Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy

La terapia fototérmica con nanopartículas de oro (GNP) es una alternativa para tratar el cáncer. Las nanobarras (GNR) absorben la radiación infrarroja cercana (NIR) proporcionada por una fuente de calor, provocando hipertermia en las células malignas. Los efectos de hipertermia localizada dependen d...

Full description

Autores:
Arismendi Villa, Jesica Alexandra
Jovel Muñoz, Juana María
Serna Restrepo, Juan Humberto
Bustamante Chaverra, Carlos Andrés
Flórez Escobar, Whady Felipe
valencia cardona, raul adolfo
Tipo de recurso:
Article of journal
Fecha de publicación:
2025
Institución:
Universidad de San Buenaventura
Repositorio:
Repositorio USB
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.usb.edu.co:10819/29048
Acceso en línea:
https://hdl.handle.net/10819/29048
https://doi.org/10.21500/20275846.6971
Palabra clave:
Photothermal Therapy
Computational Electromagnetism
Polarized Irradiation
Gold Nanorods
Aspect Ratio
Clustering
Rights
openAccess
License
Ingenierías USBMed - 2025
id SANBUENAV2_2f80f6de90f675d1369296172aaa9518
oai_identifier_str oai:bibliotecadigital.usb.edu.co:10819/29048
network_acronym_str SANBUENAV2
network_name_str Repositorio USB
repository_id_str
dc.title.spa.fl_str_mv Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy
dc.title.translated.eng.fl_str_mv Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy
title Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy
spellingShingle Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy
Photothermal Therapy
Computational Electromagnetism
Polarized Irradiation
Gold Nanorods
Aspect Ratio
Clustering
title_short Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy
title_full Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy
title_fullStr Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy
title_full_unstemmed Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy
title_sort Numerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapy
dc.creator.fl_str_mv Arismendi Villa, Jesica Alexandra
Jovel Muñoz, Juana María
Serna Restrepo, Juan Humberto
Bustamante Chaverra, Carlos Andrés
Flórez Escobar, Whady Felipe
valencia cardona, raul adolfo
dc.contributor.author.spa.fl_str_mv Arismendi Villa, Jesica Alexandra
Jovel Muñoz, Juana María
Serna Restrepo, Juan Humberto
Bustamante Chaverra, Carlos Andrés
Flórez Escobar, Whady Felipe
valencia cardona, raul adolfo
dc.subject.eng.fl_str_mv Photothermal Therapy
Computational Electromagnetism
Polarized Irradiation
Gold Nanorods
Aspect Ratio
Clustering
topic Photothermal Therapy
Computational Electromagnetism
Polarized Irradiation
Gold Nanorods
Aspect Ratio
Clustering
description La terapia fototérmica con nanopartículas de oro (GNP) es una alternativa para tratar el cáncer. Las nanobarras (GNR) absorben la radiación infrarroja cercana (NIR) proporcionada por una fuente de calor, provocando hipertermia en las células malignas. Los efectos de hipertermia localizada dependen del tamaño (relación de aspecto, AR), la forma y la concentración de las GNP, la polarización del campo eléctrico, la longitud de onda de irradiación y las propiedades del medio. Se presenta un método computacional para medir las secciones transversal y longitudinal de absorción óptica para GNR basado en el calentamiento óptico de la solución acuosa con un láser polarizado NIR de  y . Se realizó un estudio in-silico para la Teoría de Mie, según el efecto de AR y formación de clústeres, con respecto a la polarización del campo eléctrico ( ). A medida que la polarización del campo eléctrico gira hasta , el pico transversal se desplaza hacia el longitudinal. Las concentraciones más bajas dan lugar a gradientes de temperatura más pequeños. Las teorías utilizadas sirven para predecir las condiciones óptimas de irradiación frente a las propiedades de los nanomateriales para la generación de hipertermia y acoplamiento plasmónico.  
