Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey

Los ovinos criollos de pelo (OCP) desarrollaron ventajas adaptativas al climática tropical, que le permiten tener resistencia a enfermedades, alta fertilidad y prolificidad; sin embargo, se reportan pocas investigaciones sobre la productividad de los OCP en sistemas asociados al cultivo de la caña,...

Full description

Autores:
Lenis, Claudia Patricia
Molina Durán, Enrique José
Álvarez Franco, Luz Angela
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Repositorio:
Repositorio Institucional UDCA
Idioma:
spa
OAI Identifier:
oai:repository.udca.edu.co:11158/4926
Acceso en línea:
https://repository.udca.edu.co/handle/11158/4926
http://doi.org/10.31910/rudca.v25. n2.2022.1853
https://repository.udca.edu.co/
Palabra clave:
Caracteres Sexuales
Dinámicas no Lineales
Ovinos
Producción animal
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.es
id RepoUDCA2_759366302941fdd0d2ddd69604bd550b
oai_identifier_str oai:repository.udca.edu.co:11158/4926
network_acronym_str RepoUDCA2
network_name_str Repositorio Institucional UDCA
repository_id_str
dc.title.spa.fl_str_mv Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey
dc.title.translated.none.fl_str_mv Productivity and growth curves using non-linear models in a cross between ovino de pelo colombiano x pelibuey
title Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey
spellingShingle Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey
Caracteres Sexuales
Dinámicas no Lineales
Ovinos
Producción animal
title_short Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey
title_full Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey
title_fullStr Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey
title_full_unstemmed Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey
title_sort Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey
dc.creator.fl_str_mv Lenis, Claudia Patricia
Molina Durán, Enrique José
Álvarez Franco, Luz Angela
dc.contributor.author.none.fl_str_mv Lenis, Claudia Patricia
Molina Durán, Enrique José
Álvarez Franco, Luz Angela
dc.subject.decs.none.fl_str_mv Caracteres Sexuales
Dinámicas no Lineales
topic Caracteres Sexuales
Dinámicas no Lineales
Ovinos
Producción animal
dc.subject.agrovoc.none.fl_str_mv Ovinos
Producción animal
description Los ovinos criollos de pelo (OCP) desarrollaron ventajas adaptativas al climática tropical, que le permiten tener resistencia a enfermedades, alta fertilidad y prolificidad; sin embargo, se reportan pocas investigaciones sobre la productividad de los OCP en sistemas asociados al cultivo de la caña, lo que hace necesario realizar investigaciones, que permitan fomentar sus atributos. El objetivo del presente trabajo fue analizar la productividad y el desarrollo corporal de un cruce de OCP, mediante parámetros productivos y curvas de crecimiento. Se utilizaron 180 animales de partos simples y múltiples; se registró el peso al nacimiento (PN), al destete (PD), a los 210 días (PAJ210) y las ganancias diarias predestete (GDPRE) y posdestete (GDPOS). Los datos, se analizaron mediante estadística descriptiva, con un GLM, con los efectos sexo (S), tipo de nacimiento (TN), número de partos (NP) y época de nacimiento (EPONAC). Se emplearon los modelos no lineales