Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso

With the advent of virtual entertainment, the search for increasingly real experiences has led to the creationof stimuli that seek to simulate the sensations obtained from human senses. An example of this is thebinaural audio, which aims to simulate the way in which the human being listens to sound....

Full description

Autores:
Tamayo Arcila, Tobias
Silva Zuluaga, Alejandro
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/8364
Acceso en línea:
http://hdl.handle.net/10819/8364
Palabra clave:
HRTF
Localización
Evaluación
Subjetiva
Localization
Subjective
Test
Audífonos
Rights
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANBUENAV2_46b39c5bc7fac36c7c1a674034aaa4c4
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/8364
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso
title Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso
spellingShingle Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso
HRTF
Localización
Evaluación
Subjetiva
Localization
Subjective
Test
Audífonos
title_short Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso
title_full Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso
title_fullStr Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso
title_full_unstemmed Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso
title_sort Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso
dc.creator.fl_str_mv Tamayo Arcila, Tobias
Silva Zuluaga, Alejandro
dc.contributor.advisor.none.fl_str_mv Franco Bedoya, Ramiro Esteban
dc.contributor.author.none.fl_str_mv Tamayo Arcila, Tobias
Silva Zuluaga, Alejandro
dc.subject.spa.fl_str_mv HRTF
Localización
Evaluación
Subjetiva
Localization
Subjective
Test
topic HRTF
Localización
Evaluación
Subjetiva
Localization
Subjective
Test
Audífonos
dc.subject.lemb.spa.fl_str_mv Audífonos
description With the advent of virtual entertainment, the search for increasingly real experiences has led to the creationof stimuli that seek to simulate the sensations obtained from human senses. An example of this is thebinaural audio, which aims to simulate the way in which the human being listens to sound. This typeof audio is produced by means of HRTF filters, which are transfer functions found through the Fouriertransform of the impulse responses captured from the binaural heads (HRIR). The localization capabilityof these may not be very accurate, due both to physical factors of the measured head that are inheritedby the filter, and to differences in the type of playback system which is used and the room in which theuser listens to the produced audio.The purpose of this research work is to design and execute a methodology of subjective tests through aonline form, with the intention of making a comparison between the HRTF filter bases of MIT, IRCAM,SADIE and CIPIC, in terms of their location capability.From the analysis of percentages and indicators of uncertainty and location, it was concluded that nodifferences were found in the location capacity of the databases, except for the CIPIC filter, which has aslightly higher location capacity than the rest. In addition, a low percentage of hits was obtained, whereerrors due to cone of confusion and totally incorrect answers had the greatest influence.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-03T20:35:45Z
dc.date.available.none.fl_str_mv 2021-09-03T20:35:45Z
dc.date.issued.none.fl_str_mv 2021
dc.date.submitted.none.fl_str_mv 2021-09-03
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.spa.spa.fl_str_mv Trabajo de Grado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.citation.spa.fl_str_mv Tobias Tamayo and Alejandro Silva, ”Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso.”, Tesis de Pregrado, Ingeniería de Sonido, Universidad de San Buenaventura, Facultad de Ingenierías,2021
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10819/8364
identifier_str_mv Tobias Tamayo and Alejandro Silva, ”Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso.”, Tesis de Pregrado, Ingeniería de Sonido, Universidad de San Buenaventura, Facultad de Ingenierías,2021
url http://hdl.handle.net/10819/8364
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.cc.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
dc.format.spa.fl_str_mv pdf
dc.format.extent.spa.fl_str_mv 58 páginas
dc.format.medium.spa.fl_str_mv Recurso en linea
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.faculty.spa.fl_str_mv Ingenierias
dc.publisher.program.spa.fl_str_mv Ingeniería de Sonido
dc.publisher.sede.spa.fl_str_mv Medellín
institution Universidad de San Buenaventura
dc.source.bibliographicCitation.spa.fl_str_mv [1] F. L. Wightman y D. J. Kistler, ✭✭Hearing in Three Dimensions: Sound Localization✮✮, en Audio Engineering Society Conference: 8th International Conference: The Sound of Audio, mayo de 1990. direccion: http://www.aes.org/e-lib/browse.cfm?elib=5436.
[2] P. Minnaar, S. K. Olesen, F. Christensen y H. Møller, ✭✭Localization with Binaural Recordings from Artificial and Human Heads✮✮, J. Audio Eng. Soc, vol. 49, n.o 5, pags. 323-336, 2001. direcci ´ on: ´ http://www.aes.org/e-lib/browse.cfm?elib=10193.
[3] A. Floros y C. Tsakostas, ✭✭Optimized Binaural Modeling for Immersive Audio Applications✮✮, en Audio Engineering Society Convention 122, mayo de 2007. direccion: http:// www. aes . org/ e - ´ lib/browse.cfm?elib=14085.
[4] C. Porschmann, J. M. Arend y A. Neidhardt, ¨ ✭✭A Spherical Near-Field HRTF Set for Auralization and Psychoacoustic Research✮✮, en Audio Engineering Society Convention 142, mayo de 2017. direccion: http://www.aes.org/e-lib/browse.cfm?elib=18697.
[5] S. Paul, ✭✭Binaural Recording Technology : A Historical Review and Possible Future Developments Binaural Recording Technology✮✮, n.o May, 2016. DOI: 10.3813/AAA.918208.
[6] H. Møller, M. F. Sørensen, C. B. Jensen y D. Hammershøi, ✭✭Binaural Technique: Do We Need Individual Recordings?✮✮, J. Audio Eng. Soc, vol. 44, n.o 6, pags. 451-469, 1996. direcci ´ on: http: ´ //www.aes.org/e-lib/browse.cfm?elib=7897.
[7] k. diepold klaus, m. durkovic marko y f. sagstetter florian, ✭✭hrtf measurements with recorded reference signal✮✮, journal of the audio engineering society, nov. de 2010.
[8] D. Hammershoi y H. Møller, ✭✭Methods for binaural recording and reproduction✮✮, Acta Acustica united with Acustica, vol. 88, n.o 3, pags. 303-311, 2002, ´ ISSN: 14367947.
