Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution

Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not e...

Full description

Autores:
Serna Sánchez, María Alejandra
Pérez Escobar, Óscar Alejandro
Bogarín Chaves, Diego Gerardo
Torres Jiménez, María Fernanda
Álvarez Yela, Astrid Catalina
Arcila Galvis, Juliana Estefanía
Ferreira Hall, Climbiê
De Barros, Fábio
Pinheiro, Fábio
Dodsworth, Steven
Chase, Mark Wayne
Antonelli, Alexandre
Arias Garzón, Tatiana
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/2788
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/2788
Palabra clave:
Orchidaceae
Filogenética
Phylogenetics
Plastids
Plastídeos
Familia de las Orquídeas
Orquidáceas
Orchidaceae
Plastidios
Genoma de Plastidios
Genome, Plastid
Genomas de Plastídeos
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id RepoTdea2_fb7d669ae67c98d2c0ef538623912a38
oai_identifier_str oai:dspace.tdea.edu.co:tdea/2788
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution
title Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution
spellingShingle Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution
Orchidaceae
Filogenética
Phylogenetics
Plastids
Plastídeos
Familia de las Orquídeas
Orquidáceas
Orchidaceae
Plastidios
Genoma de Plastidios
Genome, Plastid
Genomas de Plastídeos
title_short Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution
title_full Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution
title_fullStr Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution
title_full_unstemmed Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution
title_sort Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution
dc.creator.fl_str_mv Serna Sánchez, María Alejandra
Pérez Escobar, Óscar Alejandro
Bogarín Chaves, Diego Gerardo
Torres Jiménez, María Fernanda
Álvarez Yela, Astrid Catalina
Arcila Galvis, Juliana Estefanía
Ferreira Hall, Climbiê
De Barros, Fábio
Pinheiro, Fábio
Dodsworth, Steven
Chase, Mark Wayne
Antonelli, Alexandre
Arias Garzón, Tatiana
dc.contributor.author.none.fl_str_mv Serna Sánchez, María Alejandra
Pérez Escobar, Óscar Alejandro
Bogarín Chaves, Diego Gerardo
Torres Jiménez, María Fernanda
Álvarez Yela, Astrid Catalina
Arcila Galvis, Juliana Estefanía
Ferreira Hall, Climbiê
De Barros, Fábio
Pinheiro, Fábio
Dodsworth, Steven
Chase, Mark Wayne
Antonelli, Alexandre
Arias Garzón, Tatiana
dc.subject.agrovoc.none.fl_str_mv Orchidaceae
Filogenética
Phylogenetics
Plastids
Plastídeos
topic Orchidaceae
Filogenética
Phylogenetics
Plastids
Plastídeos
Familia de las Orquídeas
Orquidáceas
Orchidaceae
Plastidios
Genoma de Plastidios
Genome, Plastid
Genomas de Plastídeos
dc.subject.decs.none.fl_str_mv Familia de las Orquídeas
Orquidáceas
Orchidaceae
Plastidios
Genoma de Plastidios
Genome, Plastid
Genomas de Plastídeos
description Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth–death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling eforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confrmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the frst time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the diferent details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-04-14T21:06:29Z
dc.date.available.none.fl_str_mv 2023-04-14T21:06:29Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/2788
dc.identifier.eissn.spa.fl_str_mv 2045-2322
url https://dspace.tdea.edu.co/handle/tdea/2788
identifier_str_mv 2045-2322
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 6858
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournal.spa.fl_str_mv Scientific Reports
dc.relation.references.spa.fl_str_mv Givnish, T. J. et al. Orchid phylogenomics and multiple drivers of their extraordinary diversifcation. Proc. R. Soc. B Biol. Sci. 282, 1553 (2015)
Givnish, T. J. et al. Orchid phylogenomics and multiple drivers of their extraordinary diversifcation. Proc. R. Soc. B Biol. Sci. 282, 1553 (2015)
Fay, M. F. & Chase, M. W. Orchid biology: from Linnaeus via Darwin to the 21st century. Ann. Bot. 104, 359–364 (2009).
Ramírez, S. R. et al. Asynchronous diversifcation in a specialized plant-pollinator mutualism. Science 333, 1742–1746 (2011)
Borba, E. L., Barbosa, A. R., de Melo, M. C., Gontijo, S. L. & de Oliveira, H. O. Mating systems in the Pleurothallidinae (Orchidaceae): evolutionary and systematic implications. Lankesteriana 11, 207–211 (2011).
Pérez-Escobar, O. A. et al. Multiple geographical origins of environmental sex determination enhanced the diversifcation of Darwin’s favourite orchids. Sci. Rep. 7, 12878 (2017).
Pérez-Escobar, O. A., Gottschling, M., Whitten, W. M., Salazar, G. & Gerlach, G. Sex and the Catasetinae (Darwin’s favourite orchids). Mol. Phylogenet. Evol. 97, 1–10 (2016).
Bateman, R. & Rudall, P. Evolutionary and morphometric implications of morphological variation among fowers within an inforescence: a case-study using European orchids. Ann. Bot. 98, 975–993 (2006).
Dong, W.-L. et al. Molecular evolution of chloroplast genomes of orchid species: insights into phylogenetic relationship and adaptive evolution. Int. J. Mol. Sci. 19, 716 (2018).
