Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters

We developed a new mutationally well-balanced 32 Y-STR multiplex (CombYplex) together with a machine learning (ML) program PredYMaLe to assess the impact of STR mutability on haplogourp prediction, while respecting forensic community criteria (high DC/HD). We designed CombYplex around two sub-panels...

Full description

Autores:
Bouakaze, Caroline
Delehelle, Franklin
Sáenz Oyhéréguy, Nancy
Moreira, Andreia
Schiavinato, Stéphanie
Croze, Myriam
Delon, Solène
Fortes Lima, Cesar Augusto
Gibert, Morgane
Bujan, Louis
Huyghe, Éric
Bellis, Gil
Calderón Fernández, María del Rosario
Hernández de la Fuente, Candela Lucía
Avendaño Tamayo, Efrén De Jesús
Bedoya Berrío, Gabriel de Jesús
Salas Ellacuriaga, Antonio
Mazières, Stéphane
Charioni, Jacques
Migot Nabias, Florence
Ruiz Linarès, Andrés
Dugoujon, Jean Michel H.
Thèves, Catherine
Mollereau Manaute, Catherine
Noûs, Camille
Poulet, Nicolas
King, Turi
D'Amato, María Eugenia
Balaresque, Patricia L.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/2903
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/2903
Palabra clave:
Machine learning
Apprentissage machine
Aprendizagem electrónica
Aprendizaje automático
Y-STR
Precisión de asignación y haplogrupo predicción (hg predicción)
Assignation accuracy and haplogroup prediction (hg prediction)
Incremental mutation rates
Tasas de mutación incrementales
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id RepoTdea2_eaf1570e11fc49eff50e32770e329cb4
oai_identifier_str oai:dspace.tdea.edu.co:tdea/2903
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters
title Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters
spellingShingle Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters
Machine learning
Apprentissage machine
Aprendizagem electrónica
Aprendizaje automático
Y-STR
Precisión de asignación y haplogrupo predicción (hg predicción)
Assignation accuracy and haplogroup prediction (hg prediction)
Incremental mutation rates
Tasas de mutación incrementales
title_short Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters
title_full Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters
title_fullStr Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters
title_full_unstemmed Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters
title_sort Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters
dc.creator.fl_str_mv Bouakaze, Caroline
Delehelle, Franklin
Sáenz Oyhéréguy, Nancy
Moreira, Andreia
Schiavinato, Stéphanie
Croze, Myriam
Delon, Solène
Fortes Lima, Cesar Augusto
Gibert, Morgane
Bujan, Louis
Huyghe, Éric
Bellis, Gil
Calderón Fernández, María del Rosario
Hernández de la Fuente, Candela Lucía
Avendaño Tamayo, Efrén De Jesús
Bedoya Berrío, Gabriel de Jesús
Salas Ellacuriaga, Antonio
Mazières, Stéphane
Charioni, Jacques
Migot Nabias, Florence
Ruiz Linarès, Andrés
Dugoujon, Jean Michel H.
Thèves, Catherine
Mollereau Manaute, Catherine
Noûs, Camille
Poulet, Nicolas
King, Turi
D'Amato, María Eugenia
Balaresque, Patricia L.
dc.contributor.author.none.fl_str_mv Bouakaze, Caroline
Delehelle, Franklin
Sáenz Oyhéréguy, Nancy
Moreira, Andreia
Schiavinato, Stéphanie
Croze, Myriam
Delon, Solène
Fortes Lima, Cesar Augusto
Gibert, Morgane
Bujan, Louis
Huyghe, Éric
Bellis, Gil
Calderón Fernández, María del Rosario
Hernández de la Fuente, Candela Lucía
Avendaño Tamayo, Efrén De Jesús
Bedoya Berrío, Gabriel de Jesús
Salas Ellacuriaga, Antonio
Mazières, Stéphane
Charioni, Jacques
Migot Nabias, Florence
Ruiz Linarès, Andrés
Dugoujon, Jean Michel H.
Thèves, Catherine
Mollereau Manaute, Catherine
Noûs, Camille
Poulet, Nicolas
King, Turi
D'Amato, María Eugenia
Balaresque, Patricia L.