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-07-10T11:55:06Z
2025-08-22T17:04:36Z
dc.date.available.none.fl_str_mv 2025-07-10T11:55:06Z
2025-08-22T17:04:36Z
dc.date.issued.none.fl_str_mv 2025-07-10
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.21500/20275846.6971
dc.identifier.eissn.none.fl_str_mv 2027-5846
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10819/29048
dc.identifier.url.none.fl_str_mv https://doi.org/10.21500/20275846.6971
identifier_str_mv 10.21500/20275846.6971
2027-5846
url https://hdl.handle.net/10819/29048
https://doi.org/10.21500/20275846.6971
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.bitstream.none.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/6971/5664
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2025 : Ingenierías USBMed
dc.relation.citationendpage.none.fl_str_mv 38
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 27
dc.relation.citationvolume.spa.fl_str_mv 16
dc.relation.ispartofjournal.spa.fl_str_mv Ingenierías USBMed
dc.relation.references.eng.fl_str_mv S. Capellas-Coderque, “¿ En qué medida puede la Terapia Fototérmica Plasmónica eliminar células tumorales minimizando los daños colaterales sobre células sanas ?,” 2017. [2] S. Asadi, L. Bianchi, M. De Landro, S. Korganbayev, E. Schena, and P. Saccomandi, “Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application,” J Biophotonics, vol. 14, no. 2, Feb. 2021, doi: 10.1002/JBIO.202000161. [3] D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, L. Plaza, E. Martín Rodríguez, J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale, vol. 6, no. 16, pp. 9494–9530, 2014, doi: 10.1039/c4nr00708e. [4] William R. Hendee, Physics of Thermal Therapy. 2016. doi: 10.1201/b13679. [5] A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles We describe recent studies on photothermal effects using colloidal,” vol. 2, no. 1, pp. 30–38, 2007. [6] M. U. Daud, G. Abbas, M. Afzaal, M. Naz, N. Fatima, A. Ghuffar, M. Irfan, M. Mahnashi, S. Legutko, J. Petrů, J. Kratochvíl, U. Niazi., “Finite Element Analysis of Silver Nanorods, Spheres, Ellipsoids and Core–Shell Structures for Hyperthermia Treatment of Cancer,” Materials, vol. 15, no. 5, 2022, doi: 10.3390/ma15051786. [7] Z. Qin, Y. Wang, J. Randrianalisoa, V. Raeesi, W. Chan, W. Lipi, J. Bischof. “Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods,” no. April, pp. 1–13, 2016, doi: 10.1038/srep29836. [8] C. D. Kaddi, J. H. Phan, and M. D. Wang, “Computational nanomedicine: Modeling of nanoparticle-mediated hyperthermal cancer therapy,” Nanomedicine, vol. 8, no. 8, pp. 1323–1333, 2013, doi: 10.2217/nnm.13.117. [9] A. E. Nel, Mädler, Lutz, Velegol, Darrell, Xia, Tian, Hoek, Eric M.V., Somasundaran, Ponisseril, Klaessig, Fred, Castranova, Vince, Thompson, Mike., “Understanding biophysicochemical interactions at the nano-bio interface,” Nat Mater, vol. 8, no. 7, pp. 543–557, 2009, doi: 10.1038/nmat2442. [10] B. Gheflati and N. Naghavi, “Optimization of Laser Power for Laser-Induced Hyperthermia in the Presence of Nanoparticles using MATLAB and COMSOL Multiphysics,” ICEE 2019 - 27th Iranian Conference on Electrical Engineering, pp. 1787–1792, 2019, doi: 10.1109/IranianCEE.2019.8786661. [11] R. Mooney, Roma, Luella, Zhao, Donghong, Van Haute, Desiree, Garcia, Elizabeth, Kim, Seung U., Annala, Alexander J., Aboody, Karen S., Berlin, Jacob M., “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano, vol. 8, no. 12, pp. 12450–12460, 2014, doi: 10.1021/nn505147w. [12] X. G. Yu, Yang, Ren Peng, Wu, Cheng Wei, Zhang, Wei, Deng, Dong Feng, Zhang, Xu Xin, Li, Yan Zhao, “The Preparation of Smart Magnetic Nanoparticles for Intracellular Hyperthermia,” Lecture Notes in Mechanical Engineering, pp. 937–943, 2020, doi: 10.1007/978-981-13-8331-1_75. [13] M. Alrahili, V. Savchuk, K. McNear, and A. Pinchuk, “Absorption cross section of gold nanoparticles based on NIR laser heating and thermodynamic calculations,” Sci Rep, vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-75895-9. [14] X. Huang, I. H. El-sayed, and