Freudenstein, J. V. & Chase, M. W. Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great fowering plant radiations: progressive specialization and diversifcation. Ann. Bot. 115, 665–681 (2015).
Luo, J. et al. Comparative chloroplast genomes of photosynthetic orchids: insights into evolution of the Orchidaceae and development of molecular markers for phylogenetic applications. PLoS ONE 9, e99016 (2014).
Niu, Z. et al. Te complete plastome sequences of four orchid species: insights into the evolution of the orchidaceae and the utility of plastomic mutational hotspots. Front. Plant Sci. 8, 715 (2017).
Zhang, G.-Q. et al. Te Apostasia genome and the evolution of orchids. Nature 549, 379–383 (2017).
Zhang, G.-Q. et al. Te Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, foral development and adaptive evolution. Sci. Rep. 6, 19029 (2016)
Yan, L. et al. Te Genome of Dendrobium ofcinale illuminates the biology of the important traditional chinese orchid herb. Mol. Plant 8, 922–934 (2015).
Yan, L. et al. Te Genome of Dendrobium ofcinale illuminates the biology of the important traditional chinese orchid herb. Mol. Plant 8, 922–934 (2015).
Yuan, Y. et al. Te Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat. Commun. 9, 1615 (2018).
. Cai, J. et al. Te genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47, 65–72 (2014).
Huang, J.-Z. et al. Te genome and transcriptome of Phalaenopsis yield insights into foral organ development and fowering regulation. PeerJ 4, e2017 (2016).
Bogarín, D. et al. Anchored Hybrid Enrichment generated nuclear, plastid and mitochondrial markers resolve the Lepanthes horrida (Orchidaceae: Pleurothallidinae) species complex. Mol. Phylogenet. Evol. 129, 27–47 (2018).
Pérez-Escobar, O. A. et al. Resolving relationships in an exceedingly young Neotropical orchid lineage using Genotyping-bysequencing data. Mol. Phylogenet. Evol. 144, 106672 (2020).
Chao, Y.-T. et al. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnol. J. 16, 2027–2041 (2018).
Hu, Y. et al. Genomics-based diversity analysis of Vanilla species using a Vanilla planifolia draf genome and Genotyping-BySequencing. Sci. Rep. 9, 3416 (2019).
Grace, O. M. et al. Botanical monography in the Anthropocene. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2020.12.018 (2021).
Jin, W.-T. et al. Phylogenetics of subtribe Orchidinae s.l. (Orchidaceae; Orchidoideae) based on seven markers (plastid matK, psaB, rbcL, trnL-F, trnH-psbA, and nuclear nrITS, Xdh): implications for generic delimitation. BMC Plant Biol. 17, 222 (2017).
Li, M.-H., Zhang, G.-Q., Liu, Z.-J. & Lan, S.-R. Subtribal relationships in Cymbidieae (Epidendroideae, Orchidaceae) reveal a new subtribe, Dipodiinae, based on plastid and nuclear coding DNA. Phytotaxa 246, 37 (2016).
Nauheimer, L., Schley, R. J., Clements, M. A., Micheneau, C. & Nargar, K. Australasian orchid biogeography at continental scale: molecular phylogenetic insights from the Sun Orchids (Telymitra, Orchidaceae). Mol. Phylogenet. Evol. 127, 304–319 (2018).
Li, Y.-X. et al. Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes. Mol. Phylogenet. Evol. 139, 106540 (2019).
Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytol. 215, 891–905 (2017).
Whitten, W. M., Neubig, K. M. & Williams, N. H. Generic and subtribal relationships in neotropical Cymbidieae (Orchidaceae) based on matK/ycf1 plastid data. Lankesteriana 13, 375–392 (2014).
Pérez-Escobar, O. A. et al. Te origin and diversifcation of the hyperdiverse fora in the Chocó biogeographic region. Front. Plant Sci. 10, 1328 (2019)
Bogarín, D. et al. Phylogenetic comparative methods improve the selection of characters for generic delimitations in a hyperdiverse Neotropical orchid clade. Sci. Rep. 9, 1–17 (2019)
Górniak, M., Paun, O. & Chase, M. W. Phylogenetic relationships within Orchidaceae based on a low-copy nuclear coding gene, Xdh: Congruence with organellar and nuclear ribosomal DNA results. Mol. Phylogenet. Evol. 56, 784–795 (2010).
Salazar, G. A., Chase, M. W., Soto Arenas, M. A. & Ingrouille, M. Phylogenetics of Cranichideae with emphasis on Spiranthinae (Orchidaceae, Orchidoideae): evidence from plastid and nuclear DNA sequences. Am. J. Bot. 90, 777–795 (2003).
Bone, R. E., Cribb, P. J. & Buerki, S. Phylogenetics of Eulophiinae (Orchidaceae: Epidendroideae): evolutionary patterns and implications for generic delimitation: evolutionary patterns in Eulophiinae. Bot. J. Linn. Soc. 179, 43–56 (2015)
Pérez-Escobar, O. A. et al. Andean mountain building did not preclude dispersal of lowland epiphytic orchids in the Neotropics. Sci. Rep. 7, 4919 (2017).