[9] D. Hammershoi y H. Moller, ✭✭Binaural technique - Basic methods for recording, synthesis, and reproduction✮✮, Communication Acoustics, pags. 223-254, 2005. ´ DOI: 10.1007/3-540-27437-5 9.
[10] N. J. Wade y D. Deutsch, ✭✭Binaural Hearing—Before and After the Stethophone✮✮, Acoustics Today, vol. 4, n.o 3, pag. 16, 2008, ´ ISSN: 1557-0215. DOI: 10.1121/1.2994724.
[11] D. R. Begault, ✭✭An anthology of articles on Spatial Sound Techniques,Part 1: Virtual and BinauralAudio Technologies✮✮, AudioEngineering Society, 2004.
[12] K. Hammer y W. Snow, ✭✭Binaural Transmission System at Academy of Music in Philadelphia✮✮, Memorandum MM-3950, Bell Laboratories, 1932
[13] M. D. Burkhard y R. M. Sachs, ✭✭Anthropometric manikin for acoustic research✮✮, The Journal of the Acoustical Society of America, vol. 58, n.o 1, pags. 214-222, 1975.
[14] H. Møller, D. Hammershøi, C. B. Johnson y M. F. Sørensen, ✭✭Evaluation of Artificial Heads in Listening Tests✮✮, J. Audio Eng. Soc, vol. 47, n.o 3, pags. 83-100, 1999. direcci ´ on: http://www.aes. ´ org/e-lib/browse.cfm?elib=12115.
[15] T. Brookes y C. Treble, ✭✭The Effect of Non-Symmetrical Left/Right Recording Pinnae on the Perceived Externalisation of Binaural Recordings.✮✮, en Audio Engineering Society Convention 118, mayo de 2005. direccion: http://www.aes.org/e-lib/browse.cfm?elib=13155.
[16] V. P. Sivonen y W. Ellermeier, ✭✭Binaural Loudness for Artificial-Head Measurements in Directional Sound Fields✮✮, J. Audio Eng. Soc, vol. 56, n.o 6, pags. 452-461, 2008. direcci ´ on: http://www.aes. ´ org/e-lib/browse.cfm?elib=14394.
[17] G. Andeol, S. Savel, A. Guillaume, D. Brungart y W. Reed, ´ ✭✭Perceptual factors contribute more than acoustical factors to sound localization abilities with virtual sources✮✮, vol. 8, n.o January, pags. 1-17, 2015. ´ DOI: 10.3389/fnins.2014.00451.
[18] K. J. DiPasquale, ✭✭Comparing Externalization Between the Neumann KU100 Versus Low Cost DIY Binaural Dummy Head✮✮, en Audio Engineering Society Convention 147, oct. de 2019. direccion: ´ http://www.aes.org/e-lib/browse.cfm?elib=20558.
[19] M.-V. Laitinen, T. Pihlajamaki, S. L ¨ osler y V. Pulkki, ¨ ✭✭Influence of Resolution of Head Tracking in Synthesis of Binaural Audio✮✮, en Audio Engineering Society Convention 132, 2012. direccion: ´ http://www.aes.org/e-lib/browse.cfm?elib=16261.
[20] H. Gamper, S. Tervo y T. Lokki, ✭✭Head Orientation Tracking Using Binaural Headset Microphones✮✮, en Audio Engineering Society Convention 131, oct. de 2011. direccion: http://www.aes. org/e - ´ lib/browse.cfm?elib=16064
[21] T. Ashby, R. Mason y T. Brookes, ✭✭Head Movements in Three-Dimensional Localization✮✮, en Audio Engineering Society Convention 134, mayo de 2013. direccion: http:// www. aes . org/ e - lib/browse.cfm?elib=16782
[22] P. Stitt, E. Hendrickx, J.-C. Messonnier y B. Katz, ✭✭The Influence of Head Tracking Latency on Binaural Rendering in Simple and Complex Sound Scenes✮✮, en Audio Engineering Society Convention 140, mayo de 2016. direccion: http://www.aes.org/e-lib/browse.cfm?elib=18289
[23] H. Møller y D. Toledo, ✭✭The Role of Spectral Features in Sound Localization✮✮, en Audio Engineering Society Convention 124, mayo de 2008. direccion: http://www.aes.org/e-lib/browse.cfm?elib= ´ 14580.
[24] E. Blanco-Martin, F. J. Casajus-Quiros, J. J. Gomez-Alfageme y S. Torres-Guijarro, ✭✭Spatial Sound Localization Measures From a Dummy Head with a Loudspeaker Array in Anechoic Chamber✮✮, en Audio Engineering Society Convention 118, mayo de 2005. direccion: http://www.aes.org/e- ´ lib/browse.cfm?elib=13172.
[25] D. Satongar, C. Pike, Y. W. Lam y A. I. Tew, ✭✭The Influence of Headphones on the Localization of External Loudspeaker Sources✮✮, J. Audio Eng. Soc, vol. 63, n.o 10, pags. 799-810, 2015. direcci ´ on: ´ http://www.aes.org/e-lib/browse.cfm?elib=18043.
[26] G. Reardon, A. Genovese, G. Zalles, P. Flanagan y A. Roginska, ✭✭Evaluation of Binaural Renderers: Localization✮✮, en Audio Engineering Society Convention 144, mayo de 2018. direccion: http://www. ´ aes.org/e-lib/browse.cfm?elib=19480.
[27] M. Rychtarikov ´ a, T. V. den Bogaert, G. Vermeir y J. Wouters, ´ ✭✭Binaural Sound Source Localization in Real and Virtual Rooms✮✮, J. Audio Eng. Soc, vol. 57, n.o 4, pags. 205-220, 2009. direcci ´ on: http: ´ //www.aes.org/e-lib/browse.cfm?elib=14814.
[28] F. Klein, S. Werner y T. Mayenfels, ✭✭Influences of Training on Externalization of Binaural Synthesis in Situations of Room Divergence✮✮, J. Audio Eng. Soc, vol. 65, n.o 3, pags. 178-187, 2017. direcci ´ on: ´ http://www.aes.org/e-lib/browse.cfm?elib=18553.
