Strategies for reducing methane emissions from ruminants

There is irrefutable evidence that human activities are affecting the global climate through the production of Green House Gases (GHG) of which methane (CH4) has a high warming potential. Enteric fermentation and manure from ruminants represent about 30 to 40% of the total anthropogenic CH4 emission...

Full description

Autores:
Lascano, Carlos E
Carulla, Juan E.
Vargas, Juan De Jesús
Tipo de recurso:
Article of journal
Fecha de publicación:
2011
Institución:
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Repositorio:
Repositorio Institucional UDCA
Idioma:
eng
OAI Identifier:
oai:repository.udca.edu.co:11158/3583
Acceso en línea:
https://repository.udca.edu.co/handle/11158/3583
Palabra clave:
Climate change
Greenhouse gases
Cattle
Sheep
Goats
Dietary manipulation
Rumen manipulation
Animal breeding
Intensification
Modelling
Cambio climático
Gases de efecto invernadero
Ovinos
Rumen
Modelling
Rights
closedAccess
License
Derechos Reservados - Universidad de Ciencias Aplicadas y Ambientales
Description
Summary:There is irrefutable evidence that human activities are affecting the global climate through the production of Green House Gases (GHG) of which methane (CH4) has a high warming potential. Enteric fermentation and manure from ruminants represent about 30 to 40% of the total anthropogenic CH4 emissions. This paper summarizes existing technologies to reduce enteric CH4 emissions in ruminants given emphasis to dietary and rumen manipulation, animal selection/ breeding and improvement of production systems. Differences in enteric CH4 production among animal species based on anatomy of the GI tract, digestive physiology, rumen fermentation and grazing habits are also discussed. Inhibition of enteric CH4 emission is possible through the use of ionophores, organic acids and oils. Feeding plants containing secondary metabolites (i.e. tannins and saponins) can reduce CH4 production. Breeding for improved feed conversion efficiency (lower residual feed intake) is likely to reduce total and per unit product CH4 emissions. Results using the IPCC Tier II model predict that goats and high producing dairy cattle can potentially produce less CH4 emissions per unit of milk than Cebu cattle or sheep, while small ruminants (goats and sheep) produce less CH4 per unit of live weight gain (meat) than cattle. The introduction of improved high quality forages and the implementation of efficient pasture utilization practices (grazing system and stocking rate) can result in most cases in improved animal production and in increased absolute CH4 emissions, but in reduced CH4 per unit of animal product.