic membrane," Department of Mechanical, Nuclear and Production Engineering, Pisa. [25] D. De Greef et al. "Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling" [26] F. Aernouts. J. R. M. Aerts. J. J. J Dirckx. "Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements," Laboratory of Biomedical Physics, Antwerpen. [27] S. Hemilä. S. Nummela. T. Reuter. "What middle ear parameters tell about impedance matching and high frequency hearing" [28] H. Rask-Andersen et al. "Human Cochlea: Anatomical Characteristics and Their Relevance for Cochlear Implantation" [29] B. Escudé et al. "The Size of the Cochlea end Predictions of Insertion Depth Angles for Cochlear Implant Electrodes" [30] N. Bauman. "The Hearing Aids of Yesteryear A brief history of hearing aids from then to now", Available: http://www.hearingaidmuseum.com/resources/The%20Hearing%20Aids%20of%20Yesteryear.p df [31] J. Zamora. Historia del Implante Coclear: los primeros años. Available: http://implantecoclear.org/documentos/implante/Historia%20IC%20R50.pdf [32] Oregon Health & Science University. Cochlear implant basics. Available: http://www.ohsu.edu/xd/health/services/ent/for-patients/upload/CochlearImplantBasics0001.pdf [33] L. G. Rubin. B. Papsin. Commitee of Infectious Diseases and Section on Otolaryngology - Head and Neck Surgery. "Policy Statement - Cochlear Implants in Children: Surgical Site Infections and Prevention and Treatment of Acute Otitis Media and Meningitis," American Academy of Pediatrics. [34] S. Kirkup. The boundary element method in acoustics a development in Fortran. 1st ed. Integrated Sound Software. 2007. [35] M. Iskandarani. "Chapter 16 Boundary Element Method". Available: http://www.rsmas.miami.edu/personal/miskandarani/Courses/MSC321/lectBEM.pdf [36] M. J. Crocker. "Boundary Element Modeling". Handbook of Noise and Vibration Control. New Jersey, USA: John Wiley & Sons. 2007, ch 8. [37] D. M. Misljenovie. "Boundary element method and wave equation," Mathematical Institute, Beogrand, 1982. [38] S. Kirkup. J. Yazdani. "A General Introduction to the Boundary Element Method in Matlab/Freemat" [39] M. Messner. "Fast Boundary Element Methods in Acoustics," Institute of applied Mechanics, Graz, 2012. [40] M. Costabel. "Principles of Boundary Element Methods" [41] F. Kaiser. "'The boundary element method in acoustics - An internship report" [42] V. C. Henríquez, P. M. Juhl. "OpenBEM - An open source Boundary Element Method software in Acoustics," Institute of Sensors, Signals and Electrotechnics, Odense [43] H. Espinoza, R. Codina, S. Badia. "A Sommerfeld non-reflecting boundary condition for the wave equation in mixed form" [44] C. Stover. Green's function. Available: http://mathworld.wolfram.com/GreensFunction.html [45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations" 46] P. Juhl. V. C. Henriquez. OpenBEM. Available: http://www.openbem.dk [47] J. Fessler. Ultrasound arrays, Available: https://www.imt.liu.se/edu/courses/TBMT02/ultra/ca-array.pdf 48] X. Zeng. “Ultrasound Phased Array Simulations For Hyperthermia”, 2008 |
dc.source.instname.spa.fl_str_mv |
Universidad de San Buenaventura - Medellín |
dc.source.other.spa.fl_str_mv |
Biblioteca USB Medellín (San Benito): CD-3797t |
dc.source.reponame.spa.fl_str_mv |
Biblioteca Digital Universidad de San Buenaventura |
bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/06801567-64dd-46d7-abd9-e4fb89c17ba4/download https://bibliotecadigital.usb.edu.co/bitstreams/d9d9956f-203c-427e-bdcd-d6f868447939/download https://bibliotecadigital.usb.edu.co/bitstreams/3c794bcb-15c7-479a-9411-44addccfb264/download https://bibliotecadigital.usb.edu.co/bitstreams/765d5127-bd2d-41a6-a726-63d31f045e39/download |
bitstream.checksum.fl_str_mv |