M. A. El-sayed, “Gold nanoparticles : interesting optical properties and recent applications in cancer diagnostics and therapy,” vol. 2, pp. 681–693, 2007. [15] X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J Adv Res, vol. 1, no. 1, pp. 13–28, 2010, doi: 10.1016/j.jare.2010.02.002. [16] X. Gu, D. D. Li, G. H. Yeoh, R. A. Taylor, and V. Timchenko, “Heat generation in irradiated gold nanoparticle solutions for hyperthermia applications,” Processes, vol. 9, no. 2, pp. 1–19, 2021, doi: 10.3390/pr9020368. [17] M. A. Mackey, M. R. K. Ali, L. A. Austin, R. D. Near, and M. A. El-sayed, “The Most Effective Gold Nanorod Size for Photothermal therapy- seedless growth.pdf,” 2014. [18] G. Alfranca, Á. Artiga, G. Stepien, M. Moros, S. G. Mitchell, and J. M. De La Fuente, “Gold nanoprism-nanorod face off: Comparing the heating efficiency, cellular internalization and thermoablation capacity,” Nanomedicine, vol. 11, no. 22, pp. 2903–2916, 2016, doi: 10.2217/nnm-2016-0257. [19] Z. Chen, H. Fan, J. Li, S. Tie, and S. Lan, “Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters,” Opt Express, vol. 25, no. 13, p. 15093, 2017, doi: 10.1364/oe.25.015093. [20] W. An, Q. Zhu, T. Zhu, and N. Gao, “Radiative properties of gold nanorod solutions and its temperature distribution under laser irradiation : Experimental investigation,” Exp Therm Fluid Sci, vol. 44, pp. 409–418, 2013, doi: 10.1016/j.expthermflusci.2012.08.001. [21] S. Soni, H. Tyagi, R. A. Taylor, and A. Kumar, “Investigation on nanoparticle distribution for thermal ablation of a tumour subjected to nanoparticle assisted thermal therapy,” J Therm Biol, vol. 43, pp. 70–80, 2014, doi: 10.1016/j.jtherbio.2014.05.003. [22] X. Gu, V. Timchenko, G. H. Yeoh, L. Dombrovsky, and R. Taylor, “The effect of gold nanorods clustering on near-infrared radiation absorption,” Applied Sciences (Switzerland), vol. 8, no. 7, pp. 1–16, 2018, doi: 10.3390/app8071132. [23] D. D. Li, X. Gu, V. Timchenko, Q. N. Chan, A. C. Y. Yuen, and G. H. Yeoh, “Study of Morphology and Optical Properties of Gold Nanoparticle Aggregates under Different pH Conditions,” Langmuir, vol. 34, no. 35, pp. 10340–10352, 2018, doi: 10.1021/acs.langmuir.8b01457. [24] T. Mironava, M. Hadjiargyrou, M. Simon, V. Jurukovski, and M. H. Rafailovich, “Gold nanoparticles cellular toxicity and recovery : Effect of size , concentration and exposure time,” vol. 4, no. March, pp. 120–137, 2010, doi: 10.3109/17435390903471463. [25] S. Manrique-bedoya, C. Moreau, S. Patel, Y. Feng, and K. Mayer, “Computational Modeling of Nanoparticle Heating for Treatment Planning of Plasmonic Photothermal Therapy in Pancreatic Cancer,” 2019. [26] J. M. Núñez-Leyva, Kolosovas-Machuca, Eleazar Samuel, Sánchez, John, Guevara, Edgar, Cuadrado, Alexander, Alda, Javier, González, Francisco Javier., “Computational and experimental analysis of gold nanorods in terms of their morphology: Spectral absorption and local field enhancement,” Nanomaterials, vol. 11, no. 7, 2021, doi: 10.3390/nano11071696. [27] Y. Wang, Gao, Zhe, Han, Zonghu, Liu, Yilin, Yang, Huan, Akkin, Taner, Hogan, Christopher J., Bischof, John C., “Aggregation affects optical properties and photothermal heating of gold nanospheres,” Sci Rep, vol. 11, no. 1, pp. 1–13, 2021, doi: 10.1038/s41598-020-79393-w. [28] J.-M. Leyva Nuñez, “Simulación, síntesis y caracterización de nanopartículas para aplicaciones biomédicas.” p. 86, 2019. [29] B. Fasla and A. Rach, “Heating of Biological Tissues by Gold Nano Particles: Effects of Particle Size and Distribution,” pp. 49–54, 2011, doi: 10.4236/jbn. [30] G. S. He, Zhu, Jing, Yong, Ken Tye, Baev, Alexander, Cai, Hong Xing, Hu, Rui, Cui, Yiping, Zhang, Xi He, Prasad, P. N., “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” Journal of Physical Chemistry C, vol. 114, no. 7, pp. 2853–2860, 2010, doi: 10.1021/jp907811g. [31] G. Baffou, R. Quidant, and F. J. García De Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano, vol. 4, no. 2, pp. 709–716, 2010, doi: 10.1021/nn901144d.