Salazar, G. A. et al. Phylogenetic systematics of subtribe Spiranthinae (Orchidaceae: Orchidoideae: Cranichideae) based on nuclear and plastid DNA sequences of a nearly complete generic sample. Bot. J. Linn. Soc. 186, 273–303 (2018)
Martins, A. et al. From tree tops to the ground: reversals to terrestrial habit in Galeandra orchids (Epidendroideae: Catasetinae). Mol. Phylogenet. Evol. 127, 952–960 (2018).
Nunes, C. et al. More than euglossines: the diverse pollinators and foral scents of Zygopetalinae orchids. Sci. Nat. 104, 92 (2017).
Pansarin, L., Pansarin, E., Gerlach, G. & Sazima, M. Te natural history of Cirrhaea and the pollination system of Stanhopeinae (Orchidaceae). Int. J. Plant Sci. https://doi.org/10.1086/697997 (2018).
Cisternas, M. A. et al. Phylogenetic analysis of Chloraeinae (Orchidaceae) based on plastid and nuclear DNA sequences. Bot. J. Linn. Soc. 168, 258–277 (2012)
Ramirez, S. R., Roubik, D. W., Skov, C. & Pierce, N. E. Phylogeny, diversifcation patterns and historical biogeography of Euglossine orchid bees (Hymenoptera: Apidae). Biol. J. Linn. Soc. 100, 552–572 (2010).
Van Der Cingel, N. A. An Atlas of Orchid Pollination: European Orchids (CRC Press, Boca Raton, 2001).
Weitemier, K. et al. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Appl. Plant Sci. 2, 1400042 (2014).
Pridgeon, A. M., Cribb, P. J., Chase, M. W. & Rasmussen, F. N. Genera Orchidacearum: Vol. 5. Epidendroideae (Part Two) (Oxford University Press, Oxford, 2009).
Chomicki, G. et al. Te velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. New Phytol. 205, 1330–1341 (2015).
Ramírez, S. R., Gravendeel, B., Singer, R. B., Marshall, C. R. & Pierce, N. E. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448, 1042–1045 (2007).
Freudenstein, J. V. & Chase, M. W. Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great fowering plant radiations: progressive specialization and diversifcation. Ann. Bot. 115, 665–681 (2015).
Pérez-Escobar, O. A. Molecular Phylogenetics, Evolution of Sexual Systems and Historical Biogeography of Darwin’s Favorite Orchids (Catasetinae) and Swan Orchids (Cycnoches Lindl.) (Ludwig-Maximilians Universität, München, 2016)
Soltis, D. E. & Kuzof, R. K. Discordance between nuclear and chloroplast phylogenies in the heuchera group author (Saxifragaceae). Evolution 49, 727–742 (1995).
van der Niet, T. & Peter Linder, H. Dealing with incongruence in the quest for the species tree: a case study from the orchid genus Satyrium. Mol. Phylogenet. Evol. 47, 154–174 (2008).
Pérez-Escobar, O. A., Balbuena, J. A. & Gottschling, M. Rumbling orchids: how to assess divergent evolution between chloroplast endosymbionts and the nuclear host. Syst. Biol. 65, 51–65 (2016).
Fragoso-Martínez, I. et al. A pilot study applying the plant Anchored Hybrid Enrichment method to New World sages (Salvia subgenus Calosphace; Lamiaceae). Mol. Phylogenet. Evol. 117, 124–134 (2017).
Léveillé-Bourret, É., Starr, J. R., Ford, B. A., Moriarty Lemmon, E. & Lemmon, A. R. Resolving rapid radiations within angiosperm families using anchored phylogenomics. Syst. Biol. 67, 94–112 (2018).
Zhang, R. et al. Exploration of plastid phylogenomic confict yields new insights into the deep relationships of Leguminosae. Syst. Biol. 69, 613–622 (2020).
Mark Whitten, W., Williams, N. H., Dressler, R. L., Gerlach, G. & Pupulin, F. Generic relationships of Zygopetalinae (Orchidaceae: Cymbidieae): combined molecular evidence. Lankesteriana 5, 87–107 (2005).
Neubig, K. M., Williams, N. H., Whitten, W. M. & Pupulin, F. Molecular phylogenetics and the evolution of fruit and leaf morphology of Dichaea (Orchidaceae: Zygopetalinae). Ann. Bot. 104, 457–467 (2009).
Pupulin, F. In Genera Orchidacearum, Vol. 5, Epidendroideae (Part Two) (eds Pridgeon, A. M. et al.) 456–546 (Oxford University Press, Oxford, 2009).
Bogarín, D. et al. Pollination of Trichosalpinx (Orchidaceae: Pleurothallidinae) by biting midges (Diptera: Ceratopogonidae). Bot. J. Linn. Soc. 186, 510–543 (2018).
Blanco, M. A. & Barboza, G. Pseudocopulatory pollination in Lepanthes (Orchidaceae: Pleurothallidinae) by fungus gnats. Ann. Bot. 95, 763–772 (2005).
Damon, A. et al. A survey of pollination in remnant orchid populations in Soconusco, Chiapas, Mexico. Trop. Ecol. 48, 1–14 (2007)
Policha, T. et al. Disentangling visual and olfactory signals in mushroom-mimicking Dracula orchids using realistic three-dimensional printed fowers. New Phytol. 210, 1058–1071 (2016).
