Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy
La terapia fototérmica con nanopartículas de oro (GNP) es una alternativa para tratar el cáncer. Las nanobarras (GNR) absorben la radiación infrarroja cercana (NIR) proporcionada por una fuente de calor, provocando hipertermia en las células malignas. Los efectos de hipertermia localizada dependen d...
- Autores:
-
Arismendi Villa, Jesica Alexandra
Jovel Muñoz, Juana María
Serna Restrepo, Juan Humberto
Bustamante Chaverra, Carlos Andrés
Flórez Escobar, Whady Felipe
valencia cardona, raul adolfo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2025
- Institución:
- Universidad de San Buenaventura
- Repositorio:
- Repositorio USB
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.usb.edu.co:10819/29048
- Acceso en línea:
- https://hdl.handle.net/10819/29048
https://doi.org/10.21500/20275846.6971
- Palabra clave:
- Photothermal Therapy
Computational Electromagnetism
Polarized Irradiation
Gold Nanorods
Aspect Ratio
Clustering
- Rights
- openAccess
- License
- Ingenierías USBMed - 2025
| id |
SANBUENAV2_2f80f6de90f675d1369296172aaa9518 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.usb.edu.co:10819/29048 |
| network_acronym_str |
SANBUENAV2 |
| network_name_str |
Repositorio USB |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy |
| dc.title.translated.eng.fl_str_mv |
Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy |
| title |
Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy |
| spellingShingle |
Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy Photothermal Therapy Computational Electromagnetism Polarized Irradiation Gold Nanorods Aspect Ratio Clustering |
| title_short |
Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy |
| title_full |
Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy |
| title_fullStr |
Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy |
| title_full_unstemmed |
Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy |
| title_sort |
Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy |
| dc.creator.fl_str_mv |
Arismendi Villa, Jesica Alexandra Jovel Muñoz, Juana María Serna Restrepo, Juan Humberto Bustamante Chaverra, Carlos Andrés Flórez Escobar, Whady Felipe valencia cardona, raul adolfo |
| dc.contributor.author.spa.fl_str_mv |
Arismendi Villa, Jesica Alexandra Jovel Muñoz, Juana María Serna Restrepo, Juan Humberto Bustamante Chaverra, Carlos Andrés Flórez Escobar, Whady Felipe valencia cardona, raul adolfo |
| dc.subject.eng.fl_str_mv |
Photothermal Therapy Computational Electromagnetism Polarized Irradiation Gold Nanorods Aspect Ratio Clustering |
| topic |
Photothermal Therapy Computational Electromagnetism Polarized Irradiation Gold Nanorods Aspect Ratio Clustering |
| description |
La terapia fototérmica con nanopartículas de oro (GNP) es una alternativa para tratar el cáncer. Las nanobarras (GNR) absorben la radiación infrarroja cercana (NIR) proporcionada por una fuente de calor, provocando hipertermia en las células malignas. Los efectos de hipertermia localizada dependen del tamaño (relación de aspecto, AR), la forma y la concentración de las GNP, la polarización del campo eléctrico, la longitud de onda de irradiación y las propiedades del medio. Se presenta un método computacional para medir las secciones transversal y longitudinal de absorción óptica para GNR basado en el calentamiento óptico de la solución acuosa con un láser polarizado NIR de  y . Se realizó un estudio in-silico para la Teoría de Mie, según el efecto de AR y formación de clústeres, con respecto a la polarización del campo eléctrico ( ). A medida que la polarización del campo eléctrico gira hasta , el pico transversal se desplaza hacia el longitudinal. Las concentraciones más bajas dan lugar a gradientes de temperatura más pequeños. Las teorías utilizadas sirven para predecir las condiciones óptimas de irradiación frente a las propiedades de los nanomateriales para la generación de hipertermia y acoplamiento plasmónico.   |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-10T11:55:06Z 2025-08-22T17:04:36Z |