Gompertz, Logístico, Brody, Richards y Von Bertalanffy, en 1.455 registros de pesos, a diferentes edades, para realizar las curvas de crecimiento. Los análisis, se efectuaron con el paquete estadístico SAS. Se consideraron los coeficientes R2 , AIC y BIC, obtenidos por el método de Gauss-Newton, para seleccionar el modelo de mejor ajuste. Los machos presentaron mayores promedios en las variables PN, PD, PAJ210 y GDPOS. El TN afectó todas las variables; el PN y las GDPOS fueron afectadas por el NP y, la EPONAC, afectó PN, las GDPRE, el PAJ210 y las GDPOS. El modelo de mejor ajuste para las curvas de crecimiento fue la de Richards.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-11T14:48:43Z
dc.date.available.none.fl_str_mv 2022-10-11T14:48:43Z
dc.date.issued.none.fl_str_mv 2022-07
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Lenis-Valencia, C.P.; Molina, E.J.; Álvarez Franco, L.A. 2022. Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey. Rev. U.D.C.A Act. & Div. Cient. 25(2):e1853. http://doi.org/10.31910/rudca.v25. n2.2022.1853
dc.identifier.issn.spa.fl_str_mv 0123-4226
dc.identifier.uri.none.fl_str_mv https://repository.udca.edu.co/handle/11158/4926
dc.identifier.doi.none.fl_str_mv http://doi.org/10.31910/rudca.v25. n2.2022.1853
dc.identifier.eissn.spa.fl_str_mv 2019-2551
dc.identifier.instname.spa.fl_str_mv Universidad de Ciencias Aplicadas y Ambientales
dc.identifier.reponame.spa.fl_str_mv UDCA
dc.identifier.repourl.spa.fl_str_mv https://repository.udca.edu.co/
identifier_str_mv Lenis-Valencia, C.P.; Molina, E.J.; Álvarez Franco, L.A. 2022. Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey. Rev. U.D.C.A Act. & Div. Cient. 25(2):e1853. http://doi.org/10.31910/rudca.v25. n2.2022.1853
0123-4226
2019-2551
Universidad de Ciencias Aplicadas y Ambientales
UDCA
url https://repository.udca.edu.co/handle/11158/4926
http://doi.org/10.31910/rudca.v25. n2.2022.1853
https://repository.udca.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
dc.relation.citationedition.spa.fl_str_mv (Jul.-Dic.,2022)
dc.relation.citationendpage.spa.fl_str_mv 9
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 25
dc.relation.ispartofjournal.spa.fl_str_mv Revista UDCA Actualidad & Divulgación Científica
dc.rights.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.es
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.es
https://creativecommons.org/licenses/by-nc-sa/4.0/
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Ciencias Aplicadas y Ambientales
dc.source.none.fl_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/view/1853/2427
institution Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
bitstream.url.fl_str_mv https://repository.udca.edu.co/bitstreams/fa372c8a-4d06-4b03-8b8f-90e0c4ea9928/download
https://repository.udca.edu.co/bitstreams/10507b7c-bbc1-48e3-aa87-500deadbd3c1/download
https://repository.udca.edu.co/bitstreams/2314209c-ad9d-4bc3-8bf3-7b3ac41029d2/download
https://repository.udca.edu.co/bitstreams/a2df2f20-f657-4ea7-9fde-1b3a9608114a/download
bitstream.checksum.fl_str_mv 9b0edf319ac2a24627f6c9924c70d0cb
f661acf14bedbf9f5d13897a0387e751
eeb19a765c86ac9eebd2ab6a9db3c03b
7668b6499d9bdcfdce772e5c33f44908
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio - Universidad de Ciencias Aplicadas y Ambientales UDCA.