Pridgeon, A. M., Solano, R. & Chase, M. W. Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences. Am. J. Bot. 88, 2286–2308 (2001)
Karremans, A. P. et al. Phylogenetic reassessment of Acianthera (Orchidaceae: Pleurothallidinae). Harvard Pap. Bot. 21, 171–187 (2016).
Bogarín, D., Karremans, A. P. & Fernández, M. Genus-level taxonomical changes in the Lepanthes afnity (Orchidaceae, pleurothallidinae). Phytotaxa 340, 128–136 (2018).
. Karremans, A. P. Genera Pleurothallidinarum: an updated phylogenetic overview of Pleurothallidinae. Lankesteriana 16, 219–241 (2016).
. Damián, A., Mitidieri, N. & Chiron, G. A taxonomic synopsis of Acianthera (Orchidaceae: Pleurothallidinae) in Peru, including two new species. An. del Jard. Bot. Madrid 75, 1–21 (2018).
Luer, C. A. A systematic method of classifcation of the pleurothallidinae versus a strictly phylogenetic method. Selbyana 23, 57–110 (2002).
Stern, W. W. L., Pridgeon, A. & Luer, C. Stem structure and its bearing on the systematics of Pleurothallidinae (Orchidaceae). Bot. J. Linn. Soc. 91, 457–471 (1985).
Jost, L. & Shepard, A. Two new species of Teagueia (Orchidaceae: Pleurothallidinae) from east-central Ecuador. Lankesteriana 11, 9–14 (2011).
Luer, C. A. Icones Pleurothallidinarum VIII. Systematics of Lepanthopsis, Octomeria subgenus Pleurothallopsis, Restrepiella, Restrepiopsis, Salpistele, and Teagueia. Addenda to Platystele, Porroglossum, and Scaphosepalum. Monogr. Syst. Bot. Missouri Bot. Gard. 39, 1–161 (1991)
Luer, C. A. Icones Pleurothallidinarum XXIV. A First Century Of New Species of Stelis of Ecuador part one. Addenda to Lepanthes of Ecuador. Addenda to Barbosella, Dracula, Dresslerella, Lepanthopsis, Platystele, Pleurothallis, Restrepia, Scaphosepalum, Teagueia. Monogr. Syst. Bot. Missouri Bot. Gard. 88, 1–122 (2002).
Luer, C. A. Icones Pleurothallidinarum VII. Systematics of Platystele (Orchidaceae). Monogr. Syst. Bot. Missouri Bot. Gard. 38, 1–115 (1990)
Karremans, A. P. et al. Phylogenetic reassessment of Specklinia and its allied genera in the pleurothallidinae (Orchidaceae). Phytotaxa 272, 1–36 (2016).
Doyle, J. & Doyle, J. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19, 11–15 (1987).
Neubig, K. M. et al. in DNA Banking for the 21st Century: Proceedings of the US Workshop on DNA Banking (eds. Applequist, W. & Campbell, L.) 81–112 (William L. Brown Center, Missouri Botanical Garden, 2014).
. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a fexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Bushnell, B. BBMap. Available at https://sourceforge.net/projects/bbmap/ (2017)
Bushnell, B., Rood, J. & Singer, E. BBMerge—accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056 (2017).
Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. In German Conference on Bioinformatics 99, 45–56 (Citeseer, 1999).
Cock, P. J. A., Grüning, B. A., Paszkiewicz, K. & Pritchard, L. Galaxy tools and workfows for sequence analysis with applications in molecular plant pathology. PeerJ 1, e167 (2013).
Parakhia, M. V. et al. Draf genome sequence of the endophytic bacterium Enterobacter spp. MR1, isolated from drought tolerant plant (Butea monosperma). Indian J. Microbiol. 54, 118–119 (2014)
Ward, J. A., Ponnala, L. & Weber, C. A. Strategies for transcriptome analysis in nonmodel plants. Am. J. Bot. 99, 267–276 (2012).
Li, H. et al. Te sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Jin, J. J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241 (2020).
Tillich, M. et al. GeSeq—versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11 (2017).
Chan, C. X. & Ragan, M. A. Next-generation phylogenomics. Biol. Direct 8, 3 (2013).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment sofware version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312– 1313 (2014).
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
Xiang, X. G. et al. Biogeographical diversifcation of mainland Asian Dendrobium (Orchidaceae) and its implications for the historical dynamics of evergreen broad-leaved forests. J. Biogeogr. 43, 1310–1323 (2016).