| dc.date.available.none.fl_str_mv |
2025-07-10T11:55:06Z 2025-08-22T17:04:36Z |
| dc.date.issued.none.fl_str_mv |
2025-07-10 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.eng.fl_str_mv |
Text |
| dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.doi.none.fl_str_mv |
10.21500/20275846.6971 |
| dc.identifier.eissn.none.fl_str_mv |
2027-5846 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10819/29048 |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.21500/20275846.6971 |
| identifier_str_mv |
10.21500/20275846.6971 2027-5846 |
| url |
https://hdl.handle.net/10819/29048 https://doi.org/10.21500/20275846.6971 |
| dc.language.iso.eng.fl_str_mv |
eng |
| language |
eng |
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/6971/5664 |
| dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2025 : Ingenierías USBMed |
| dc.relation.citationendpage.none.fl_str_mv |
38 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.none.fl_str_mv |
27 |
| dc.relation.citationvolume.spa.fl_str_mv |
16 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Ingenierías USBMed |
| dc.relation.references.eng.fl_str_mv |
S. Capellas-Coderque, “¿ En qué medida puede la Terapia Fototérmica Plasmónica eliminar células tumorales minimizando los daños colaterales sobre células sanas ?,” 2017. [2] S. Asadi, L. Bianchi, M. De Landro, S. Korganbayev, E. Schena, and P. Saccomandi, “Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application,” J Biophotonics, vol. 14, no. 2, Feb. 2021, doi: 10.1002/JBIO.202000161. [3] D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, L. Plaza, E. Martín Rodríguez, J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale, vol. 6, no. 16, pp. 9494–9530, 2014, doi: 10.1039/c4nr00708e. [4] William R. Hendee, Physics of Thermal Therapy. 2016. doi: 10.1201/b13679. [5] A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles We describe recent studies on photothermal effects using colloidal,” vol. 2, no. 1, pp. 30–38, 2007. [6] M. U. Daud, G. Abbas, M. Afzaal, M. Naz, N. Fatima, A. Ghuffar, M. Irfan, M. Mahnashi, S. Legutko, J. Petrů, J. Kratochvíl, U. Niazi., “Finite Element Analysis of Silver Nanorods, Spheres, Ellipsoids and Core–Shell Structures for Hyperthermia Treatment of Cancer,” Materials, vol. 15, no. 5, 2022, doi: 10.3390/ma15051786. [7] Z. Qin, Y. Wang, J. Randrianalisoa, V. Raeesi, W. Chan, W. Lipi, J. Bischof. “Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods,” no. April, pp. 1–13, 2016, doi: 10.1038/srep29836. [8] C. D. Kaddi, J. H. Phan, and M. D. Wang, “Computational nanomedicine: Modeling of nanoparticle-mediated hyperthermal cancer therapy,” Nanomedicine, vol. 8, no. 8, pp. 1323–1333, 2013, doi: 10.2217/nnm.13.117. [9] A. E. Nel, Mädler, Lutz, Velegol, Darrell, Xia, Tian, Hoek, Eric M.V., Somasundaran, Ponisseril, Klaessig, Fred, Castranova, Vince, Thompson, Mike., “Understanding biophysicochemical interactions at the nano-bio interface,” Nat Mater, vol. 8, no. 7, pp. 543–557, 2009, doi: 10.1038/nmat2442. [10] B. Gheflati and N. Naghavi, “Optimization of Laser Power for Laser-Induced Hyperthermia in the Presence of Nanoparticles using MATLAB and COMSOL Multiphysics,” ICEE 2019 - 27th Iranian Conference on Electrical Engineering, pp. 1787–1792, 2019, doi: 10.1109/IranianCEE.2019.8786661. [11] R. Mooney, Roma, Luella, Zhao, Donghong, Van Haute, Desiree, Garcia, Elizabeth, Kim, Seung U., Annala, Alexander J., Aboody, Karen S., Berlin, Jacob M., “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano, vol. 8, no. 12, pp. 12450–12460, 2014, doi: 10.1021/nn505147w. [12] X. G. Yu, Yang, Ren Peng, Wu, Cheng Wei, Zhang, Wei, Deng, Dong Feng, Zhang, Xu Xin, Li, Yan Zhao, “The Preparation of Smart Magnetic Nanoparticles for Intracellular Hyperthermia,” Lecture Notes in Mechanical