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814213321481519104
spelling Lenis, Claudia PatriciaMolina Durán, Enrique JoséÁlvarez Franco, Luz Angela2022-10-11T14:48:43Z2022-10-11T14:48:43Z2022-07Lenis-Valencia, C.P.; Molina, E.J.; Álvarez Franco, L.A. 2022. Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibuey. Rev. U.D.C.A Act. & Div. Cient. 25(2):e1853. http://doi.org/10.31910/rudca.v25. n2.2022.18530123-4226https://repository.udca.edu.co/handle/11158/4926http://doi.org/10.31910/rudca.v25. n2.2022.18532019-2551Universidad de Ciencias Aplicadas y AmbientalesUDCAhttps://repository.udca.edu.co/Los ovinos criollos de pelo (OCP) desarrollaron ventajas adaptativas al climática tropical, que le permiten tener resistencia a enfermedades, alta fertilidad y prolificidad; sin embargo, se reportan pocas investigaciones sobre la productividad de los OCP en sistemas asociados al cultivo de la caña, lo que hace necesario realizar investigaciones, que permitan fomentar sus atributos. El objetivo del presente trabajo fue analizar la productividad y el desarrollo corporal de un cruce de OCP, mediante parámetros productivos y curvas de crecimiento. Se utilizaron 180 animales de partos simples y múltiples; se registró el peso al nacimiento (PN), al destete (PD), a los 210 días (PAJ210) y las ganancias diarias predestete (GDPRE) y posdestete (GDPOS). Los datos, se analizaron mediante estadística descriptiva, con un GLM, con los efectos sexo (S), tipo de nacimiento (TN), número de partos (NP) y época de nacimiento (EPONAC). Se emplearon los modelos no lineales Gompertz, Logístico, Brody, Richards y Von Bertalanffy, en 1.455 registros de pesos, a diferentes edades, para realizar las curvas de crecimiento. Los análisis, se efectuaron con el paquete estadístico SAS. Se consideraron los coeficientes R2 , AIC y BIC, obtenidos por el método de Gauss-Newton, para seleccionar el modelo de mejor ajuste. Los machos presentaron mayores promedios en las variables PN, PD, PAJ210 y GDPOS. El TN afectó todas las variables; el PN y las GDPOS fueron afectadas por el NP y, la EPONAC, afectó PN, las GDPRE, el PAJ210 y las GDPOS. El modelo de mejor ajuste para las curvas de crecimiento fue la de Richards.The creole hair sheep (CHS) developed adaptive advantages to the tropical climate, which allow them to have resistance to diseases, high fertility and prolificacy. Currently, there is little research on the productivity of CHS in systems associated with the cultivation of sugarcane, which makes it necessary to carry out research to promote its attributes. The purpose of this research was to analyze the productivity and body development of a crossing of CHS, using production parameters and growth curves.180 animals of single and multiple births were used; the follow weight was recorded: at birth (WB), at weaning (WW); at 210 days (W210), and furthermore, daily gains of pre-weaning (WDPRE) and postweaning (WPPOS) were recorded. The data were analyzed using descriptive statistics with a GLM with the