dc.rights.eng.fl_str_mv Ingenierías USBMed - 2025
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
rights_invalid_str_mv Ingenierías USBMed - 2025
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad San Buenaventura - USB (Colombia)
dc.source.eng.fl_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/6971
institution Universidad de San Buenaventura
bitstream.url.fl_str_mv https://bibliotecadigital.usb.edu.co/bitstreams/3c7b1753-fae0-4b10-beb5-491f775e7036/download
bitstream.checksum.fl_str_mv b47d83e17c0629556dc07126e00acb03
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de San Buenaventura Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851053534545444864
spelling Arismendi Villa, Jesica AlexandraJovel Muñoz, Juana MaríaSerna Restrepo, Juan HumbertoBustamante Chaverra, Carlos AndrésFlórez Escobar, Whady Felipevalencia cardona, raul adolfo2025-07-10T11:55:06Z2025-08-22T17:04:36Z2025-07-10T11:55:06Z2025-08-22T17:04:36Z2025-07-10La terapia fototérmica con nanopartículas de oro (GNP) es una alternativa para tratar el cáncer. Las nanobarras (GNR) absorben la radiación infrarroja cercana (NIR) proporcionada por una fuente de calor, provocando hipertermia en las células malignas. Los efectos de hipertermia localizada dependen del tamaño (relación de aspecto, AR), la forma y la concentración de las GNP, la polarización del campo eléctrico, la longitud de onda de irradiación y las propiedades del medio. Se presenta un método computacional para medir las secciones transversal y longitudinal de absorción óptica para GNR basado en el calentamiento óptico de la solución acuosa con un láser polarizado NIR de  y . Se realizó un estudio in-silico para la Teoría de Mie, según el efecto de AR y formación de clústeres, con respecto a la polarización del campo eléctrico ( ). A medida que la polarización del campo eléctrico gira hasta , el pico transversal se desplaza hacia el longitudinal. Las concentraciones más bajas dan lugar a gradientes de temperatura más pequeños. Las teorías utilizadas sirven para predecir las condiciones óptimas de irradiación frente a las propiedades de los nanomateriales para la generación de hipertermia y acoplamiento plasmónico.  Photothermal therapy assisted by gold nanoparticles (GNP) has emerged as an alternative to treat cancer. GNP with rod morphologies (GNR) play the role of absorbing near-infrared radiation (NIR) provided by a heat source, causing hyperthermia in malignant cells. Localized hyperthermic effects depend on the size (aspect ratio, AR), shape and concentration of GNP, polarization of the electric field, irradiation wavelength, and properties of the medium. A computational method is presented to measure the cross and longitudinal sections of optical absorption for GNR based on optical heating of the aqueous solution of GNR with an  and  NIR polarized laser. In-silico study was carried out under the finite element method for Mie Theory, according to the effect of AR and cluster formation, with respect to the electric field polarization ( ). As the polarization of electric field rotates up to , the cross peak moves towards the longitudinal one. Lower concentrations result in smaller temperature gradients. This study allows the theories used to help as a basis to predict the optimal irradiation conditions against the properties of the nanomaterials used for the generation of the hyperthermia state and plasmonic coupling.  