f0901ca6a838f32c38ca001410065004 0c7b7184e7583ec671a5d9e43f0939c0 3712a4ea2f87df283669b6dc5a06ec45 cb7558b2bee3ff1ce226fccc569832bd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1812932437623177216 |
spelling |
Comunidad Científica y Académica[30] N. Bauman. "The Hearing Aids of Yesteryear A brief history of hearing aids from then to now", Available: http://www.hearingaidmuseum.com/resources/The%20Hearing%20Aids%20of%20Yesteryear.p dfGarcía Mayén, Héctorc9f7f0f0-2c79-4e02-ac5f-666a81321543-1Morales Del Corral, Juan Diego2191cb3a-7c5b-4719-a8ef-c1437a44fd01-12016-11-19T00:56:20Z2016-11-19T00:56:20Z20162016-11-18The ultrasound wave transmission between human tissue layers was investigated in this project, aiming for a focal stimulation of the auditory nerve on the cochlea. A simulation of the transmission was implemented with the boundary element method in order to visualize the behavior of the ultrasound wave. The ear and some basic information about its function are presented. Some acoustic parameters for the boundary conditions are written. The results obtained show transmission between layers and a 30 dB attenuation on the cochlea caused by the transmission. It is proposed a source array with multiple ultrasound sources, using phase differences between the sources to focus this way the area desired for stimulation, because the results with one acoustic piston source, producing a plane wave are not satisfactory for a focused stimulation.-- Grupo GIMSC.-- Línea de Investigación: acústica y procesamiento de señales.-- Área: acústica.-- Tema: ultrasonidoEn este proyecto se investigó la transmisión entre capas de tejidos humanos con miras a la estimulación focal neuronal del nervio auditivo en la cóclea. Se implementó una simulación de la transmisión mediante el método de fronteras para visualizar el comportamiento de las ondas de ultrasonido. Se presentará información básica sobre el oído su funcionamiento. Se escriben algunos parámetros acústicos para las condiciones de frontera. Los resultados obtenidos muestran transmisión entre capas y una atenuación de 30 dB en la cóclea causada por ésta transmisión. Se propone un arreglo de fuentes con múltiples emisores de ultrasonido, empleando diferencias de fases entre las fuentes para focalizar de esta manera el área de estimulación deseada, debido a que los resultados con un pistón acústico como fuente producen ondas planas, las cuales no son satisfactorias para una estimulación focalpdf30 páginas.Recurso en lineaapplication/pdfhttp://hdl.handle.net/10819/3236engIngenieriasIngeniería de SonidoMedellínAtribución-NoComercial-SinDerivadas 2.5 ColombiaPor medio de este formato manifiesto mi voluntad de AUTORIZAR a la Universidad de San Buenaventura, Sede Bogotá, Seccionales Medellín, Cali y Cartagena, la difusión en texto completo de manera gratuita y por tiempo indefinido en la Biblioteca Digital Universidad de San Buenaventura, el documento académico-investigativo objeto de la presente autorización, con fines estrictamente educativos, científicos y culturales, en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre derechos de autor. Como autor manifiesto que el presente documento académico-investigativo es original y se realiza sin violar o usurpar derechos de autor de terceros, por lo tanto, la obra es de mi exclusiva autora y poseo la titularidad sobre la misma. La Universidad de San Buenaventura no será responsable de ninguna utilización indebida del documento por parte de terceros y será exclusivamente mi responsabilidad atender personalmente cualquier reclamación que pueda presentarse a la Universidad. Autorizo a la Biblioteca Digital de la Universidad de San Buenaventura convertir el documento al formato que el repositorio lo requiera (impreso, digital, electrónico o cualquier otro conocido o por conocer) o con fines de preservación digital. Esta autorización no implica renuncia a la facultad que tengo de publicar posteriormente la obra, en forma total o parcial, por lo cual podrá, dando aviso por escrito con no menos de un mes de antelación, solicitar que el documento deje de estar disponible para el público en la Biblioteca Digital de la Universidad de San Buenaventura, así mismo, cuando se requiera por razones legales y/o reglas del editor de una revista.