[29] UIT Sector Radiocomunicaciones, ✭✭BS.1116-3 Metodos para la evaluaci ´ on subjetiva de peque ´ nas ˜ degradaciones en los sistemas de audio✮✮, Uit-R, vol. 3, pag. 35, 2015. direcci ´ on: shorturl.at/vzFQ0.
[30] UIT-R, ✭✭Metodos generales para la evaluaci ´ on subjetiva de la calidad de sonido Anexo 1 ´ ✮✮, vol. 2, pag. 13, 2003.
[31] A. Mason, ✭✭The MUSHRA audio subjective test method✮✮, BBC R&D White Paper WHP, vol. WHP 038, n.o September, pag. 8, 2002. direcci ´ on: shorturl.at/aezB2.
[32] UIT-R, ✭✭Metodo para la evaluaci ´ on subjetiva del nivel de calidad intermedia de los sistemas de ´ codificacion Anexo 1 ´ ✮✮, vol. 3, pags. 1-18, 2003
[33] S. Bech y N. Zacharov, Perceptual Audio Evaluation–Theory, Method and Application. 2006, pag. 449, ´ ISBN: 9780470869239.
[34] F. Nagel, T. Sporer y P. Sedlmeier, ✭✭Toward a Statistically Well-Grounded Evaluation of Listening Tests—Avoiding Pitfalls, Misuse, and Misconceptions✮✮, en Audio Engineering Society Convention 128, mayo de 2010. direccion: http://www.aes.org/e-lib/browse.cfm?elib=15442.
[35] F. Grijalva, J. Larco y P. Mej´ıa, ✭✭A Virtual Listener For HRTF-Based Sound Source Localization Using Support Vector Regression✮✮, en 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), oct. de 2018, pags. 1-5. ´ DOI: 10.1109/ETCM.2018.8580297.
[36] S. J. Cho, A. Ovcharenko y U. Chong, ✭✭Front-Back Confusion Resolution in 3D Sound Localization with HRTF Databases✮✮, en 2006 International Forum on Strategic Technology, oct. de 2006, pags. 239-243. ´ DOI: 10.1109/IFOST.2006.312297.
[37] A. Ovcharenko y Ui-Pil Chong, ✭✭3D sound localization cues using HRTF database built with dummy head✮✮, en 2006 8th International Conference Advanced Communication Technology, vol. 3, feb. de 2006, 6 pp.-1900. DOI: 10.1109/ICACT.2006.206363.
[38] A. Adami, E. A. P. Habets y J. Herre, ✭✭Perceptual Evaluation of a Coherence Suppressing DownMix Method✮✮, en Audio Engineering Society Conference: 55th International Conference: Spatial Audio, 2014. direccion: http://www.aes.org/e-lib/browse.cfm?elib=17347.
[39] M. Leong, ✭✭Application of Binaural Recording in the Video Game Industry✮✮, Tesis doct., Edith Cowan University, 2006.
[40] Joseph David Rees-Jones, ✭✭The Impact of Multichannel Game Audio on the Quality of Player Experience and In-game Performance✮✮, Tesis doct., UNIVERSITY OF YORK, 2018.
[41] T. Letowski y S. Letowski, ✭✭Localization Error: Accuracy and Precision of Auditory Localization✮✮, en Advances in Sound Localization, P. Strumillo, ed., Rijeka: IntechOpen, 2011, cap. 4. DOI: 10. 5772/15652. direccion: https://doi.org/10.5772/15652.
[42] J.-G. Richter y J. Fels, ✭✭Psychoacoustic evaluation of a fast HRTF measurement system✮✮, ene. de 2015.
[43] International Telecommunication Union, ✭✭ITU-T Rec. P.57 Artificial ears✮✮, vol. 57, 2011
[44] O. Rummukainen, S. Schlecht, A. Plinge y E. A. P. Habets, ✭✭Evaluating Binaural Reproduction Systems from Behavioral Patterns in a Virtual Reality—A Case Study with Impaired Binaural Cues and Tracking Latency✮✮, en Audio Engineering Society Convention 143, oct. de 2017. direccion: ´ http://www.aes.org/e-lib/browse.cfm?elib=19292.
[45] T. Parnell y C. Pike, ✭✭An Efficient Method for Producing Binaural Mixes of Classical Music from a Primary Stereo Mix✮✮, en Audio Engineering Society Convention 144, mayo de 2018. direccion: ´ http://www.aes.org/e-lib/browse.cfm?elib=19543.
[46] G. Jacuzzi, S. Brazzola y J. Kares, ✭✭Approaching Immersive 3D Audio Broadcast Streams of Live Performances✮✮, en Audio Engineering Society Convention 142, mayo de 2017. direccion: http : ´ //www.aes.org/e-lib/browse.cfm?elib=18570.
[47] D. M. Howard y J. A. Angus, Acoustics and psychoacoustics: Fifth edition. 2017, pags. 1-510, ´ ISBN: 9781317508304. DOI: 10.4324/9781315716879.
[48] M. Frank y F. Zotter, ✭✭Simple Reduction of Front-Back Confusion in Static Binaural Rendering✮✮, mar. de 2018
[49] T. Fischer, M. Caversaccio y W. Wimmer, ✭✭A Front-Back Confusion Metric in Horizontal Sound Localization: The FBC Score✮✮, bioRxiv, 2020. DOI: 10 . 1101 / 2020 . 02 . 12 . 945303. direccion: ´ shorturl.at/dnHLO
[50] F. Rumsey, ✭✭Whose Head Is it Anyway? Optimizing Binaural Audio✮✮, J. Audio Eng. Soc, vol. 59, n.o 9, pags. 672-675, 2011. direcci ´ on: http://www.aes.org/e-lib/browse.cfm?elib=15982.
[51] H. Møller, ✭✭Fundamentals of binaural technology✮✮, Applied Acoustics, vol. 36, n.o 3-4, pags. 171-218, ´ 1992, ISSN: 0003682X. DOI: 10.1016/0003-682X(92)90046-U
[52] CATT-Acoustic Auralization. direccion: https:// www. catt. se/ postproc% 7B% 5C ´ % 7Dmod. htm (visitado 07-12-2020).