Engineering, pp. 937–943, 2020, doi: 10.1007/978-981-13-8331-1_75. [13] M. Alrahili, V. Savchuk, K. McNear, and A. Pinchuk, “Absorption cross section of gold nanoparticles based on NIR laser heating and thermodynamic calculations,” Sci Rep, vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-75895-9. [14] X. Huang, I. H. El-sayed, and M. A. El-sayed, “Gold nanoparticles : interesting optical properties and recent applications in cancer diagnostics and therapy,” vol. 2, pp. 681–693, 2007. [15] X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J Adv Res, vol. 1, no. 1, pp. 13–28, 2010, doi: 10.1016/j.jare.2010.02.002. [16] X. Gu, D. D. Li, G. H. Yeoh, R. A. Taylor, and V. Timchenko, “Heat generation in irradiated gold nanoparticle solutions for hyperthermia applications,” Processes, vol. 9, no. 2, pp. 1–19, 2021, doi: 10.3390/pr9020368. [17] M. A. Mackey, M. R. K. Ali, L. A. Austin, R. D. Near, and M. A. El-sayed, “The Most Effective Gold Nanorod Size for Photothermal therapy- seedless growth.pdf,” 2014. [18] G. Alfranca, Á. Artiga, G. Stepien, M. Moros, S. G. Mitchell, and J. M. De La Fuente, “Gold nanoprism-nanorod face off: Comparing the heating efficiency, cellular internalization and thermoablation capacity,” Nanomedicine, vol. 11, no. 22, pp. 2903–2916, 2016, doi: 10.2217/nnm-2016-0257. [19] Z. Chen, H. Fan, J. Li, S. Tie, and S. Lan, “Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters,” Opt Express, vol. 25, no. 13, p. 15093, 2017, doi: 10.1364/oe.25.015093. [20] W. An, Q. Zhu, T. Zhu, and N. Gao, “Radiative properties of gold nanorod solutions and its temperature distribution under laser irradiation : Experimental investigation,” Exp Therm Fluid Sci, vol. 44, pp. 409–418, 2013, doi: 10.1016/j.expthermflusci.2012.08.001. [21] S. Soni, H. Tyagi, R. A. Taylor, and A. Kumar, “Investigation on nanoparticle distribution for thermal ablation of a tumour subjected to nanoparticle assisted thermal therapy,” J Therm Biol, vol. 43, pp. 70–80, 2014, doi: 10.1016/j.jtherbio.2014.05.003. [22] X. Gu, V. Timchenko, G. H. Yeoh, L. Dombrovsky, and R. Taylor, “The effect of gold nanorods clustering on near-infrared radiation absorption,” Applied Sciences (Switzerland), vol. 8, no. 7, pp. 1–16, 2018, doi: 10.3390/app8071132. [23] D. D. Li, X. Gu, V. Timchenko, Q. N. Chan, A. C. Y. Yuen, and G. H. Yeoh, “Study of Morphology and Optical Properties of Gold Nanoparticle Aggregates under Different pH Conditions,” Langmuir, vol. 34, no. 35, pp. 10340–10352, 2018, doi: 10.1021/acs.langmuir.8b01457. [24] T. Mironava, M. Hadjiargyrou, M. Simon, V. Jurukovski, and M. H. Rafailovich, “Gold nanoparticles cellular toxicity and recovery : Effect of size , concentration and exposure time,” vol. 4, no. March, pp. 120–137, 2010, doi: 10.3109/17435390903471463. [25] S. Manrique-bedoya, C. Moreau, S. Patel, Y. Feng, and K. Mayer, “Computational Modeling of Nanoparticle Heating for Treatment Planning of Plasmonic Photothermal Therapy in Pancreatic Cancer,” 2019. [26] J. M. Núñez-Leyva, Kolosovas-Machuca, Eleazar Samuel, Sánchez, John, Guevara, Edgar, Cuadrado, Alexander, Alda, Javier, González, Francisco Javier., “Computational and experimental analysis of gold nanorods in terms of their morphology: Spectral absorption and local field enhancement,” Nanomaterials, vol. 11, no. 7, 2021, doi: 10.3390/nano11071696. [27] Y. Wang, Gao, Zhe, Han, Zonghu, Liu, Yilin, Yang, Huan, Akkin, Taner, Hogan, Christopher J., Bischof, John C., “Aggregation affects optical properties and photothermal heating of gold nanospheres,” Sci Rep, vol. 11, no. 1, pp. 1–13, 2021, doi: 10.1038/s41598-020-79393-w. [28] J.-M. Leyva Nuñez, “Simulación, síntesis y caracterización de nanopartículas para aplicaciones biomédicas.” p. 86, 2019. [29] B. Fasla and A. Rach, “Heating of Biological Tissues by Gold Nano Particles: Effects of Particle Size and Distribution,” pp. 49–54, 2011, doi: 10.4236/jbn. [30] G. S. He, Zhu, Jing, Yong, Ken Tye, Baev, Alexander, Cai, Hong Xing, Hu, Rui, Cui, Yiping, Zhang, Xi He, Prasad, P. N., “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” Journal of Physical Chemistry C, vol. 114, no. 7, pp. 2853–2860, 2010, doi: 10.1021/jp907811g. [31] G. Baffou, R. Quidant, and F. J. García De Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano, vol. 4, no. 2, pp. 709–716, 2010, doi: 10.1021/nn901144d. |