application/pdf10.21500/20275846.69712027-5846https://hdl.handle.net/10819/29048https://doi.org/10.21500/20275846.6971engUniversidad San Buenaventura - USB (Colombia)https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/6971/5664Núm. 1 , Año 2025 : Ingenierías USBMed3812716Ingenierías USBMedS. Capellas-Coderque, “¿ En qué medida puede la Terapia Fototérmica Plasmónica eliminar células tumorales minimizando los daños colaterales sobre células sanas ?,” 2017. [2] S. Asadi, L. Bianchi, M. De Landro, S. Korganbayev, E. Schena, and P. Saccomandi, “Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application,” J Biophotonics, vol. 14, no. 2, Feb. 2021, doi: 10.1002/JBIO.202000161. [3] D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, L. Plaza, E. Martín Rodríguez, J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale, vol. 6, no. 16, pp. 9494–9530, 2014, doi: 10.1039/c4nr00708e. [4] William R. Hendee, Physics of Thermal Therapy. 2016. doi: 10.1201/b13679. [5] A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles We describe recent studies on photothermal effects using colloidal,” vol. 2, no. 1, pp. 30–38, 2007. [6] M. U. Daud, G. Abbas, M. Afzaal, M. Naz, N. Fatima, A. Ghuffar, M. Irfan, M. Mahnashi, S. Legutko, J. Petrů, J. Kratochvíl, U. Niazi., “Finite Element Analysis of Silver Nanorods, Spheres, Ellipsoids and Core–Shell Structures for Hyperthermia Treatment of Cancer,” Materials, vol. 15, no. 5, 2022, doi: 10.3390/ma15051786. [7] Z. Qin, Y. Wang, J. Randrianalisoa, V. Raeesi, W. Chan, W. Lipi, J. Bischof. “Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods,” no. April, pp. 1–13, 2016, doi: 10.1038/srep29836. [8] C. D. Kaddi, J. H. Phan, and M. D. Wang, “Computational nanomedicine: Modeling of nanoparticle-mediated hyperthermal cancer therapy,” Nanomedicine, vol. 8, no. 8, pp. 1323–1333, 2013, doi: 10.2217/nnm.13.117. [9] A. E. Nel, Mädler, Lutz, Velegol, Darrell, Xia, Tian, Hoek, Eric M.V., Somasundaran, Ponisseril, Klaessig, Fred, Castranova, Vince, Thompson, Mike., “Understanding biophysicochemical interactions at the nano-bio interface,” Nat Mater, vol. 8, no. 7, pp. 543–557, 2009, doi: 10.1038/nmat2442. [10] B. Gheflati and N. Naghavi, “Optimization of Laser Power for Laser-Induced Hyperthermia in the Presence of Nanoparticles using MATLAB and COMSOL Multiphysics,” ICEE 2019 - 27th Iranian Conference on Electrical Engineering, pp. 1787–1792, 2019, doi: 10.1109/IranianCEE.2019.8786661. [11] R. Mooney, Roma, Luella, Zhao, Donghong, Van Haute, Desiree, Garcia, Elizabeth, Kim, Seung U., Annala, Alexander J., Aboody, Karen S., Berlin, Jacob M., “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano, vol. 8, no. 12, pp. 12450–12460, 2014, doi: 10.1021/nn505147w. [12] X. G. Yu, Yang, Ren Peng, Wu, Cheng Wei, Zhang, Wei, Deng, Dong Feng, Zhang, Xu Xin, Li, Yan Zhao, “The Preparation of Smart Magnetic Nanoparticles for Intracellular Hyperthermia,” Lecture Notes in Mechanical Engineering, pp. 937–943, 2020, doi: 10.1007/978-981-13-8331-1_75. [13] M. Alrahili, V. Savchuk, K. McNear, and A. Pinchuk, “Absorption cross section of gold nanoparticles based on NIR laser heating and thermodynamic calculations,” Sci Rep, vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-75895-9. [14] X. Huang, I. H. El-sayed, and M. A. El-sayed, “Gold nanoparticles : interesting optical properties and recent applications in cancer diagnostics and therapy,” vol. 2, pp. 681–693, 2007. [15] X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J Adv Res, vol. 1, no. 1, pp. 13–28, 2010, doi: 10.1016/j.jare.2010.02.002. [16] X. Gu, D. D. Li, G. H. Yeoh, R. A. Taylor, and V. Timchenko, “Heat generation in irradiated gold nanoparticle solutions for hyperthermia applications,” Processes, vol. 9, no. 2, pp. 1–19, 2021, doi: 10.3390/pr9020368. [17] M. A. Mackey, M. R. K. Ali, L. A. Austin, R. D. Near, and M. A. El-sayed, “The Most Effective Gold Nanorod Size for Photothermal therapy- seedless growth.pdf,” 2014. [18] G. Alfranca, Á. Artiga, G. Stepien, M. Moros, S. G. Mitchell, and J. M. De La Fuente, “Gold nanoprism-nanorod face off: Comparing the heating efficiency, cellular internalization and thermoablation capacity,” Nanomedicine, vol. 11, no. 22, pp. 2903–2916, 2016, doi: 10.2217/nnm-2016-0257. [19] Z. Chen, H. Fan, J. Li, S. Tie, and