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2[1] L. R. Garilov, E. M. Tsirulnikov, I. ab I. Davies, "Application of focused ultrasound for the stimulation of neural structures," Ultrasound in Medicine & Biology, vol. 22, 1996.[2] P. H. Tsui, S. H. Wang, C. C. Huang, "In vitro effects of ultrasound with different energies on the conduction properties of neural tissue," Ultrasonics, vol. 43, 2005.[3] R. L. King et al. "Effective Parameters for Ultrasound-Induced In Vivo Neurostimulation," Ultrasound in medicine & Biology, vol. 39, 2013.[4] T. J. Mason. J. P. Lorimer. "Introduction to Applied Ultrasonics". Applied Sonochemistry the Uses of Power Ultrasound in Chemistry and Processing. Coventry, UK: Wiley-vch. 2002, ch. 1, pp 1-22.[5] M. Vinatoru. Sonochemistry. Available: http://www.innovationpei.com/photos/original/ftc_sonochemist.pdf[6] R. L. Drake, A. W. Vogl and A. W. M. Mitchell. Gray's Anatomy for Students. 2nd ed. Philadelphia, USA: Churchill Livingstone Elsevier. 2010.[7] R. P. Schlenk. R. J. Kowalski. E. C. Benzel. "Biomechanics of Spinal Deformity," Department of Neurosurgery, Cleveland.[8] HeadNeckBrainSpine. "Anatomy” Available: http://headneckbrainspine.com/Neuroanatomymodules.php[9] B. C. J. Moore. Hearing Handbook of Perception and Cognition. 2nd ed. Cambridge, England: Academic Press. 1995.10] J. O. Pickles. "The Cochlea". An introduction to the physiology of hearing. 4th ed. Queensland, Australia: Emerald Group Publishing Limited. 2012. ch. 3[11] S. A. Gelfand. "Anatomy". Hearing an introduction to psychological and physiological acoustics. 5th ed. New York, USA: Informa Healthcare. 2010, ch. 2, pp. 34-35[12] C. S. Katalinic, "Octavo nervio craneal. Audición. Equilibrio". Available: http://www.med.ufro.cl/Recursos/neurologia/doc/c6.pdf[13] A.R. Palmer. "How the Ear Works and Why Lou Sounds Cause Hearing Loss," MRC Institute of Hearing Research, Nottingham.[14] B. Hu et al. “Low-Intensity Pulsed Ultrasound Stimulation Facilitates Osteogenic Differentiation of Human Periodontal Ligament Cells,” PLoS ONE. 2014.[15] W. Xia et al. “Reversal Effect of Low-Intensity Ultrasound on Adriamycin-Resistant Human Hepatoma Cells In Vitro and In Vivo”, International Journal of Imaging Systems & Technology, 2014[16] D.N. Ankrett et al. “The effect of ultrasound-related stimuli on cell viability in microfluidic channels,” Journal of Nanobiotechnology, 2013.[17] S. A. Goss, R. L. Johnston, F. Dunn. "Compilation of empirical ultrasonic properties of human tissues. II," Ultrasound Research Division, Indianapolis[18] C. R. Hill. J. C. Bamber. G. R. ter Haar. "Speed of Sound". Physical Principles of Medical Ultrasonics. 2nd ed. Chochester, England: John Wiley & Sons Ltd. 2004. ch. 5[19] G. D. Ludwig. "The velocity of sound through Tissues and the Acoustic Impedance of Tissues," Naval Medical Research Institute, Bethesda.[20] T. Li et al. "Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection"[21] G. Pellacani, S. Seidenari. "Variations in Facial Skin Thickness and Echogenicity with Site and Age," Department of Dermatology, Modena.[22] S. Pichardo. V. W. Sin. K. Hynynen. "Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excides human skulls," Physics in Medicine and Biology, vol. 56, 2010.[23] L. Demkowicz et al. "Modeling bone conduction of sound in the human head using hp-finite elements: Code design and verification"[24] G. Volandri et al. "Boimechanics of the tympanic membrane," Department of Mechanical, Nuclear and Production Engineering, Pisa.[25] D. De Greef et al. "Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling"[26] F. Aernouts. J. R. M. Aerts. J. J. J Dirckx. "Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements," Laboratory of Biomedical Physics, Antwerpen.[27] S. Hemilä. S. Nummela. T. Reuter. "What middle ear parameters tell about impedance matching and high frequency hearing"[28] H. Rask-Andersen et al. "Human Cochlea: Anatomical Characteristics and Their Relevance for Cochlear Implantation"[29] B. Escudé et al. "The Size of the Cochlea end Predictions of Insertion Depth Angles for Cochlear Implant Electrodes"[30] N. Bauman. "The Hearing Aids of Yesteryear A brief history of hearing aids from then to now", Available: http://www.hearingaidmuseum.com/resources/The%20Hearing%20Aids%20of%20Yesteryear.p df[31] J. Zamora. Historia del Implante Coclear: los primeros años. Available: http://implantecoclear.org/documentos/implante/Historia%20IC%20R50.pdf[32] Oregon Health & Science University. Cochlear implant basics. Available: http://www.ohsu.edu/xd/health/services/ent/for-patients/upload/CochlearImplantBasics0001.pdf[33] L. G. Rubin. B. Papsin. Commitee of Infectious Diseases and Section on Otolaryngology - Head and Neck Surgery. "Policy Statement - Cochlear Implants in Children: Surgical Site Infections and Prevention and Treatment of Acute Otitis Media and Meningitis," American Academy of Pediatrics.[34] S. Kirkup. The boundary element method in acoustics a development in Fortran. 1st ed. Integrated Sound Software. 2007.[35] M. Iskandarani. "Chapter 16 Boundary Element Method". Available: http://www.rsmas.miami.edu/personal/miskandarani/Courses/MSC321/lectBEM.pdf[36] M. J. Crocker. "Boundary Element Modeling". Handbook of Noise and Vibration Control. New Jersey, USA: John Wiley & Sons. 2007, ch 8.[37] D. M. Misljenovie. "Boundary element method and wave equation," Mathematical Institute, Beogrand, 1982.[38] S. Kirkup. J. Yazdani. "A General Introduction to the Boundary Element Method in Matlab/Freemat"[39] M. Messner. "Fast Boundary Element Methods in Acoustics," Institute of applied Mechanics, Graz, 2012.[40] M. Costabel. "Principles of Boundary Element Methods"[41] F. Kaiser. "'The boundary element method in acoustics - An internship report"[42] V. C. Henríquez, P. M. Juhl. "OpenBEM - An open source Boundary Element Method software in Acoustics," Institute of Sensors, Signals and Electrotechnics, Odense[43] H. Espinoza, R. Codina, S. Badia. "A Sommerfeld non-reflecting boundary condition for the wave equation in mixed form"[44] C. Stover. Green's function. Available: http://mathworld.wolfram.com/GreensFunction.html[45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations"46] P. Juhl. V. C. Henriquez. OpenBEM. Available: http://www.openbem.dk[47] J. Fessler. Ultrasound arrays, Available: https://www.imt.liu.se/edu/courses/TBMT02/ultra/ca-array.pdf48] X. Zeng. “Ultrasound Phased Array Simulations For Hyperthermia”, 2008Universidad de San Buenaventura - MedellínBiblioteca USB Medellín (San Benito): CD-3797tBiblioteca Digital Universidad de San BuenaventuraOídoMétodo de elementos de fronteraBEMEarBoundary element methodUltrasound[45] B. Engquist. H. Zhao. "Approximate separability of Green's function for high frequency Helmholtz equations"AcústicaProcesamiento de señalesUltrasonidoTransmisión del sonidoTransmisión de ondasOndas sonorasIngeniero de SonidoUltrasound wave transmission between human tissues using the boundary element methodTransmisión de ondas de ultrasonido entre tejidos humanos empleando el método de elementos de fronteraTrabajo de grado - PregradoTrabajo de Gradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fPublicationORIGINALUltrasound_Wave_Transmission_Morales_2016.pdfUltrasound_Wave_Transmission_Morales_2016.pdfapplication/pdf1802907https://bibliotecadigital.usb.edu.co/bitstreams/06801567-64dd-46d7-abd9-e4fb89c17ba4/downloadf0901ca6a838f32c38ca001410065004MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-82071https://bibliotecadigital.usb.edu.co/bitstreams/d9d9956f-203c-427e-bdcd-d6f868447939/download0c7b7184e7583ec671a5d9e43f0939c0MD58TEXTUltrasound_Wave_Transmission_Morales_2016.pdf.txtUltrasound_Wave_Transmission_Morales_2016.pdf.txtExtracted texttext/plain57671https://bibliotecadigital.usb.edu.co/bitstreams/3c794bcb-15c7-479a-9411-44addccfb264/download3712a4ea2f87df283669b6dc5a06ec45MD59THUMBNAILUltrasound_Wave_Transmission_Morales_2016.pdf.jpgUltrasound_Wave_Transmission_Morales_2016.pdf.jpgGenerated Thumbnailimage/jpeg5896https://bibliotecadigital.usb.edu.co/bitstreams/765d5127-bd2d-41a6-a726-63d31f045e39/downloadcb7558b2bee3ff1ce226fccc569832bdMD51010819/3236oai:bibliotecadigital.usb.edu.co:10819/32362023-02-24 11:31:33.682http://creativecommons.org/licenses/by-nc-nd/2.5/co/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPkJJQkxJT1RFQ0EgRElHSVRBTCBVTklWRVJTSURBRCBERSBTQU4gQlVFTkFWRU5UVVJBIC0gQ09MT01CSUE8L2gzPgo8cD4KVMOpcm1pbm9zIGRlIGxhIGxpY2VuY2lhIGdlbmVyYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgcmVwb3NpdG9yaW8gaW5zdGl0dWNpb25hbDwvcD48L2NlbnRlcj4KPFAgQUxJR049Y2VudGVyPgpQb3IgbWVkaW8gZGUgZXN0ZSBmb3JtYXRvIG1hbmlmaWVzdG8gbWkgdm9sdW50YWQgZGUgQVVUT1JJWkFSIGEgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgU2VkZSBCb2dvdMOhIHkgPEJSPlNlY2Npb25hbGVzIE1lZGVsbMOtbiwgQ2FsaSB5IENhcnRhZ2VuYSwgbGEgZGlmdXNpw7NuIGVuIHRleHRvIGNvbXBsZXRvIGRlIG1hbmVyYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBlbiBsYTxCUj4gQmlibGlvdGVjYSBEaWdpdGFsIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIGVsIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBvYmpldG8gZGUgbGEgcHJlc2VudGUgPEJSPmF1dG9yaXphY2nDs24sIGNvbiBmaW5lcyBlc3RyaWN0YW1lbnRlIGVkdWNhdGl2b3MsIGNpZW50w63CrWZpY29zIHkgY3VsdHVyYWxlcywgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW4gbGEgTGV5IDIzIGRlIDxCUj4gMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvczxCUj4gZGUgYXV0b3IuIDxCUj4gCiAKQ29tbyBhdXRvciBtYW5pZmllc3RvIHF1ZSBlbCBwcmVzZW50ZSBkb2N1bWVudG8gYWNhZMOpbWljbyAtIGludmVzdGlnYXRpdm8gZXMgb3JpZ2luYWwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gPEJSPiB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgbWkgZXhjbHVzaXZhIGF1dG9yw63CrWEgeSBwb3NlbyBsYSB0aXR1bGFyaWRhZCA8QlI+IHNvYnJlIGxhIG1pc21hLiBMYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIG5vIHNlcsOhIHJlc3BvbnNhYmxlIGRlIG5pbmd1bmEgdXRpbGl6YWNpw7NuIGluZGViaWRhIGRlbCBkb2N1bWVudG8gPEJSPnBvciBwYXJ0ZSBkZSB0ZXJjZXJvcyB5IHNlcsOhIGV4Y2x1c2l2YW1lbnRlIG1pIHJlc3BvbnNhYmlsaWRhZCBhdGVuZGVyIHBlcnNvbmFsbWVudGUgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBxdWUgcHVlZGE8QlI+IHByZXNlbnRhcnNlIGEgbGEgVW5pdmVyc2lkYWQuIDxCUj4KIApBdXRvcml6byBhIGxhIEJpYmxpb3RlY2EgRGlnaXRhbCBkZSBsYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYWwgZm9ybWF0byBxdWUgZWwgPEJSPnJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBvIGNvbiBmaW5lcyBkZTxCUj4gcHJlc2VydmFjacOzbiBkaWdpdGFsLiA8QlI+CiAKRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGVuZ28gZGUgcHVibGljYXIgcG9zdGVyaW9ybWVudGUgbGEgb2JyYSwgZW4gZm9ybWEgdG90YWwgbyA8QlI+cGFyY2lhbCwgcG9yIGxvIGN1YWwgcG9kcsOpLCBkYW5kbyBhdmlzbyBwb3IgZXNjcml0byBjb24gbm8gbWVub3MgZGUgdW4gbWVzIGRlIGFudGVsYWNpw7NuLCBzb2xpY2l0YXIgcXVlIGVsIDxCUj5kb2N1bWVudG8gZGVqZSBkZSBlc3RhciBkaXNwb25pYmxlIHBhcmEgZWwgcMO6YmxpY28gZW4gbGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIDxCUj4gYXPDrcKtIG1pc21vLCBjdWFuZG8gc2UgcmVxdWllcmEgcG9yIHJhem9uZXMgbGVnYWxlcyB5L28gcmVnbGFzIGRlbCBlZGl0b3IgZGUgdW5hIHJldmlzdGEuIDxCUj48L1A+Cg== |