Análise da Convergência da Solução de Equações Lineares Elípticas sob um Esquema de Diferenças Finitas Generalizadas (MDFG)

The Generalized Finite Difference Method as a meshless method alternative is used to solve partial differential equations in domains with high irregular geometry. A proof of convergence of GFDM is given studying the consistency of truncation error of linear elliptic partial equation problems at 2D,...

Full description

Autores:
Izquierdo, Daniel
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Repositorio:
Repositorio Institucional UDCA
Idioma:
eng
OAI Identifier:
oai:repository.udca.edu.co:11158/2287
Acceso en línea:
http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/29632
Palabra clave:
Métodos de Galerkin
Ecuaciones diferenciales
Difference Finite Method
Irregular grids
Meshless Methods
Rights
openAccess
License
Derechos Reservados - Universidad de Ciencias Aplicadas y Ambientales
Description
Summary:The Generalized Finite Difference Method as a meshless method alternative is used to solve partial differential equations in domains with high irregular geometry. A proof of convergence of GFDM is given studying the consistency of truncation error of linear elliptic partial equation problems at 2D, using n-degree polynomial. As an example, the convergence of method is calculated for a bi-dimentional Poisson equation problem supported over a disperse nodes net representing a rectangular domain.