S. Lan, “Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters,” Opt Express, vol. 25, no. 13, p. 15093, 2017, doi: 10.1364/oe.25.015093. [20] W. An, Q. Zhu, T. Zhu, and N. Gao, “Radiative properties of gold nanorod solutions and its temperature distribution under laser irradiation : Experimental investigation,” Exp Therm Fluid Sci, vol. 44, pp. 409–418, 2013, doi: 10.1016/j.expthermflusci.2012.08.001. [21] S. Soni, H. Tyagi, R. A. Taylor, and A. Kumar, “Investigation on nanoparticle distribution for thermal ablation of a tumour subjected to nanoparticle assisted thermal therapy,” J Therm Biol, vol. 43, pp. 70–80, 2014, doi: 10.1016/j.jtherbio.2014.05.003. [22] X. Gu, V. Timchenko, G. H. Yeoh, L. Dombrovsky, and R. Taylor, “The effect of gold nanorods clustering on near-infrared radiation absorption,” Applied Sciences (Switzerland), vol. 8, no. 7, pp. 1–16, 2018, doi: 10.3390/app8071132. [23] D. D. Li, X. Gu, V. Timchenko, Q. N. Chan, A. C. Y. Yuen, and G. H. Yeoh, “Study of Morphology and Optical Properties of Gold Nanoparticle Aggregates under Different pH Conditions,” Langmuir, vol. 34, no. 35, pp. 10340–10352, 2018, doi: 10.1021/acs.langmuir.8b01457. [24] T. Mironava, M. Hadjiargyrou, M. Simon, V. Jurukovski, and M. H. Rafailovich, “Gold nanoparticles cellular toxicity and recovery : Effect of size , concentration and exposure time,” vol. 4, no. March, pp. 120–137, 2010, doi: 10.3109/17435390903471463. [25] S. Manrique-bedoya, C. Moreau, S. Patel, Y. Feng, and K. Mayer, “Computational Modeling of Nanoparticle Heating for Treatment Planning of Plasmonic Photothermal Therapy in Pancreatic Cancer,” 2019. [26] J. M. Núñez-Leyva, Kolosovas-Machuca, Eleazar Samuel, Sánchez, John, Guevara, Edgar, Cuadrado, Alexander, Alda, Javier, González, Francisco Javier., “Computational and experimental analysis of gold nanorods in terms of their morphology: Spectral absorption and local field enhancement,” Nanomaterials, vol. 11, no. 7, 2021, doi: 10.3390/nano11071696. [27] Y. Wang, Gao, Zhe, Han, Zonghu, Liu, Yilin, Yang, Huan, Akkin, Taner, Hogan, Christopher J., Bischof, John C., “Aggregation affects optical properties and photothermal heating of gold nanospheres,” Sci Rep, vol. 11, no. 1, pp. 1–13, 2021, doi: 10.1038/s41598-020-79393-w. [28] J.-M. Leyva Nuñez, “Simulación, síntesis y caracterización de nanopartículas para aplicaciones biomédicas.” p. 86, 2019. [29] B. Fasla and A. Rach, “Heating of Biological Tissues by Gold Nano Particles: Effects of Particle Size and Distribution,” pp. 49–54, 2011, doi: 10.4236/jbn. [30] G. S. He, Zhu, Jing, Yong, Ken Tye, Baev, Alexander, Cai, Hong Xing, Hu, Rui, Cui, Yiping, Zhang, Xi He, Prasad, P. N., “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” Journal of Physical Chemistry C, vol. 114, no. 7, pp. 2853–2860, 2010, doi: 10.1021/jp907811g. [31] G. Baffou, R. Quidant, and F. J. García De Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano, vol. 4, no. 2, pp. 709–716, 2010, doi: 10.1021/nn901144d.Ingenierías USBMed - 2025info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://creativecommons.org/licenses/by-nc-nd/4.0https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/6971Photothermal TherapyComputational ElectromagnetismPolarized IrradiationGold NanorodsAspect RatioClusteringNumerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapyNumerical study of plasmonic effect in gold nanorods subjected to polarized irradiation for application in photothermal therapyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2948https://bibliotecadigital.usb.edu.co/bitstreams/3c7b1753-fae0-4b10-beb5-491f775e7036/downloadb47d83e17c0629556dc07126e00acb03MD5110819/29048oai:bibliotecadigital.usb.edu.co:10819/290482025-08-22 12:04:36.669https://creativecommons.org/licenses/by-nc-nd/4.0https://bibliotecadigital.usb.edu.coRepositorio Institucional Universidad de San Buenaventura Colombiabdigital@metabiblioteca.com