| dc.rights.eng.fl_str_mv |
Ingenierías USBMed - 2025 |
| dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
| rights_invalid_str_mv |
Ingenierías USBMed - 2025 http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.eng.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad San Buenaventura - USB (Colombia) |
| dc.source.eng.fl_str_mv |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/6971 |
| institution |
Universidad de San Buenaventura |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.usb.edu.co/bitstreams/3c7b1753-fae0-4b10-beb5-491f775e7036/download |
| bitstream.checksum.fl_str_mv |
b47d83e17c0629556dc07126e00acb03 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de San Buenaventura Colombia |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851053534545444864 |
| spelling |
Arismendi Villa, Jesica AlexandraJovel Muñoz, Juana MaríaSerna Restrepo, Juan HumbertoBustamante Chaverra, Carlos AndrésFlórez Escobar, Whady Felipevalencia cardona, raul adolfo2025-07-10T11:55:06Z2025-08-22T17:04:36Z2025-07-10T11:55:06Z2025-08-22T17:04:36Z2025-07-10La terapia fototérmica con nanopartículas de oro (GNP) es una alternativa para tratar el cáncer. Las nanobarras (GNR) absorben la radiación infrarroja cercana (NIR) proporcionada por una fuente de calor, provocando hipertermia en las células malignas. Los efectos de hipertermia localizada dependen del tamaño (relación de aspecto, AR), la forma y la concentración de las GNP, la polarización del campo eléctrico, la longitud de onda de irradiación y las propiedades del medio. Se presenta un método computacional para medir las secciones transversal y longitudinal de absorción óptica para GNR basado en el calentamiento óptico de la solución acuosa con un láser polarizado NIR de  y . Se realizó un estudio in-silico para la Teoría de Mie, según el efecto de AR y formación de clústeres, con respecto a la polarización del campo eléctrico ( ). A medida que la polarización del campo eléctrico gira hasta , el pico transversal se desplaza hacia el longitudinal. Las concentraciones más bajas dan lugar a gradientes de temperatura más pequeños. Las teorías utilizadas sirven para predecir las condiciones óptimas de irradiación frente a las propiedades de los nanomateriales para la generación de hipertermia y acoplamiento plasmónico.  Photothermal therapy assisted by gold nanoparticles (GNP) has emerged as an alternative to treat cancer. GNP with rod morphologies (GNR) play the role of absorbing near-infrared radiation (NIR) provided by a heat source, causing hyperthermia in malignant cells. Localized hyperthermic effects depend on the size (aspect ratio, AR), shape and concentration of GNP, polarization of the electric field, irradiation wavelength, and properties of the medium. A computational method is presented to measure the cross and longitudinal sections of optical absorption for GNR based on optical heating of the aqueous solution of GNR with an  and  NIR polarized laser. In-silico study was carried out under the finite element method for Mie Theory, according to the effect of AR and cluster formation, with respect to the electric field polarization ( ). As the polarization of electric field rotates up to , the cross peak moves towards the longitudinal one. Lower concentrations result in smaller temperature gradients. This study allows the theories used to help as a basis to predict the optimal irradiation conditions against the properties of the nanomaterials used for the generation of the hyperthermia state and plasmonic coupling.  