[53] CATT TUCT overview. direccion: https : / / www. catt . se / TUCT / TUCToverview. html (visitado ´ 07-12-2020)
[54] C. Mendonc¸a, G. Campos, P. Dias, J. Vieira, J. P. Ferreira y J. A. Santos, ✭✭On the Improvement of Localization Accuracy with Non-Individualized HRTF-Based Sounds✮✮, J. Audio Eng. Soc, vol. 60, n.o 10, pags. 821-830, 2012. direcci ´ on: http://www.aes.org/e-lib/browse.cfm?elib=16555.
[55] C. Armstrong, L. Thresh, D. Murphy y G. Kearney, ✭✭A Perceptual Evaluation of Individual and Non-Individual HRTFs : a case study of the SADIE II database✮✮, Applied Sciences, vol. 8, pag. 2029, ´ oct. de 2018. DOI: 10.3390/app8112029.
[56] B. D. Gardner, ✭✭HRTF Measurements of a KEMAR Dummy-Head Microphone✮✮, 1994.
[57] G. Eckel, ✭✭Immersive audio-augmented environments: the LISTEN project✮✮, feb. de 2001, pags. 571-573, ´ ISBN: 0-7695-1195-3. DOI: 10.1109/IV.2001.942112.
[58] R. Duda, D. Thompson y C. Avendano, ˜ ✭✭The CIPIC HRTF database✮✮, feb. de 2001, pags. 99-102, ´ ISBN: 0-7803-7126-7. DOI: 10.1109/ASPAA.2001.969552.
dc.source.instname.spa.fl_str_mv Universidad de San Buenaventura - Medellín
dc.source.other.spa.fl_str_mv Biblioteca USB Medellín (San Benito) TG-6110t
dc.source.reponame.spa.fl_str_mv Biblioteca Digital Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/460d3799-e8f3-4c5e-8e4a-d564f541fc38/download
https://bibliotecadigital.usb.edu.co/bitstreams/3c147942-49ec-42ed-85a3-d20b9f9d59a5/download
https://bibliotecadigital.usb.edu.co/bitstreams/2a213e7e-11c4-4cc1-904c-29cbd3a16b20/download
https://bibliotecadigital.usb.edu.co/bitstreams/c397f66a-ec91-4f68-b352-1b3ea006f375/download
bitstream.checksum.fl_str_mv a377b61db4eef485168702b57f166934
0c7b7184e7583ec671a5d9e43f0939c0
941db68b5b4e5c3ae9e7a1475ae96c5a
dde0bc8c728a9196052ad4de26f61d06
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812932419412557824
spelling Comunidad Científica y AcadémicaFranco Bedoya, Ramiro Estebancec455f4-bf77-4ce6-9fb4-8a2ba17ad400-1Tamayo Arcila, Tobias1c9ba051-6efb-44a6-b376-50af8de16931-1Silva Zuluaga, Alejandrodeaef68e-1aa6-4ac1-8e07-d943bfaca056-12021-09-03T20:35:45Z2021-09-03T20:35:45Z20212021-09-03With the advent of virtual entertainment, the search for increasingly real experiences has led to the creationof stimuli that seek to simulate the sensations obtained from human senses. An example of this is thebinaural audio, which aims to simulate the way in which the human being listens to sound. This typeof audio is produced by means of HRTF filters, which are transfer functions found through the Fouriertransform of the impulse responses captured from the binaural heads (HRIR). The localization capabilityof these may not be very accurate, due both to physical factors of the measured head that are inheritedby the filter, and to differences in the type of playback system which is used and the room in which theuser listens to the produced audio.The purpose of this research work is to design and execute a methodology of subjective tests through aonline form, with the intention of making a comparison between the HRTF filter bases of MIT, IRCAM,SADIE and CIPIC, in terms of their location capability.From the analysis of percentages and indicators of uncertainty and location, it was concluded that nodifferences were found in the location capacity of the databases, except for the CIPIC filter, which has aslightly higher location capacity than the rest. In addition, a low percentage of hits was obtained, whereerrors due to cone of confusion and totally incorrect answers had the greatest influence.Con la llegada del entretenimiento virtual, la búsqueda de experiencias cada vez m ́as reales ha llevado a la creación de estímulos que buscan simular las sensaciones que se obtienen de los sentidos del ser humano. Un ejemplo de esto es el audio binaural, el cual pretende simular la forma en la que el ser humano escucha. Este tipo de audio se produce por medio los filtros HRTF, que son funciones de transferencia halladas por medio de la transformada de Fourier de las respuestas al impulso capturadas de las cabezas binaurales (HRIR). La capacidad de localización de estos puede no ser muy precisa, debido tanto a factores físicos de la cabeza medida que son heredadas por el filtro, como a diferencias en el tipo de sistema de reproducción y el espacio en el que el usuario escucha el audio producido. El propósito de esta investigación es diseñar y ejecutar una metodología de pruebas subjetivas por medio de un formulario en línea, con la intención de realizar una comparación entre las bases de filtros HRTF del MIT, IRCAM, SADIE y CIPIC, en cuanto a su capacidad de localización. De los análisis