Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal

Estimating peptide-major histocompatibility complex (pMHC) binding using structural computational methods has an impact on understanding overall immune function triggering adaptive immune responses in MHC class II molecules. We developed a strategy for optimizing pMHC structure interacting with wate...

Full description

Autores:
Ortiz Mahecha, Carlos A.
Bohórquez, Hugo Javier
Agudelo, William A.
Patarroyo, Manuel Elkin
Suárez, Carlos F.
Patarroyo, Manuel-Alfonso
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Repositorio:
Repositorio Institucional UDCA
Idioma:
eng
OAI Identifier:
oai:repository.udca.edu.co:11158/3241
Acceso en línea:
https://www.scopus.com/search/form.uri?display=basic
Palabra clave:
Péptidos
Epítopos
Moléculas
Teoría cuántica
Binders
Free energy
Mean square error
Molecules
Peptides
Quantum theory
Rights
openAccess
License
Derechos Reservados - Universidad de Ciencias Aplicadas y Ambientales
Description
Summary:Estimating peptide-major histocompatibility complex (pMHC) binding using structural computational methods has an impact on understanding overall immune function triggering adaptive immune responses in MHC class II molecules. We developed a strategy for optimizing pMHC structure interacting with water molecules and for calculating the binding energy of receptor + ligand systems, such as HLA-DR1 + HA, HLA-DR1 + CLIP, HLA-DR2 + MBP, and HLA-DR3 + CLIP, as well as a monosubstitution panel. Taking pMHC's structural properties, we assumed that ΔH ≫ -TΔS would generate a linear model for estimating relative free energy change, using three semiempirical quantum methods (PM6, PM7, and FMO-SCC-DFTB3) along with the implicit solvent models, and considering proteins in neutral and charged states. Likewise, we confirmed our approach's effectiveness in calculating binding energies having high correlation with experimental data and low root-mean-square error (<2 kcal/mol). All in all, our pipeline differentiates weak from strong peptide binders as a reliable method for studying pMHC interactions.