effects sex (S), type of birth (TB), number of births (NB) and period of birth (PB). The non-linear models Gompertz, Logistic, Brody, Richards and Von Bertalanffy were used in 1455 records of weights at different ages to perform growth curves. All analyzes were performed with the SAS statistical package. The R2 , AIC and BIC coefficients obtained by the Gauss-Newton method were considered to select the best fit model. The males presented higher averages in the variables WB, WW, W210) and WPOS. The TB affected all the variables; The WB and the WPPOS were affected by the NB and the PB affected the WB, the WDPRE, the W210 and the WPPOS. The best fit model for the growth curves was of RichardsIncluye referencias bibliográficasapplication/pdfspaUniversidad de Ciencias Aplicadas y Ambientaleshttps://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.eshttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.udca.edu.co/index.php/ruadc/article/view/1853/2427Productividad y curvas de crecimiento usando modelos no lineales en un cruce de ovino de pelo colombiano x pelibueyProductivity and growth curves using non-linear models in a cross between ovino de pelo colombiano x pelibueyArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Caracteres SexualesDinámicas no LinealesOvinosProducción animalAgrosavia(Jul.-Dic.,2022)92125Revista UDCA Actualidad & Divulgación CientíficaPublicationORIGINALdocument (1).pdfdocument (1).pdfapplication/pdf740706https://repository.udca.edu.co/bitstreams/fa372c8a-4d06-4b03-8b8f-90e0c4ea9928/download9b0edf319ac2a24627f6c9924c70d0cbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814775https://repository.udca.edu.co/bitstreams/10507b7c-bbc1-48e3-aa87-500deadbd3c1/downloadf661acf14bedbf9f5d13897a0387e751MD52TEXTdocument (1).pdf.txtdocument (1).pdf.txtExtracted texttext/plain37688https://repository.udca.edu.co/bitstreams/2314209c-ad9d-4bc3-8bf3-7b3ac41029d2/downloadeeb19a765c86ac9eebd2ab6a9db3c03bMD53THUMBNAILdocument (1).pdf.jpgdocument (1).pdf.jpgGenerated Thumbnailimage/jpeg16240https://repository.udca.edu.co/bitstreams/a2df2f20-f657-4ea7-9fde-1b3a9608114a/download7668b6499d9bdcfdce772e5c33f44908MD5411158/4926oai:repository.udca.edu.co:11158/49262024-05-09 14:33:16.894https://creativecommons.org/licenses/by-nc-sa/4.0/https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.esopen.accesshttps://repository.udca.edu.coRepositorio - Universidad de Ciencias Aplicadas y Ambientales UDCA.bdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCk1FRElBTlRFIEVMIEVKRVJDSUNJTyBERSBDVUFMUVVJRVJBIERFIExPUyBERVJFQ0hPUyBRVUUgU0UgT1RPUkdBTiBFTiBFU1RBIExJQ0VOQ0lBLCBVU1RFRCBBQ0VQVEEgWSBBQ1VFUkRBIFFVRURBUiBPQkxJR0FETyBFTiBMT1MgVEVSTUlOT1MgUVVFIFNFIFNFw5FBTEFOIEVOIEVMTEEuIEVMIExJQ0VOQ0lBTlRFIENPTkNFREUgQSBVU1RFRCBMT1MgREVSRUNIT1MgQ09OVEVOSURPUyBFTiBFU1RBIExJQ0VOQ0lBIENPTkRJQ0lPTkFET1MgQSBMQSBBQ0VQVEFDScOTTiBERSBTVVMgVEVSTUlOT1MgWSBDT05ESUNJT05FUy4KMS4gRGVmaW5pY2lvbmVzCmEuCU9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLglMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLglBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuCVVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoyLiBEZXJlY2hvcyBkZSBVc29zIEhvbnJhZG9zIHkgZXhjZXBjaW9uZXMgTGVnYWxlcy4KTmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CmEuCVJlcHJvZHVjaXIgbGEgT2JyYSwgaW5jb3Jwb3JhciBsYSBPYnJhIGVuIHVuYSBvIG3DoXMgT2JyYXMgQ29sZWN0aXZhcywgeSByZXByb2R1Y2lyIGxhIE9icmEgaW5jb3Jwb3JhZGEgZW4gbGFzIE9icmFzIENvbGVjdGl2YXM7CmIuCURpc3RyaWJ1aXIgY29waWFzIG8gZm9ub2dyYW1hcyBkZSBsYXMgT2JyYXMsIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EsIGluY2x1ecOpbmRvbGFzIGNvbW8gaW5jb3Jwb3JhZGFzIGVuIE9icmFzIENvbGVjdGl2YXMsIHNlZ8O6biBjb3JyZXNwb25kYTsKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KNC4gUmVzdHJpY2Npb25lcy4KTGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6CmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KYi4JVXN0ZWQgbm8gcHVlZGUgZWplcmNlciBuaW5ndW5vIGRlIGxvcyBkZXJlY2hvcyBxdWUgbGUgaGFuIHNpZG8gb3RvcmdhZG9zIGVuIGxhIFNlY2Npw7NuIDMgcHJlY2VkZW50ZSBkZSBtb2RvIHF1ZSBlc3TDqW4gcHJpbmNpcGFsbWVudGUgZGVzdGluYWRvcyBvIGRpcmVjdGFtZW50ZSBkaXJpZ2lkb3MgYSBjb25zZWd1aXIgdW4gcHJvdmVjaG8gY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuIEVsIGludGVyY2FtYmlvIGRlIGxhIE9icmEgcG9yIG90cmFzIG9icmFzIHByb3RlZ2lkYXMgcG9yIGRlcmVjaG9zIGRlIGF1dG9yLCB5YSBzZWEgYSB0cmF2w6lzIGRlIHVuIHNpc3RlbWEgcGFyYSBjb21wYXJ0aXIgYXJjaGl2b3MgZGlnaXRhbGVzIChkaWdpdGFsIGZpbGUtc2hhcmluZykgbyBkZSBjdWFscXVpZXIgb3RyYSBtYW5lcmEgbm8gc2Vyw6EgY29uc2lkZXJhZG8gY29tbyBlc3RhciBkZXN0aW5hZG8gcHJpbmNpcGFsbWVudGUgbyBkaXJpZ2lkbyBkaXJlY3RhbWVudGUgYSBjb25zZWd1aXIgdW4gcHJvdmVjaG8gY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEsIHNpZW1wcmUgcXVlIG5vIHNlIHJlYWxpY2UgdW4gcGFnbyBtZWRpYW50ZSB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgZW4gcmVsYWNpw7NuIGNvbiBlbCBpbnRlcmNhbWJpbyBkZSBvYnJhcyBwcm90ZWdpZGFzIHBvciBlbCBkZXJlY2hvIGRlIGF1dG9yLgpjLglTaSB1c3RlZCBkaXN0cmlidXllLCBleGhpYmUgcMO6YmxpY2FtZW50ZSwgZWplY3V0YSBww7pibGljYW1lbnRlIG8gZWplY3V0YSBww7pibGljYW1lbnRlIGVuIGZvcm1hIGRpZ2l0YWwgbGEgT2JyYSBvIGN1YWxxdWllciBPYnJhIERlcml2YWRhIHUgT2JyYSBDb2xlY3RpdmEsIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0YSB0b2RhIGxhIGluZm9ybWFjacOzbiBkZSBkZXJlY2hvIGRlIGF1dG9yIGRlIGxhIE9icmEgeSBwcm9wb3JjaW9uYXIsIGRlIGZvcm1hIHJhem9uYWJsZSBzZWfDum4gZWwgbWVkaW8gbyBtYW5lcmEgcXVlIFVzdGVkIGVzdMOpIHV0aWxpemFuZG86IChpKSBlbCBub21icmUgZGVsIEF1dG9yIE9yaWdpbmFsIHNpIGVzdMOhIHByb3Zpc3RvIChvIHNldWTDs25pbW8sIHNpIGZ1ZXJlIGFwbGljYWJsZSksIHkvbyAoaWkpIGVsIG5vbWJyZSBkZSBsYSBwYXJ0ZSBvIGxhcyBwYXJ0ZXMgcXVlIGVsIEF1dG9yIE9yaWdpbmFsIHkvbyBlbCBMaWNlbmNpYW50ZSBodWJpZXJlbiBkZXNpZ25hZG8gcGFyYSBsYSBhdHJpYnVjacOzbiAodi5nLiwgdW4gaW5zdGl0dXRvIHBhdHJvY2luYWRvciwgZWRpdG9yaWFsLCBwdWJsaWNhY2nDs24pIGVuIGxhIGluZm9ybWFjacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIExpY2VuY2lhbnRlLCB0w6lybWlub3MgZGUgc2VydmljaW9zIG8gZGUgb3RyYXMgZm9ybWFzIHJhem9uYWJsZXM7IGVsIHTDrXR1bG8gZGUgbGEgT2JyYSBzaSBlc3TDoSBwcm92aXN0bzsgZW4gbGEgbWVkaWRhIGRlIGxvIHJhem9uYWJsZW1lbnRlIGZhY3RpYmxlIHksIHNpIGVzdMOhIHByb3Zpc3RvLCBlbCBJZGVudGlmaWNhZG9yIFVuaWZvcm1lIGRlIFJlY3Vyc29zIChVbmlmb3JtIFJlc291cmNlIElkZW