de porcentajes e indicadores de incertidumbre y localización, se concluyó que no se hallaron diferencias en la capacidad de localización de las bases de datos, salvo el filtro CIPIC, que tiene una capacidad de localización levemente superior al resto. Además, se obtuvo un porcentaje bajo de aciertos, donde los errores por cono de confusión y respuestas totalmente incorrectas tuvieron la mayor influencia.pdf58 páginasRecurso en lineaapplication/pdfTobias Tamayo and Alejandro Silva, ”Comparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre acceso.”, Tesis de Pregrado, Ingeniería de Sonido, Universidad de San Buenaventura, Facultad de Ingenierías,2021http://hdl.handle.net/10819/8364spaIngenieriasIngeniería de SonidoMedellínAtribución-NoComercial-SinDerivadas 2.5 ColombiaPor medio de este formato manifiesto mi voluntad de AUTORIZAR a la Universidad de San Buenaventura, Sede Bogotá, Seccionales Medellín, Cali y Cartagena, la difusión en texto completo de manera gratuita y por tiempo indefinido en la Biblioteca Digital Universidad de San Buenaventura, el documento académico-investigativo objeto de la presente autorización, con fines estrictamente educativos, científicos y culturales, en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre derechos de autor. Como autor manifiesto que el presente documento académico-investigativo es original y se realiza sin violar o usurpar derechos de autor de terceros, por lo tanto, la obra es de mi exclusiva autora y poseo la titularidad sobre la misma. La Universidad de San Buenaventura no será responsable de ninguna utilización indebida del documento por parte de terceros y será exclusivamente mi responsabilidad atender personalmente cualquier reclamación que pueda presentarse a la Universidad. Autorizo a la Biblioteca Digital de la Universidad de San Buenaventura convertir el documento al formato que el repositorio lo requiera (impreso, digital, electrónico o cualquier otro conocido o por conocer) o con fines de preservación digital. Esta autorización no implica renuncia a la facultad que tengo de publicar posteriormente la obra, en forma total o parcial, por lo cual podrá, dando aviso por escrito con no menos de un mes de antelación, solicitar que el documento deje de estar disponible para el público en la Biblioteca Digital de la Universidad de San Buenaventura, así mismo, cuando se requiera por razones legales y/o reglas del editor de una revista.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2[1] F. L. Wightman y D. J. Kistler, ✭✭Hearing in Three Dimensions: Sound Localization✮✮, en Audio Engineering Society Conference: 8th International Conference: The Sound of Audio, mayo de 1990. direccion: http://www.aes.org/e-lib/browse.cfm?elib=5436.[2] P. Minnaar, S. K. Olesen, F. Christensen y H. Møller, ✭✭Localization with Binaural Recordings from Artificial and Human Heads✮✮, J. Audio Eng. Soc, vol. 49, n.o 5, pags. 323-336, 2001. direcci ´ on: ´ http://www.aes.org/e-lib/browse.cfm?elib=10193.[3] A. Floros y C. Tsakostas, ✭✭Optimized Binaural Modeling for Immersive Audio Applications✮✮, en Audio Engineering Society Convention 122, mayo de 2007. direccion: http:// www. aes . org/ e - ´ lib/browse.cfm?elib=14085.[4] C. Porschmann, J. M. Arend y A. Neidhardt, ¨ ✭✭A Spherical Near-Field HRTF Set for Auralization and Psychoacoustic Research✮✮, en Audio Engineering Society Convention 142, mayo de 2017. direccion: http://www.aes.org/e-lib/browse.cfm?elib=18697.[5] S. Paul, ✭✭Binaural Recording Technology : A Historical Review and Possible Future Developments Binaural Recording Technology✮✮, n.o May, 2016. DOI: 10.3813/AAA.918208.[6] H. Møller, M. F. Sørensen, C. B. Jensen y D. Hammershøi, ✭✭Binaural Technique: Do We Need Individual Recordings?✮✮, J. Audio Eng. Soc, vol. 44, n.o 6, pags. 451-469, 1996. direcci ´ on: http: ´ //www.aes.org/e-lib/browse.cfm?elib=7897.[7] k. diepold klaus, m. durkovic marko y f. sagstetter florian, ✭✭hrtf measurements with recorded reference signal✮✮, journal of the audio engineering society, nov. de 2010.[8] D. Hammershoi y H. Møller, ✭✭Methods for binaural recording and reproduction✮✮, Acta Acustica united with Acustica, vol. 88, n.o 3, pags. 303-311, 2002, ´ ISSN: 14367947.[9] D. Hammershoi y H. Moller, ✭✭Binaural technique - Basic methods for recording, synthesis, and reproduction✮✮, Communication Acoustics, pags. 223-254, 2005. ´ DOI: 10.1007/3-540-27437-5 9.[10] N. J. Wade y D. Deutsch, ✭✭Binaural Hearing—Before and After the Stethophone✮✮, Acoustics Today, vol. 4, n.o 3, pag. 16, 2008, ´ ISSN: 1557-0215. DOI: 10.1121/1.2994724.[11] D. R. Begault, ✭✭An anthology of articles on Spatial Sound Techniques,Part 1: Virtual and BinauralAudio Technologies✮✮, AudioEngineering Society, 2004.