dc.subject.agrovoc.none.fl_str_mv Machine learning
Apprentissage machine
Aprendizagem electrónica
Aprendizaje automático
topic Machine learning
Apprentissage machine
Aprendizagem electrónica
Aprendizaje automático
Y-STR
Precisión de asignación y haplogrupo predicción (hg predicción)
Assignation accuracy and haplogroup prediction (hg prediction)
Incremental mutation rates
Tasas de mutación incrementales
dc.subject.proposal.none.fl_str_mv Y-STR
Precisión de asignación y haplogrupo predicción (hg predicción)
Assignation accuracy and haplogroup prediction (hg prediction)
Incremental mutation rates
Tasas de mutación incrementales
description We developed a new mutationally well-balanced 32 Y-STR multiplex (CombYplex) together with a machine learning (ML) program PredYMaLe to assess the impact of STR mutability on haplogourp prediction, while respecting forensic community criteria (high DC/HD). We designed CombYplex around two sub-panels M1 and M2 characterized by average and high-mutation STR panels. Using these two sub-panels, we tested how our program PredYmale reacts to mutability when considering basal branches and, moving down, terminal branches. We tested first the discrimination capacity of CombYplex on 996 human samples using various forensic and statistical parameters and showed that its resolution is sufficient to separate haplogroup classes. In parallel, PredYMaLe was designed and used to test whether a ML approach can predict haplogroup classes from Y-STR profiles. Applied to our kit, SVM and Random Forest classifiers perform very well (average 97 %), better than Neural Network (average 91 %) and Bayesian methods (< 90 %). We observe heterogeneity in haplogroup assignation accuracy among classes, with most haplogroups having high prediction scores (99–100 %) and two (E1b1b and G) having lower scores (67 %). The small sample sizes of these classes explain the high tendency to misclassify the Y-profiles of these haplogroups; results were measurably improved as soon as more training data were added. We provide evidence that our ML approach is a robust method to accurately predict haplogroups when it is combined with a sufficient number of markers, well-balanced mutation rate Y-STR panels, and large ML training sets. Further research on confounding factors (such as CNV-STR or gene conversion) and ideal STR panels in regard to the branches analysed can be developed to help classifiers further optimize prediction scores.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2023-05-17T03:03:09Z
dc.date.available.none.fl_str_mv 2023-05-17T03:03:09Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1872-4973
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/2903
dc.identifier.eissn.spa.fl_str_mv 1878-0326
identifier_str_mv 1872-4973
1878-0326
url https://dspace.tdea.edu.co/handle/tdea/2903
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationvolume.spa.fl_str_mv 65
dc.relation.ispartofjournal.spa.fl_str_mv Forensic Science International: Genetics
dc.relation.references.spa.fl_str_mv Aizerman, M. et al. (1964) ‘Theoretical foundations of the potential function method in pattern recognition learning’, Automation and Remote Control, 25, pp. 821-837.
Athey, T.W. (2006) ‘Haplogroup Prediction from Y-STR Values Using a BayesianAllele-Frequency Approach’, Journal of Genetic Genealogy, 2, pp. 34-39.
Austerlitz, F. and Heyer, E. (1998) ‘Social transmission of reproductive behavior increases frequency of inherited disorders in a young-expanding population.’, Proceedings of the National Academy of Sciences of the United States of America. The National Academy of Sciences, 95(25), pp. 15140–15144.
Balaresque, P. et al. (2008) ‘Dynamic nature of the proximal AZFc region of the human Y chromosome: multiple independent deletion and duplication events revealed by microsatellite analysis.’, Human mutation, 29(10), pp. 1171–80, doi: 10.1002/humu.20757.
Balaresque, P. et al. (2014) ‘Gene conversion violates the stepwise mutation model for microsatellites in y-chromosomal palindromic repeats.’, Human mutation, 35(5), pp. 609–17, doi: 10.1002/humu.22542.
Bishop, C. M. (2006) Pattern recognition and machine learning. Springer.
Bowden, G. R. et al. (2008) ‘Excavating past population structures by surname-based sampling: the genetic legacy of the Vikings in northwest England.’, Molecular biology and evolution, 25(2), pp. 301–9, doi: 10.1093/molbev/msm255
Breiman, L. et al. (1984) Classification and regression trees. Chapman & Hall/CRC, p368. Cadamuro, V. C. et al. (2015) ‘Determined about sex: sex-testing in 45 primate species using a 2Y/1X sex-typing assay.’, Forensic science international: Genetics, 14, pp. 96– 107, doi: 10.1016/j.fsigen.2014.09.010.
Calafell, F. and Larmuseau, M. H. D. (2017) ‘The Y chromosome as the most popular marker in genetic genealogy benefits interdisciplinary research’, Human Genetics, 136(5), pp. 559–573, doi: 10.1007/s00439-016-1740-0
Chaix, R. et al. (2008) ‘Genetic traces of east-to-west human expansion waves in Eurasia’, American Journal of Physical Anthropology, 136(3), pp. 309-317, doi: 10.1002/ajpa.20813.
Chih-Wei Hsu and Chih-Jen Lin (2002) ‘A comparison of methods for multiclass support vector machines’, IEEE Transactions on Neural Networks, 13(2), pp. 415–425, doi: 10.1109/72.991427.