50aWZpZXIpIHF1ZSBlbCBMaWNlbmNpYW50ZSBlc3BlY2lmaWNhIHBhcmEgc2VyIGFzb2NpYWRvIGNvbiBsYSBPYnJhLCBzYWx2byBxdWUgdGFsIFVSSSBubyBzZSByZWZpZXJhIGEgbGEgbm90YSBzb2JyZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgbyBhIGxhIGluZm9ybWFjacOzbiBzb2JyZSBlbCBsaWNlbmNpYW1pZW50byBkZSBsYSBPYnJhOyB5IGVuIGVsIGNhc28gZGUgdW5hIE9icmEgRGVyaXZhZGEsIGF0cmlidWlyIGVsIGNyw6lkaXRvIGlkZW50aWZpY2FuZG8gZWwgdXNvIGRlIGxhIE9icmEgZW4gbGEgT2JyYSBEZXJpdmFkYSAodi5nLiwgIlRyYWR1Y2Npw7NuIEZyYW5jZXNhIGRlIGxhIE9icmEgZGVsIEF1dG9yIE9yaWdpbmFsLCIgbyAiR3Vpw7NuIENpbmVtYXRvZ3LDoWZpY28gYmFzYWRvIGVuIGxhIE9icmEgb3JpZ2luYWwgZGVsIEF1dG9yIE9yaWdpbmFsIikuIFRhbCBjcsOpZGl0byBwdWVkZSBzZXIgaW1wbGVtZW50YWRvIGRlIGN1YWxxdWllciBmb3JtYSByYXpvbmFibGU7IGVuIGVsIGNhc28sIHNpbiBlbWJhcmdvLCBkZSBPYnJhcyBEZXJpdmFkYXMgdSBPYnJhcyBDb2xlY3RpdmFzLCB0YWwgY3LDqWRpdG8gYXBhcmVjZXLDoSwgY29tbyBtw61uaW1vLCBkb25kZSBhcGFyZWNlIGVsIGNyw6lkaXRvIGRlIGN1YWxxdWllciBvdHJvIGF1dG9yIGNvbXBhcmFibGUgeSBkZSB1bmEgbWFuZXJhLCBhbCBtZW5vcywgdGFuIGRlc3RhY2FkYSBjb21vIGVsIGNyw6lkaXRvIGRlIG90cm8gYXV0b3IgY29tcGFyYWJsZS4KZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CmkuCVJlZ2Fsw61hcyBwb3IgaW50ZXJwcmV0YWNpw7NuIHkgZWplY3VjacOzbiBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMuIEVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgYXV0b3JpemFyIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgbyBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSB5IGRlIHJlY29sZWN0YXIsIHNlYSBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBTQVlDTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgbyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvIFdlYmNhc3QpIGxpY2VuY2lhZGEgYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLCBzaSBsYSBpbnRlcnByZXRhY2nDs24gbyBlamVjdWNpw7NuIGRlIGxhIG9icmEgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIG9yaWVudGFkYSBwb3IgbyBkaXJpZ2lkYSBhIGxhIG9idGVuY2nDs24gZGUgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCmlpLglSZWdhbMOtYXMgcG9yIEZvbm9ncmFtYXMuIEVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCB1bmEgYWdlbmNpYSBkZSBkZXJlY2hvcyBtdXNpY2FsZXMgbyBhbGfDum4gYWdlbnRlIGRlc2lnbmFkbywgbGFzIHJlZ2Fsw61hcyBwb3IgY3VhbHF1aWVyIGZvbm9ncmFtYSBxdWUgVXN0ZWQgY3JlZSBhIHBhcnRpciBkZSBsYSBvYnJhICjigJx2ZXJzacOzbiBjb3ZlcuKAnSkgeSBkaXN0cmlidXlhLCBlbiBsb3MgdMOpcm1pbm9zIGRlbCByw6lnaW1lbiBkZSBkZXJlY2hvcyBkZSBhdXRvciwgc2kgbGEgY3JlYWNpw7NuIG8gZGlzdHJpYnVjacOzbiBkZSBlc2EgdmVyc2nDs24gY292ZXIgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIGRlc3RpbmFkYSBvIGRpcmlnaWRhIGEgb2J0ZW5lciB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KZS4JR2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFjaW5wcm8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KNi4gTGltaXRhY2nDs24gZGUgcmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgo3LiBUw6lybWluby4KYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuCVN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgo4LiBWYXJpb3MuCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuCVNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLglOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgoK