A Novel Tri-Hydroxy-Methylated Chalcone Isolated from Chromolaena tacotana with Anti-Cancer Potential Targeting Pro-Survival Proteins

Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana) contains bioactive flavonoids that may have antioxidant and/or anti-cancer properties. This study investigated the potential anti-cancer properties of a newly identified chalcone isolated from the inflorescences of the plant Chromolae...

Full description

Autores:
Mendez, Gina
Piñeros , Marco
Yosa-Reyes, Juvenal
Pestana Nobles, Roberto Carlos
Torrenegra G., Ruben Dario
Camargo-Ubaté, María Fernanda
Bello-Castro, Andrea E.
Celis, Crispin
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Repositorio:
Repositorio Institucional UDCA
Idioma:
eng
OAI Identifier:
oai:repository.udca.edu.co:11158/5480
Acceso en línea:
https://repository.udca.edu.co/handle/11158/5480
https://doi.org/10.3390/ijms242015185
Palabra clave:
Autofagia
Chalconas
Chromolaena tacotana
Células cancerígenas
Apoptosis intrínseca
Chromolaena
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.es
Description
Summary:Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana) contains bioactive flavonoids that may have antioxidant and/or anti-cancer properties. This study investigated the potential anti-cancer properties of a newly identified chalcone isolated from the inflorescences of the plant Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana). The chalcone structure was determined using HPLC/MS (QTOF), UV, and NMR spectroscopy. The compound cytotoxicity and selectivity were evaluated on prostate, cervical, and breast cancer cell lines using the MTT assay. Apoptosis and autophagy induction were assessed through flow cytometry by detecting annexin V/7-AAD, active Casp3/7, and LC3B proteins. These results were supported by Western blot analysis. Mitochondrial effects on membrane potential, as well as levels of pro- and anti-apoptotic proteins were analyzed using flow cytometry, fluorescent microscopy, and Western blot analysis specifically on a triple-negative breast cancer (TNBC) cell line. Furthermore, molecular docking (MD) and molecular dynamics (MD) simulations were performed to evaluate the interaction between the compounds and pro-survival proteins. The compound identified as 2′,3,4-trihydroxy-4′,6′-dimethoxy chalcone inhibited the cancer cell line proliferation and induced apoptosis and autophagy. MDA-MB-231, a TNBC cell line, exhibited the highest sensitivity to the compound with good selectivity. This activity was associated with the regulation of mitochondrial membrane potential, activation of the pro-apoptotic proteins, and reduction of anti-apoptotic proteins, thereby triggering the intrinsic apoptotic pathway. The chalcone consistently interacted with anti-apoptotic proteins, particularly the Bcl-2 protein, throughout the simulation period. However, there was a noticeable conformational shift observed with the negative autophagy regulator mTOR protein. Future studies should focus on the molecular mechanisms underlying the anti-cancer potential of the new chalcone and other flavonoids from Ch. tacotana, particularly against predominant cancer cell types