application/pdf10.21500/20275846.69712027-5846https://hdl.handle.net/10819/29048https://doi.org/10.21500/20275846.6971engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/6971/5664Núm. 1 , Año 2025 : Ingenierías USBMed3812716Ingenierías USBMedS. Capellas-Coderque, “¿ En qué medida puede la Terapia Fototérmica Plasmónica eliminar células tumorales minimizando los daños colaterales sobre células sanas ?,” 2017. [2] S. Asadi, L. Bianchi, M. De Landro, S. Korganbayev, E. Schena, and P. Saccomandi, “Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application,” J Biophotonics, vol. 14, no. 2, Feb. 2021, doi: 10.1002/JBIO.202000161. [3] D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, L. Plaza, E. Martín Rodríguez, J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale, vol. 6, no. 16, pp. 9494–9530, 2014, doi: 10.1039/c4nr00708e. [4] William R. Hendee, Physics of Thermal Therapy. 2016. doi: 10.1201/b13679. [5] A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles We describe recent studies on photothermal effects using colloidal,” vol. 2, no. 1, pp. 30–38, 2007. [6] M. U. Daud, G. Abbas, M. Afzaal, M. Naz, N. Fatima, A. Ghuffar, M. Irfan, M. Mahnashi, S. Legutko, J. Petrů, J. Kratochvíl, U. Niazi., “Finite Element Analysis of Silver Nanorods, Spheres, Ellipsoids and Core–Shell Structures for Hyperthermia Treatment of Cancer,” Materials, vol. 15, no. 5, 2022, doi: 10.3390/ma15051786. [7] Z. Qin, Y. Wang, J. Randrianalisoa, V. Raeesi, W. Chan, W. Lipi, J. Bischof. “Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods,” no. April, pp. 1–13, 2016, doi: 10.1038/srep29836. [8] C. D. Kaddi, J. H. Phan, and M. D. Wang, “Computational nanomedicine: Modeling of nanoparticle-mediated hyperthermal cancer therapy,” Nanomedicine, vol. 8, no. 8, pp. 1323–1333, 2013, doi: 10.2217/nnm.13.117. [9] A. E. Nel, Mädler, Lutz, Velegol, Darrell, Xia, Tian, Hoek, Eric M.V., Somasundaran, Ponisseril, Klaessig, Fred, Castranova, Vince, Thompson, Mike., “Understanding biophysicochemical interactions at the nano-bio interface,” Nat Mater, vol. 8, no. 7, pp. 543–557, 2009, doi: 10.1038/nmat2442. [10] B. Gheflati and N. Naghavi, “Optimization of Laser Power for Laser-Induced Hyperthermia in the Presence of Nanoparticles using MATLAB and COMSOL Multiphysics,” ICEE 2019 - 27th Iranian Conference on Electrical Engineering, pp. 1787–1792, 2019, doi: 10.1109/IranianCEE.2019.8786661. [11] R. Mooney, Roma, Luella, Zhao, Donghong, Van Haute, Desiree, Garcia, Elizabeth, Kim, Seung U., Annala, Alexander J., Aboody, Karen S., Berlin, Jacob M., “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano, vol. 8, no. 12, pp. 12450–12460, 2014, doi: 10.1021/nn505147w. [12] X. G. Yu, Yang, Ren Peng, Wu, Cheng Wei, Zhang, Wei, Deng, Dong Feng, Zhang, Xu Xin, Li, Yan Zhao, “The Preparation of Smart Magnetic Nanoparticles for Intracellular Hyperthermia,” Lecture Notes in Mechanical Engineering, pp. 937–943, 2020, doi: 10.1007/978-981-13-8331-1_75. [13] M. Alrahili, V. Savchuk, K. McNear, and A. Pinchuk, “Absorption cross section of gold nanoparticles based on NIR laser heating and thermodynamic calculations,” Sci Rep, vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-75895-9. [14] X. Huang, I. H. El-sayed, and M. A. El-sayed, “Gold nanoparticles : interesting optical properties and recent applications in cancer diagnostics and therapy,” vol. 2, pp. 681–693, 2007. [15] X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J Adv Res, vol. 1, no. 1, pp. 13–28, 2010, doi: 10.1016/j.jare.2010.02.002. [16] X. Gu, D. D. Li, G. H. Yeoh, R. A. Taylor, and V. Timchenko, “Heat generation in irradiated gold nanoparticle solutions for hyperthermia applications,” Processes, vol. 9, no. 2, pp. 1–19, 2021, doi: 10.3390/pr9020368. [17] M. A. Mackey, M. R. K. Ali, L. A. Austin, R. D. Near, and M. A. El-sayed, “The Most Effective Gold Nanorod Size for Photothermal therapy- seedless