Kosakovsky Pond, S. L., Frost, S. D. W. & Muse, S. V. HyPhy: Hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Nature Publishing Group
dc.publisher.place.spa.fl_str_mv Reino Unido
dc.source.spa.fl_str_mv https://www.nature.com/articles/s41598-021-83664-5
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/2788/1/Plastid%20phylogenomics%20resolves%20ambiguous%20relationships%20within%20the%20orchid%20family%20and%20provides%20a%20solid%20timeframe%20for%20biogeography%20and%20macroevolution.pdf
https://dspace.tdea.edu.co/bitstream/tdea/2788/3/Plastid%20phylogenomics%20resolves%20ambiguous%20relationships%20within%20the%20orchid%20family%20and%20provides%20a%20solid%20timeframe%20for%20biogeography%20and%20macroevolution.pdf.txt
https://dspace.tdea.edu.co/bitstream/tdea/2788/4/Plastid%20phylogenomics%20resolves%20ambiguous%20relationships%20within%20the%20orchid%20family%20and%20provides%20a%20solid%20timeframe%20for%20biogeography%20and%20macroevolution.pdf.jpg
https://dspace.tdea.edu.co/bitstream/tdea/2788/2/license.txt
bitstream.checksum.fl_str_mv e09db8eabf1cb27e26be2b1607f658ce
b7fbbfb81f55fb024017d9747dc9bcc6
eecf11e9ac81af0dadf1d4d71fe799ed
2f9959eaf5b71fae44bbf9ec84150c7a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189329369333760
spelling Serna Sánchez, María Alejandra4c835444-2b53-497a-b834-755940be190dPérez Escobar, Óscar Alejandro9e042f32-b08c-430d-8324-c8c98f5898d3Bogarín Chaves, Diego Gerardoa1d89cd4-3732-4e20-9f11-f84e58a364faTorres Jiménez, María Fernanda2d92a6eb-7ccc-4dad-8a11-1fe6bcc80c42Álvarez Yela, Astrid Catalina4c047668-cb33-4e1d-87c7-58f7a8f49bceArcila Galvis, Juliana Estefaníaf0e6e533-075c-4ce4-9a5b-f5b432b4e1bcFerreira Hall, Climbiê0ede5b0e-a609-4d6b-92e6-077df3f77c8bDe Barros, Fábio39732994-2edc-4eed-9011-45116cb953f0Pinheiro, Fábio9885003a-da7c-4178-8342-07a08634e43aDodsworth, Stevenbfb1316a-bf29-4f0f-a0e1-4885f9b5ab05Chase, Mark Wayne2a1789f5-d236-4411-a63a-27df0602c4afAntonelli, Alexandre4cefd20e-890b-4ab9-b7fc-a0f2e35f11b0Arias Garzón, Tatiana2460845a-0445-42a8-8cce-5a846f7be20f2023-04-14T21:06:29Z2023-04-14T21:06:29Z2021https://dspace.tdea.edu.co/handle/tdea/27882045-2322Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth–death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling eforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confrmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the frst time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the diferent details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.11 páginasapplication/pdfengNature Publishing GroupReino Unidohttps://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://www.nature.com/articles/s41598-021-83664-5Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolutionArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85116858111Scientific ReportsGivnish, T. J. et al. Orchid phylogenomics and multiple drivers of their extraordinary diversifcation. Proc. R. Soc. B Biol. Sci. 282, 1553 (2015)Givnish, T. J. et al. Orchid phylogenomics and multiple drivers of their extraordinary diversifcation. Proc. R. Soc. B Biol. Sci. 282, 1553 (2015)Fay, M. F. & Chase, M. W. Orchid biology: from Linnaeus via Darwin to the 21st century. Ann. Bot. 104, 359–364 (2009).Ramírez, S. R. et al. Asynchronous diversifcation in a specialized plant-pollinator mutualism. Science 333, 1742–1746 (2011)Borba, E. L., Barbosa, A. R., de Melo, M. C., Gontijo, S. L. & de Oliveira, H. O. Mating systems in the Pleurothallidinae (Orchidaceae): evolutionary and systematic implications. Lankesteriana 11, 207–211 (2011).Pérez-Escobar, O. A. et al. Multiple geographical origins of environmental sex determination enhanced the diversifcation of Darwin’s favourite orchids. Sci. Rep. 7, 12878 (2017).Pérez-Escobar, O. A., Gottschling, M., Whitten, W. M., Salazar, G. & Gerlach, G. Sex and the Catasetinae (Darwin’s favourite orchids). Mol. Phylogenet. Evol. 97, 1–10 (2016).Bateman, R. & Rudall, P. Evolutionary and morphometric implications of morphological variation among fowers within an inforescence: a case-study using European orchids. Ann. Bot. 98, 975–993 (2006).Dong, W.-L. et al. Molecular evolution of chloroplast genomes of orchid species: insights into phylogenetic relationship and adaptive evolution. Int. J. Mol. Sci. 19, 716 (2018).Freudenstein, J. V. & Chase, M. W. Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great fowering plant radiations: progressive specialization and diversifcation. Ann. Bot. 115, 665–681 (2015).Luo, J. et al. Comparative chloroplast genomes of photosynthetic orchids: insights into evolution of the Orchidaceae and development of molecular markers for phylogenetic applications. PLoS ONE 9, e99016 (2014).Niu, Z. et al. Te complete plastome sequences of four orchid species: insights into the evolution of the orchidaceae and the utility of plastomic mutational hotspots. Front. Plant Sci. 8, 715 (2017).Zhang, G.-Q. et al. Te Apostasia genome and the evolution of orchids. Nature 549, 379–383 (2017).Zhang, G.-Q. et al. Te Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, foral development and adaptive evolution. Sci. Rep. 6, 19029 (2016)Yan, L. et al. Te Genome of Dendrobium ofcinale illuminates the biology of the important traditional chinese orchid herb. Mol. Plant 8, 922–934 (2015).Yan, L. et al. Te Genome of Dendrobium ofcinale illuminates the biology of the important traditional chinese orchid herb. Mol. Plant 8, 922–934 (2015).Yuan, Y. et al. Te Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat. Commun. 9, 1615 (2018).. Cai, J. et al. Te genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47, 65–72 (2014).Huang, J.-Z. et al. Te genome and transcriptome of Phalaenopsis yield insights into foral organ development and fowering regulation. PeerJ 4, e2017 (2016).Bogarín, D. et al. Anchored Hybrid Enrichment generated nuclear, plastid and mitochondrial markers resolve the Lepanthes horrida (Orchidaceae: Pleurothallidinae) species complex. Mol. Phylogenet. Evol. 129, 27–47 (2018).Pérez-Escobar, O. A. et al. Resolving relationships in an exceedingly young Neotropical orchid lineage using Genotyping-bysequencing data. Mol. Phylogenet. Evol. 144, 106672 (2020).Chao, Y.-T. et al. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnol. J. 16, 2027–2041 (2018).Hu, Y. et al. Genomics-based diversity analysis of Vanilla species using a Vanilla planifolia draf genome and Genotyping-BySequencing. Sci. Rep. 9, 3416 (2019).Grace, O. M. et al. Botanical monography in the Anthropocene. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2020.12.018 (2021).Jin, W.-T. et al. Phylogenetics of subtribe Orchidinae s.l. (Orchidaceae; Orchidoideae) based on seven markers (plastid matK, psaB, rbcL, trnL-F, trnH-psbA, and nuclear nrITS, Xdh): implications for generic delimitation. BMC Plant Biol. 17, 222 (2017).Li, M.-H., Zhang, G.-Q., Liu, Z.-J. & Lan, S.-R. Subtribal relationships in Cymbidieae (Epidendroideae, Orchidaceae) reveal a new subtribe, Dipodiinae, based on plastid and nuclear coding DNA. Phytotaxa 246, 37 (2016).Nauheimer, L., Schley, R. J., Clements, M. A., Micheneau, C. & Nargar, K. Australasian orchid biogeography at continental scale: molecular phylogenetic insights from the Sun Orchids (Telymitra, Orchidaceae). Mol. Phylogenet. Evol. 127, 304–319 (2018).Li, Y.-X. et al. Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes. Mol. Phylogenet. Evol. 139, 106540 (2019).Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytol. 215, 891–905 (2017).Whitten, W. M., Neubig, K. M. & Williams, N. H. Generic and subtribal relationships in neotropical Cymbidieae (Orchidaceae) based on matK/ycf1 plastid data. Lankesteriana 13, 375–392 (2014).Pérez-Escobar, O. A. et al. Te origin and diversifcation of the hyperdiverse fora in the Chocó biogeographic region. Front. Plant Sci. 10, 1328 (2019)Bogarín, D. et al. Phylogenetic comparative methods improve the selection of characters for generic delimitations in a hyperdiverse Neotropical orchid clade. Sci. Rep. 9, 1–17 (2019)Górniak, M., Paun, O. & Chase, M. W. Phylogenetic relationships within Orchidaceae based on a low-copy nuclear coding gene, Xdh: Congruence with organellar and nuclear ribosomal DNA results. Mol. Phylogenet. Evol. 56, 784–795 (2010).Salazar, G. A., Chase, M. W., Soto Arenas, M. A. & Ingrouille, M. Phylogenetics of Cranichideae with emphasis on Spiranthinae (Orchidaceae, Orchidoideae): evidence from plastid and nuclear DNA sequences. Am. J. Bot. 90, 777–795 (2003).Bone, R. E., Cribb, P. J. & Buerki, S. Phylogenetics of Eulophiinae (Orchidaceae: Epidendroideae): evolutionary patterns and implications for generic delimitation: evolutionary patterns in Eulophiinae. Bot. J. Linn. Soc. 179, 43–56 (2015)Pérez-Escobar, O. A. et al. Andean mountain building did not preclude dispersal of lowland epiphytic orchids in the Neotropics. Sci. Rep. 7, 4919 (2017).Salazar, G. A. et al. Phylogenetic systematics of subtribe Spiranthinae (Orchidaceae: Orchidoideae: Cranichideae) based on nuclear and plastid DNA sequences of a nearly complete generic sample. Bot. J. Linn. Soc. 186, 273–303 (2018)Martins, A. et al. From tree tops to the ground: reversals to terrestrial habit in Galeandra orchids (Epidendroideae: Catasetinae). Mol. Phylogenet. Evol. 127, 952–960 (2018).Nunes, C. et al. More than euglossines: the diverse pollinators and foral scents of Zygopetalinae orchids. Sci. Nat. 104, 92 (2017).Pansarin, L., Pansarin, E., Gerlach, G. & Sazima, M. Te natural history of Cirrhaea and the pollination system of Stanhopeinae (Orchidaceae). Int. J. Plant Sci. https://doi.org/10.1086/697997 (2018).Cisternas, M. A. et al. Phylogenetic analysis of Chloraeinae (Orchidaceae) based on plastid and nuclear DNA sequences. Bot. J. Linn. Soc. 168, 258–277 (2012)Ramirez, S. R., Roubik, D. W., Skov, C. & Pierce, N. E. Phylogeny, diversifcation patterns and historical biogeography of Euglossine orchid bees (Hymenoptera: Apidae). Biol. J. Linn. Soc. 100, 552–572 (2010).Van Der Cingel, N. A. An Atlas of Orchid Pollination: European Orchids (CRC Press, Boca Raton, 2001).Weitemier, K. et al. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Appl. Plant Sci. 2, 1400042 (2014).Pridgeon, A. M., Cribb, P. J., Chase, M. W. & Rasmussen, F. N. Genera Orchidacearum: Vol. 5. Epidendroideae (Part Two) (Oxford University Press, Oxford, 2009).Chomicki, G. et al. Te velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. New Phytol. 205, 1330–1341 (2015).Ramírez, S. R., Gravendeel, B., Singer, R. B., Marshall, C. R. & Pierce, N. E. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448, 1042–1045 (2007).Freudenstein, J. V. & Chase, M. W. Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great fowering plant radiations: progressive specialization and diversifcation. Ann. Bot. 115, 665–681 (2015).Pérez-Escobar, O. A. Molecular Phylogenetics, Evolution of Sexual Systems and Historical Biogeography of Darwin’s Favorite Orchids (Catasetinae) and Swan Orchids (Cycnoches Lindl.) (Ludwig-Maximilians Universität, München, 2016)Soltis, D. E. & Kuzof, R. K. Discordance between nuclear and chloroplast phylogenies in the heuchera group author (Saxifragaceae). Evolution 49, 727–742 (1995).van der Niet, T. & Peter Linder, H. Dealing with incongruence in the quest for the species tree: a case study from the orchid genus Satyrium. Mol. Phylogenet. Evol. 47, 154–174 (2008).Pérez-Escobar, O. A., Balbuena, J. A. & Gottschling, M. Rumbling orchids: how to assess divergent evolution between chloroplast endosymbionts and the nuclear host. Syst. Biol. 65, 51–65 (2016).Fragoso-Martínez, I. et al. A pilot study applying the plant Anchored Hybrid Enrichment method to New World sages (Salvia subgenus Calosphace; Lamiaceae). Mol. Phylogenet. Evol. 117, 124–134 (2017).Léveillé-Bourret, É., Starr, J. R., Ford, B. A., Moriarty Lemmon, E. & Lemmon, A. R. Resolving rapid radiations within angiosperm families using anchored phylogenomics. Syst. Biol. 67, 94–112 (2018).Zhang, R. et al. Exploration of plastid phylogenomic confict yields new insights into the deep relationships of Leguminosae. Syst. Biol. 69, 613–622 (2020).Mark Whitten, W., Williams, N. H., Dressler, R. L., Gerlach, G. & Pupulin, F. Generic relationships of Zygopetalinae (Orchidaceae: Cymbidieae): combined molecular evidence. Lankesteriana 5, 87–107 (2005).Neubig, K. M., Williams, N. H., Whitten, W. M. & Pupulin, F. Molecular phylogenetics and the evolution of fruit and leaf morphology of Dichaea (Orchidaceae: Zygopetalinae). Ann. Bot. 104, 457–467 (2009).Pupulin, F. In Genera Orchidacearum, Vol. 5, Epidendroideae (Part Two) (eds Pridgeon, A. M. et al.) 456–546 (Oxford University Press, Oxford, 2009).Bogarín, D. et al. Pollination of Trichosalpinx (Orchidaceae: Pleurothallidinae) by biting midges (Diptera: Ceratopogonidae). Bot. J. Linn. Soc. 186, 510–543 (2018).Blanco, M. A. & Barboza, G. Pseudocopulatory pollination in Lepanthes (Orchidaceae: Pleurothallidinae) by fungus gnats. Ann. Bot. 95, 763–772 (2005).Damon, A. et al. A survey of pollination in remnant orchid populations in Soconusco, Chiapas, Mexico. Trop. Ecol. 48, 1–14 (2007)Policha, T. et al. Disentangling visual and olfactory signals in mushroom-mimicking Dracula orchids using realistic three-dimensional printed fowers. New Phytol. 210, 1058–1071 (2016).Pridgeon, A. M., Solano, R. & Chase, M. W. Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences. Am. J. Bot. 88, 2286–2308 (2001)Karremans, A. P. et al. Phylogenetic reassessment of Acianthera (Orchidaceae: Pleurothallidinae). Harvard Pap. Bot. 21, 171–187 (2016).Bogarín, D., Karremans, A. P. & Fernández, M. Genus-level taxonomical changes in the Lepanthes afnity (Orchidaceae, pleurothallidinae). Phytotaxa 340, 128–136 (2018).. Karremans, A. P. Genera Pleurothallidinarum: an updated phylogenetic overview of Pleurothallidinae. Lankesteriana 16, 219–241 (2016).. Damián, A., Mitidieri, N. & Chiron, G. A taxonomic synopsis of Acianthera (Orchidaceae: Pleurothallidinae) in Peru, including two new species. An. del Jard. Bot. Madrid 75, 1–21 (2018).Luer, C. A. A systematic method of classifcation of the pleurothallidinae versus a strictly phylogenetic method. Selbyana 23, 57–110 (2002).Stern, W. W. L., Pridgeon, A. & Luer, C. Stem structure and its bearing on the systematics of Pleurothallidinae (Orchidaceae). Bot. J. Linn. Soc. 91, 457–471 (1985).Jost, L. & Shepard, A. Two new species of Teagueia (Orchidaceae: Pleurothallidinae) from east-central Ecuador. Lankesteriana 11, 9–14 (2011).Luer, C. A. Icones Pleurothallidinarum VIII. Systematics of Lepanthopsis, Octomeria subgenus Pleurothallopsis, Restrepiella, Restrepiopsis, Salpistele, and Teagueia. Addenda to Platystele, Porroglossum, and Scaphosepalum. Monogr. Syst. Bot. Missouri Bot. Gard. 39, 1–161 (1991)Luer, C. A. Icones Pleurothallidinarum XXIV. A First Century Of New Species of Stelis of Ecuador part one. Addenda to Lepanthes of Ecuador. Addenda to Barbosella, Dracula, Dresslerella, Lepanthopsis, Platystele, Pleurothallis, Restrepia, Scaphosepalum, Teagueia. Monogr. Syst. Bot. Missouri Bot. Gard. 88, 1–122 (2002).Luer, C. A. Icones Pleurothallidinarum VII. Systematics of Platystele (Orchidaceae). Monogr. Syst. Bot. Missouri Bot. Gard. 38, 1–115 (1990)Karremans, A. P. et al. Phylogenetic reassessment of Specklinia and its allied genera in the pleurothallidinae (Orchidaceae). Phytotaxa 272, 1–36 (2016).Doyle, J. & Doyle, J. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19, 11–15 (1987).Neubig, K. M. et al. in DNA Banking for the 21st Century: Proceedings of the US Workshop on DNA Banking (eds. Applequist, W. & Campbell, L.) 81–112 (William L. Brown Center, Missouri Botanical Garden, 2014).. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a fexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Bushnell, B. BBMap. Available at https://sourceforge.net/projects/bbmap/ (2017)Bushnell, B., Rood, J. & Singer, E. BBMerge—accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056 (2017).Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. In German Conference on Bioinformatics 99, 45–56 (Citeseer, 1999).Cock, P. J. A., Grüning, B. A., Paszkiewicz, K. & Pritchard, L. Galaxy tools and workfows for sequence analysis with applications in molecular plant pathology. PeerJ 1, e167 (2013).Parakhia, M. V. et al. Draf genome sequence of the endophytic bacterium Enterobacter spp. MR1, isolated from drought tolerant plant (Butea monosperma). Indian J. Microbiol. 54, 118–119 (2014)Ward, J. A., Ponnala, L. & Weber, C. A. Strategies for transcriptome analysis in nonmodel plants. Am. J. Bot. 99, 267–276 (2012).Li, H. et al. Te sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Jin, J. J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241 (2020).Tillich, M. et al. GeSeq—versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11 (2017).Chan, C. X. & Ragan, M. A. Next-generation phylogenomics. Biol. Direct 8, 3 (2013).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment sofware version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312– 1313 (2014).Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).Xiang, X. G. et al. Biogeographical diversifcation of mainland Asian Dendrobium (Orchidaceae) and its implications for the historical dynamics of evergreen broad-leaved forests. J. Biogeogr. 43, 1310–1323 (2016).Kosakovsky Pond, S. L., Frost, S. D. W. & Muse, S. V. HyPhy: Hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).OrchidaceaeFilogenéticaPhylogeneticsPlastidsPlastídeosFamilia de las OrquídeasOrquidáceasOrchidaceaePlastidiosGenoma de PlastidiosGenome, PlastidGenomas de PlastídeosORIGINALPlastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution.pdfPlastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution.pdfapplication/pdf5980681https://dspace.tdea.edu.co/bitstream/tdea/2788/1/Plastid%20phylogenomics%20resolves%20ambiguous%20relationships%20within%20the%20orchid%20family%20and%20provides%20a%20solid%20timeframe%20for%20biogeography%20and%20macroevolution.pdfe09db8eabf1cb27e26be2b1607f658ceMD51open accessTEXTPlastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution.pdf.txtPlastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution.pdf.txtExtracted texttext/plain56589https://dspace.tdea.edu.co/bitstream/tdea/2788/3/Plastid%20phylogenomics%20resolves%20ambiguous%20relationships%20within%20the%20orchid%20family%20and%20provides%20a%20solid%20timeframe%20for%20biogeography%20and%20macroevolution.pdf.txtb7fbbfb81f55fb024017d9747dc9bcc6MD53open accessTHUMBNAILPlastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution.pdf.jpgPlastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution.pdf.jpgGenerated Thumbnailimage/jpeg16750https://dspace.tdea.edu.co/bitstream/tdea/2788/4/Plastid%20phylogenomics%20resolves%20ambiguous%20relationships%20within%20the%20orchid%20family%20and%20provides%20a%20solid%20timeframe%20for%20biogeography%20and%20macroevolution.pdf.jpgeecf11e9ac81af0dadf1d4d71fe799edMD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/2788/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accesstdea/2788oai:dspace.tdea.edu.co:tdea/27882023-05-05 21:36:35.298An error occurred on the license name.|||https://creativecommons.org/licenses/by/4.0/open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=