Análise da Convergência da Solução de Equações Lineares Elípticas sob um Esquema de Diferenças Finitas Generalizadas (MDFG)
The Generalized Finite Difference Method as a meshless method alternative is used to solve partial differential equations in domains with high irregular geometry. A proof of convergence of GFDM is given studying the consistency of truncation error of linear elliptic partial equation problems at 2D,...
- Autores:
-
Izquierdo, Daniel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
- Repositorio:
- Repositorio Institucional UDCA
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udca.edu.co:11158/2287
- Palabra clave:
- Métodos de Galerkin
Ecuaciones diferenciales
Difference Finite Method
Irregular grids
Meshless Methods
- Rights
- openAccess
- License
- Derechos Reservados - Universidad de Ciencias Aplicadas y Ambientales
Summary: | The Generalized Finite Difference Method as a meshless method alternative is used to solve partial differential equations in domains with high irregular geometry. A proof of convergence of GFDM is given studying the consistency of truncation error of linear elliptic partial equation problems at 2D, using n-degree polynomial. As an example, the convergence of method is calculated for a bi-dimentional Poisson equation problem supported over a disperse nodes net representing a rectangular domain. |
---|