growth.pdf,” 2014. [18] G. Alfranca, Á. Artiga, G. Stepien, M. Moros, S. G. Mitchell, and J. M. De La Fuente, “Gold nanoprism-nanorod face off: Comparing the heating efficiency, cellular internalization and thermoablation capacity,” Nanomedicine, vol. 11, no. 22, pp. 2903–2916, 2016, doi: 10.2217/nnm-2016-0257. [19] Z. Chen, H. Fan, J. Li, S. Tie, and S. Lan, “Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters,” Opt Express, vol. 25, no. 13, p. 15093, 2017, doi: 10.1364/oe.25.015093. [20] W. An, Q. Zhu, T. Zhu, and N. Gao, “Radiative properties of gold nanorod solutions and its temperature distribution under laser irradiation : Experimental investigation,” Exp Therm Fluid Sci, vol. 44, pp. 409–418, 2013, doi: 10.1016/j.expthermflusci.2012.08.001. [21] S. Soni, H. Tyagi, R. A. Taylor, and A. Kumar, “Investigation on nanoparticle distribution for thermal ablation of a tumour subjected to nanoparticle assisted thermal therapy,” J Therm Biol, vol. 43, pp. 70–80, 2014, doi: 10.1016/j.jtherbio.2014.05.003. [22] X. Gu, V. Timchenko, G. H. Yeoh, L. Dombrovsky, and R. Taylor, “The effect of gold nanorods clustering on near-infrared radiation absorption,” Applied Sciences (Switzerland), vol. 8, no. 7, pp. 1–16, 2018, doi: 10.3390/app8071132. [23] D. D. Li, X. Gu, V. Timchenko, Q. N. Chan, A. C. Y. Yuen, and G. H. Yeoh, “Study of Morphology and Optical Properties of Gold Nanoparticle Aggregates under Different pH Conditions,” Langmuir, vol. 34, no. 35, pp. 10340–10352, 2018, doi: 10.1021/acs.langmuir.8b01457. [24] T. Mironava, M. Hadjiargyrou, M. Simon, V. Jurukovski, and M. H. Rafailovich, “Gold nanoparticles cellular toxicity and recovery : Effect of size , concentration and exposure time,” vol. 4, no. March, pp. 120–137, 2010, doi: 10.3109/17435390903471463. [25] S. Manrique-bedoya, C. Moreau, S. Patel, Y. Feng, and K. Mayer, “Computational Modeling of Nanoparticle Heating for Treatment Planning of Plasmonic Photothermal Therapy in Pancreatic Cancer,” 2019. [26] J. M. Núñez-Leyva, Kolosovas-Machuca, Eleazar Samuel, Sánchez, John, Guevara, Edgar, Cuadrado, Alexander, Alda, Javier, González, Francisco Javier., “Computational and experimental analysis of gold nanorods in terms of their morphology: Spectral absorption and local field enhancement,” Nanomaterials, vol. 11, no. 7, 2021, doi: 10.3390/nano11071696. [27] Y. Wang, Gao, Zhe, Han, Zonghu, Liu, Yilin, Yang, Huan, Akkin, Taner, Hogan, Christopher J., Bischof, John C., “Aggregation affects optical properties and photothermal heating of gold nanospheres,” Sci Rep, vol. 11, no. 1, pp. 1–13, 2021, doi: 10.1038/s41598-020-79393-w. [28] J.-M. Leyva Nuñez, “Simulación, síntesis y caracterización de nanopartículas para aplicaciones biomédicas.” p. 86, 2019. [29] B. Fasla and A. Rach, “Heating of Biological Tissues by Gold Nano Particles: Effects of Particle Size and Distribution,” pp. 49–54, 2011, doi: 10.4236/jbn. [30] G. S. He, Zhu, Jing, Yong, Ken Tye, Baev, Alexander, Cai, Hong Xing, Hu, Rui, Cui, Yiping, Zhang, Xi He, Prasad, P. N., “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” Journal of Physical Chemistry C, vol. 114, no. 7, pp. 2853–2860, 2010, doi: 10.1021/jp907811g. [31] G. Baffou, R. Quidant, and F. J. García De Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano, vol. 4, no. 2, pp. 709–716, 2010, doi: 10.1021/nn901144d.Ingenierías USBMed - 2025info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/6971Photothermal TherapyComputational ElectromagnetismPolarized IrradiationGold NanorodsAspect RatioClusteringNumerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapyNumerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2948https://bibliotecadigital.usb.edu.co/bitstreams/3c7b1753-fae0-4b10-beb5-491f775e7036/downloadb47d83e17c0629556dc07126e00acb03MD5110819/29048oai:bibliotecadigital.usb.edu.co:10819/290482025-08-22 12:04:36.669https://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com |