[12] K. Hammer y W. Snow, ✭✭Binaural Transmission System at Academy of Music in Philadelphia✮✮, Memorandum MM-3950, Bell Laboratories, 1932[13] M. D. Burkhard y R. M. Sachs, ✭✭Anthropometric manikin for acoustic research✮✮, The Journal of the Acoustical Society of America, vol. 58, n.o 1, pags. 214-222, 1975.[14] H. Møller, D. Hammershøi, C. B. Johnson y M. F. Sørensen, ✭✭Evaluation of Artificial Heads in Listening Tests✮✮, J. Audio Eng. Soc, vol. 47, n.o 3, pags. 83-100, 1999. direcci ´ on: http://www.aes. ´ org/e-lib/browse.cfm?elib=12115.[15] T. Brookes y C. Treble, ✭✭The Effect of Non-Symmetrical Left/Right Recording Pinnae on the Perceived Externalisation of Binaural Recordings.✮✮, en Audio Engineering Society Convention 118, mayo de 2005. direccion: http://www.aes.org/e-lib/browse.cfm?elib=13155.[16] V. P. Sivonen y W. Ellermeier, ✭✭Binaural Loudness for Artificial-Head Measurements in Directional Sound Fields✮✮, J. Audio Eng. Soc, vol. 56, n.o 6, pags. 452-461, 2008. direcci ´ on: http://www.aes. ´ org/e-lib/browse.cfm?elib=14394.[17] G. Andeol, S. Savel, A. Guillaume, D. Brungart y W. Reed, ´ ✭✭Perceptual factors contribute more than acoustical factors to sound localization abilities with virtual sources✮✮, vol. 8, n.o January, pags. 1-17, 2015. ´ DOI: 10.3389/fnins.2014.00451.[18] K. J. DiPasquale, ✭✭Comparing Externalization Between the Neumann KU100 Versus Low Cost DIY Binaural Dummy Head✮✮, en Audio Engineering Society Convention 147, oct. de 2019. direccion: ´ http://www.aes.org/e-lib/browse.cfm?elib=20558.[19] M.-V. Laitinen, T. Pihlajamaki, S. L ¨ osler y V. Pulkki, ¨ ✭✭Influence of Resolution of Head Tracking in Synthesis of Binaural Audio✮✮, en Audio Engineering Society Convention 132, 2012. direccion: ´ http://www.aes.org/e-lib/browse.cfm?elib=16261.[20] H. Gamper, S. Tervo y T. Lokki, ✭✭Head Orientation Tracking Using Binaural Headset Microphones✮✮, en Audio Engineering Society Convention 131, oct. de 2011. direccion: http://www.aes. org/e - ´ lib/browse.cfm?elib=16064[21] T. Ashby, R. Mason y T. Brookes, ✭✭Head Movements in Three-Dimensional Localization✮✮, en Audio Engineering Society Convention 134, mayo de 2013. direccion: http:// www. aes . org/ e - lib/browse.cfm?elib=16782[22] P. Stitt, E. Hendrickx, J.-C. Messonnier y B. Katz, ✭✭The Influence of Head Tracking Latency on Binaural Rendering in Simple and Complex Sound Scenes✮✮, en Audio Engineering Society Convention 140, mayo de 2016. direccion: http://www.aes.org/e-lib/browse.cfm?elib=18289[23] H. Møller y D. Toledo, ✭✭The Role of Spectral Features in Sound Localization✮✮, en Audio Engineering Society Convention 124, mayo de 2008. direccion: http://www.aes.org/e-lib/browse.cfm?elib= ´ 14580.[24] E. Blanco-Martin, F. J. Casajus-Quiros, J. J. Gomez-Alfageme y S. Torres-Guijarro, ✭✭Spatial Sound Localization Measures From a Dummy Head with a Loudspeaker Array in Anechoic Chamber✮✮, en Audio Engineering Society Convention 118, mayo de 2005. direccion: http://www.aes.org/e- ´ lib/browse.cfm?elib=13172.[25] D. Satongar, C. Pike, Y. W. Lam y A. I. Tew, ✭✭The Influence of Headphones on the Localization of External Loudspeaker Sources✮✮, J. Audio Eng. Soc, vol. 63, n.o 10, pags. 799-810, 2015. direcci ´ on: ´ http://www.aes.org/e-lib/browse.cfm?elib=18043.[26] G. Reardon, A. Genovese, G. Zalles, P. Flanagan y A. Roginska, ✭✭Evaluation of Binaural Renderers: Localization✮✮, en Audio Engineering Society Convention 144, mayo de 2018. direccion: http://www. ´ aes.org/e-lib/browse.cfm?elib=19480.[27] M. Rychtarikov ´ a, T. V. den Bogaert, G. Vermeir y J. Wouters, ´ ✭✭Binaural Sound Source Localization in Real and Virtual Rooms✮✮, J. Audio Eng. Soc, vol. 57, n.o 4, pags. 205-220, 2009. direcci ´ on: http: ´ //www.aes.org/e-lib/browse.cfm?elib=14814.[28] F. Klein, S. Werner y T. Mayenfels, ✭✭Influences of Training on Externalization of Binaural Synthesis in Situations of Room Divergence✮✮, J. Audio Eng. Soc, vol. 65, n.o 3, pags. 178-187, 2017. direcci ´ on: ´ http://www.aes.org/e-lib/browse.cfm?elib=18553.[29] UIT Sector Radiocomunicaciones, ✭✭BS.1116-3 Metodos para la evaluaci ´ on subjetiva de peque ´ nas ˜ degradaciones en los sistemas de audio✮✮, Uit-R, vol. 3, pag. 35, 2015. direcci ´ on: shorturl.at/vzFQ0.[30] UIT-R, ✭✭Metodos generales para la evaluaci ´ on subjetiva de la calidad de sonido Anexo 1 ´ ✮✮, vol. 2, pag. 13, 2003.[31] A. Mason, ✭✭The MUSHRA audio subjective test method✮✮, BBC R&D White Paper WHP, vol. WHP 038, n.o September, pag. 8, 2002. direcci ´ on: shorturl.at/aezB2.[32] UIT-R, ✭✭Metodo para la evaluaci ´ on subjetiva del nivel de calidad intermedia de los sistemas de ´ codificacion Anexo 1 ´ ✮✮, vol. 3, pags. 1-18, 2003[33] S. Bech y N. Zacharov, Perceptual Audio Evaluation–Theory, Method and Application. 2006, pag. 449, ´ ISBN: 9780470869239.[34] F. Nagel, T. Sporer y P. Sedlmeier, ✭✭Toward a Statistically Well-Grounded Evaluation of Listening Tests—Avoiding Pitfalls, Misuse, and Misconceptions✮✮, en Audio Engineering Society Convention 128, mayo de 2010. direccion: http://www.aes.org/e-lib/browse.cfm?elib=15442.[35] F. Grijalva, J. Larco y P. Mej´ıa, ✭✭A Virtual Listener For HRTF-Based Sound Source Localization Using Support Vector Regression✮✮, en 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), oct. de 2018, pags. 1-5. ´ DOI: 10.1109/ETCM.2018.8580297.[36] S. J. Cho, A. Ovcharenko y U. Chong, ✭✭Front-Back Confusion Resolution in 3D Sound Localization with HRTF Databases✮✮, en 2006 International Forum on Strategic Technology, oct. de 2006, pags. 239-243. ´ DOI: 10.1109/IFOST.2006.312297.[37] A. Ovcharenko y Ui-Pil Chong, ✭✭3D sound localization cues using HRTF database built with dummy head✮✮, en 2006 8th International Conference Advanced Communication Technology, vol. 3, feb. de 2006, 6 pp.-1900. DOI: 10.1109/ICACT.2006.206363.[38] A. Adami, E. A. P. Habets y J. Herre, ✭✭Perceptual Evaluation of a Coherence Suppressing DownMix Method✮✮, en Audio Engineering Society Conference: 55th International Conference: Spatial Audio, 2014. direccion: http://www.aes.org/e-lib/browse.cfm?elib=17347.[39] M. Leong, ✭✭Application of Binaural Recording in the Video Game Industry✮✮, Tesis doct., Edith Cowan University, 2006.[40] Joseph David Rees-Jones, ✭✭The Impact of Multichannel Game Audio on the Quality of Player Experience and In-game Performance✮✮, Tesis doct., UNIVERSITY OF YORK, 2018.[41] T. Letowski y S. Letowski, ✭✭Localization Error: Accuracy and Precision of Auditory Localization✮✮, en Advances in Sound Localization, P. Strumillo, ed., Rijeka: IntechOpen, 2011, cap. 4. DOI: 10. 5772/15652. direccion: https://doi.org/10.5772/15652.[42] J.-G. Richter y J. Fels, ✭✭Psychoacoustic evaluation of a fast HRTF measurement system✮✮, ene. de 2015.[43] International Telecommunication Union, ✭✭ITU-T Rec. P.57 Artificial ears✮✮, vol. 57, 2011[44] O. Rummukainen, S. Schlecht, A. Plinge y E. A. P. Habets, ✭✭Evaluating Binaural Reproduction Systems from Behavioral Patterns in a Virtual Reality—A Case Study with Impaired Binaural Cues and Tracking Latency✮✮, en Audio Engineering Society Convention 143, oct. de 2017. direccion: ´ http://www.aes.org/e-lib/browse.cfm?elib=19292.[45] T. Parnell y C. Pike, ✭✭An Efficient Method for Producing Binaural Mixes of Classical Music from a Primary Stereo Mix✮✮, en Audio Engineering Society Convention 144, mayo de 2018. direccion: ´ http://www.aes.org/e-lib/browse.cfm?elib=19543.[46] G. Jacuzzi, S. Brazzola y J. Kares, ✭✭Approaching Immersive 3D Audio Broadcast Streams of Live Performances✮✮, en Audio Engineering Society Convention 142, mayo de 2017. direccion: http : ´ //www.aes.org/e-lib/browse.cfm?elib=18570.[47] D. M. Howard y J. A. Angus, Acoustics and psychoacoustics: Fifth edition. 2017, pags. 1-510, ´ ISBN: 9781317508304. DOI: 10.4324/9781315716879.[48] M. Frank y F. Zotter, ✭✭Simple Reduction of Front-Back Confusion in Static Binaural Rendering✮✮, mar. de 2018[49] T. Fischer, M. Caversaccio y W. Wimmer, ✭✭A Front-Back Confusion Metric in Horizontal Sound Localization: The FBC Score✮✮, bioRxiv, 2020. DOI: 10 . 1101 / 2020 . 02 . 12 . 945303. direccion: ´ shorturl.at/dnHLO[50] F. Rumsey, ✭✭Whose Head Is it Anyway? Optimizing Binaural Audio✮✮, J. Audio Eng. Soc, vol. 59, n.o 9, pags. 672-675, 2011. direcci ´ on: http://www.aes.org/e-lib/browse.cfm?elib=15982.[51] H. Møller, ✭✭Fundamentals of binaural technology✮✮, Applied Acoustics, vol. 36, n.o 3-4, pags. 171-218, ´ 1992, ISSN: 0003682X. DOI: 10.1016/0003-682X(92)90046-U[52] CATT-Acoustic Auralization. direccion: https:// www. catt. se/ postproc% 7B% 5C ´ % 7Dmod. htm (visitado 07-12-2020).[53] CATT TUCT overview. direccion: https : / / www. catt . se / TUCT / TUCToverview. html (visitado ´ 07-12-2020)[54] C. Mendonc¸a, G. Campos, P. Dias, J. Vieira, J. P. Ferreira y J. A. Santos, ✭✭On the Improvement of Localization Accuracy with Non-Individualized HRTF-Based Sounds✮✮, J. Audio Eng. Soc, vol. 60, n.o 10, pags. 821-830, 2012. direcci ´ on: http://www.aes.org/e-lib/browse.cfm?elib=16555.[55] C. Armstrong, L. Thresh, D. Murphy y G. Kearney, ✭✭A Perceptual Evaluation of Individual and Non-Individual HRTFs : a case study of the SADIE II database✮✮, Applied Sciences, vol. 8, pag. 2029, ´ oct. de 2018. DOI: 10.3390/app8112029.[56] B. D. Gardner, ✭✭HRTF Measurements of a KEMAR Dummy-Head Microphone✮✮, 1994.[57] G. Eckel, ✭✭Immersive audio-augmented environments: the LISTEN project✮✮, feb. de 2001, pags. 571-573, ´ ISBN: 0-7695-1195-3. DOI: 10.1109/IV.2001.942112.[58] R. Duda, D. Thompson y C. Avendano, ˜ ✭✭The CIPIC HRTF database✮✮, feb. de 2001, pags. 99-102, ´ ISBN: 0-7803-7126-7. DOI: 10.1109/ASPAA.2001.969552.Universidad de San Buenaventura - MedellínBiblioteca USB Medellín (San Benito) TG-6110tBiblioteca Digital Universidad de San BuenaventuraHRTFLocalizaciónEvaluaciónSubjetivaLocalizationSubjectiveTestAudífonosIngeniero de SonidoComparación subjetiva por medio de audífonos de la capacidad de localización de 4 bases de datos de HRTF de libre accesoTrabajo de grado - PregradoTrabajo de Gradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fPublicationORIGINALComparacion_Audifonos_HRTF_Tamayo_2021.pdfComparacion_Audifonos_HRTF_Tamayo_2021.pdfapplication/pdf1656644https://bibliotecadigital.usb.edu.co/bitstreams/460d3799-e8f3-4c5e-8e4a-d564f541fc38/downloada377b61db4eef485168702b57f166934MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82071https://bibliotecadigital.usb.edu.co/bitstreams/3c147942-49ec-42ed-85a3-d20b9f9d59a5/download0c7b7184e7583ec671a5d9e43f0939c0MD53TEXTComparacion_Audifonos_HRTF_Tamayo_2021.pdf.txtComparacion_Audifonos_HRTF_Tamayo_2021.pdf.txtExtracted texttext/plain121452https://bibliotecadigital.usb.edu.co/bitstreams/2a213e7e-11c4-4cc1-904c-29cbd3a16b20/download941db68b5b4e5c3ae9e7a1475ae96c5aMD54THUMBNAILComparacion_Audifonos_HRTF_Tamayo_2021.pdf.jpgComparacion_Audifonos_HRTF_Tamayo_2021.pdf.jpgGenerated Thumbnailimage/jpeg6735https://bibliotecadigital.usb.edu.co/bitstreams/c397f66a-ec91-4f68-b352-1b3ea006f375/downloaddde0bc8c728a9196052ad4de26f61d06MD5510819/8364oai:bibliotecadigital.usb.edu.co:10819/83642023-02-24 11:31:32.465http://creativecommons.org/licenses/by-nc-nd/2.5/co/https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.comPGNlbnRlcj4KPGgzPkJJQkxJT1RFQ0EgRElHSVRBTCBVTklWRVJTSURBRCBERSBTQU4gQlVFTkFWRU5UVVJBIC0gQ09MT01CSUE8L2gzPgo8cD4KVMOpcm1pbm9zIGRlIGxhIGxpY2VuY2lhIGdlbmVyYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgcmVwb3NpdG9yaW8gaW5zdGl0dWNpb25hbDwvcD48L2NlbnRlcj4KPFAgQUxJR049Y2VudGVyPgpQb3IgbWVkaW8gZGUgZXN0ZSBmb3JtYXRvIG1hbmlmaWVzdG8gbWkgdm9sdW50YWQgZGUgQVVUT1JJWkFSIGEgbGEgVW5pdmVyc2lkYWQgZGUgU2FuIEJ1ZW5hdmVudHVyYSwgU2VkZSBCb2dvdMOhIHkgPEJSPlNlY2Npb25hbGVzIE1lZGVsbMOtbiwgQ2FsaSB5IENhcnRhZ2VuYSwgbGEgZGlmdXNpw7NuIGVuIHRleHRvIGNvbXBsZXRvIGRlIG1hbmVyYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBlbiBsYTxCUj4gQmlibGlvdGVjYSBEaWdpdGFsIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIGVsIGRvY3VtZW50byBhY2Fkw6ltaWNvIC0gaW52ZXN0aWdhdGl2byBvYmpldG8gZGUgbGEgcHJlc2VudGUgPEJSPmF1dG9yaXphY2nDs24sIGNvbiBmaW5lcyBlc3RyaWN0YW1lbnRlIGVkdWNhdGl2b3MsIGNpZW50w63CrWZpY29zIHkgY3VsdHVyYWxlcywgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW4gbGEgTGV5IDIzIGRlIDxCUj4gMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvczxCUj4gZGUgYXV0b3IuIDxCUj4gCiAKQ29tbyBhdXRvciBtYW5pZmllc3RvIHF1ZSBlbCBwcmVzZW50ZSBkb2N1bWVudG8gYWNhZMOpbWljbyAtIGludmVzdGlnYXRpdm8gZXMgb3JpZ2luYWwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gPEJSPiB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgbWkgZXhjbHVzaXZhIGF1dG9yw63CrWEgeSBwb3NlbyBsYSB0aXR1bGFyaWRhZCA8QlI+IHNvYnJlIGxhIG1pc21hLiBMYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIG5vIHNlcsOhIHJlc3BvbnNhYmxlIGRlIG5pbmd1bmEgdXRpbGl6YWNpw7NuIGluZGViaWRhIGRlbCBkb2N1bWVudG8gPEJSPnBvciBwYXJ0ZSBkZSB0ZXJjZXJvcyB5IHNlcsOhIGV4Y2x1c2l2YW1lbnRlIG1pIHJlc3BvbnNhYmlsaWRhZCBhdGVuZGVyIHBlcnNvbmFsbWVudGUgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBxdWUgcHVlZGE8QlI+IHByZXNlbnRhcnNlIGEgbGEgVW5pdmVyc2lkYWQuIDxCUj4KIApBdXRvcml6byBhIGxhIEJpYmxpb3RlY2EgRGlnaXRhbCBkZSBsYSBVbml2ZXJzaWRhZCBkZSBTYW4gQnVlbmF2ZW50dXJhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYWwgZm9ybWF0byBxdWUgZWwgPEJSPnJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBvIGNvbiBmaW5lcyBkZTxCUj4gcHJlc2VydmFjacOzbiBkaWdpdGFsLiA8QlI+CiAKRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGVuZ28gZGUgcHVibGljYXIgcG9zdGVyaW9ybWVudGUgbGEgb2JyYSwgZW4gZm9ybWEgdG90YWwgbyA8QlI+cGFyY2lhbCwgcG9yIGxvIGN1YWwgcG9kcsOpLCBkYW5kbyBhdmlzbyBwb3IgZXNjcml0byBjb24gbm8gbWVub3MgZGUgdW4gbWVzIGRlIGFudGVsYWNpw7NuLCBzb2xpY2l0YXIgcXVlIGVsIDxCUj5kb2N1bWVudG8gZGVqZSBkZSBlc3RhciBkaXNwb25pYmxlIHBhcmEgZWwgcMO6YmxpY28gZW4gbGEgQmlibGlvdGVjYSBEaWdpdGFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlIFNhbiBCdWVuYXZlbnR1cmEsIDxCUj4gYXPDrcKtIG1pc21vLCBjdWFuZG8gc2UgcmVxdWllcmEgcG9yIHJhem9uZXMgbGVnYWxlcyB5L28gcmVnbGFzIGRlbCBlZGl0b3IgZGUgdW5hIHJldmlzdGEuIDxCUj48L1A+Cg==