Cortes, C. and Vapnik, V. (1995) ‘Support-Vector Networks’, Machine Learning. Kluwer Academic Publishers-Plenum Publishers, 20(3), pp. 273–297, doi: 10.1023/A:1022627411411
Cortes, C. and Vapnik, V. (1995) ‘Support-Vector Networks’, Machine Learning. Kluwer Academic Publishers-Plenum Publishers, 20(3), pp. 273–297, doi: 10.1023/A:1022627411411
Excoffier, L. and Lischer, H. E. L. (2010) ‘Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows’, Molecular Ecology Resources. John Wiley & Sons, Ltd (10.1111), 10(3), pp. 564–567, doi: 10.1111/j.1755-0998.2010.02847.
Fernández-Delgado, M. et al. (2014) ‘Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?’, Journal of Machine Learning Research, 15, pp. 3133–3181.
Fortes-Lima, C. et al. (2015) ‘Genetic population study of Y-chromosome markers in Benin and Ivory Coast ethnic groups.’, Forensic science international: Genetics, 19, pp. 232–237, doi: 10.1016/j.fsigen.2015.07.021.
Freund, Y. and Schapire, R. E. (1997) ‘A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting’, Journal of Computer and System Sciences, Academic Press, 55(1), pp. 119–139, doi: 10.1006/JCSS.1997.1504
Gill, P. et al. (1994) ‘Identification of the remains of the romanov family by DNA analysis’, Nature Genetics, 6(2), pp.130-135, doi: 10.1038/ng0294-130
Gopinath, S. et al. (2016) ‘Developmental validation of the Yfiler ® Plus PCR Amplification Kit: An enhanced Y-STR multiplex for casework and database applications’, Forensic Science International: Genetics, 24, pp. 164–175, doi: 10.1016/j.fsigen.2016.07.006.
Hanson, E. et al. (2012) ‘Performance evaluation and optimization of multiplex PCRs for the highly discriminating OSU 10-locus set Y-STRs.’, Journal of forensic sciences, 57(1), pp. 52–9, doi: 10.1111/j.1556-4029.2011.01910
Heraclides, A. et al. (2017) ‘Y-chromosomal Analysis of Greek Cypriots Reveals a Primarily Common pre-Ottoman Paternal Ancestry With Turkish Cypriots’, PLoS One, 12(6):e0179474, doi: 10.1371/journal.pone.0179474.
Heyer, E. et al. (2009) ‘Genetic diversity and the emergence of ethnic groups in Central Asia.’, BMC Genetics, 10 (49), pp. 1-8, doi: 10.1186/1471-2156-10-49.
Heyer, E. et al. (2015) ‘Patrilineal populations show more male transmission of reproductive success than cognatic populations in Central Asia, which reduces their genetic diversity.’, American Journal of Physical Anthropology, 157(4), pp. 537-543, doi: 10.1002/ajpa.22739.
Ho, T. K. (1995) ‘Random Decision Forest’, in Proceedings of the 3rd International Conference on Document Analysis and Recognition. Montréal, pp. 278–282.
Jannuzzi, J. et al. (2020) ‘Male lineages in Brazilian populations and performance of haplogroup prediction tools’, Forensic Science International: Genetics., 44, pp. 1-7, doi: 10.1016/j.fsigen.2019.102163.
Jobling, M. A. and Tyler-Smith, C. (2003) ‘The human Y chromosome: An evolutionary marker comes of age’, Nature Reviews Genetics, 4, 598–612, doi: 10.1038/nrg1124.
Kayser, M. et al. (2004) ‘A Comprehensive Survey of Human Y-Chromosomal Microsatellites’, The American Journal of Human Genetics, 74(6), pp. 1183–1197, doi: 10.1086/421531.
Kayser, M. (2017) ‘Forensic use of Y-chromosome DNA: a general overview’, Human Genetics, 136(5), pp. 621–635, doi: 10.1007/s00439-017-1776-9.
King, T. E. et al. (2007) ‘Thomas Jefferson’s Y chromosome belongs to a rare European lineage’, American Journal of Physical Anthropology, 132(4), pp. 584–589, doi: 10.1002/ajpa.20557.
King, T. E. et al. (2014) ‘Identification of the remains of King Richard III’, Nature Communications. Nature Publishing Group, 5: 5631, pp. 1-8, doi: 10.1038/ncomms6631.
King, T. E. and Jobling, M. A. (2009a) ‘Founders, drift, and infidelity: The relationship between y chromosome diversity and patrilineal surnames’, Molecular Biology and Evolution, 26(5), pp. 1093-1102, doi: 10.1093/molbev/msp022.
King, T. E. and Jobling, M. A. (2009b) ‘What’s in a name? Y chromosomes, surnames and the genetic genealogy revolution’, Trends in Genetics, 25(8), pp. 351-360, doi: 10.1016/j.tig.2009.06.003.
Kivisild T. (2017) ‘The study of human Y chromosome variation through ancient DNA’, Human Genetics, 136, pp. 529–546, doi: 10.1007/s00439-017-1773-z
Lacerenza, D.S. et al. (2017) ‘Investigation of extended Y chromosome STR haplotypes in Sardinia.’ Forensic Science International: Genetics, 27, pp. 172-174, doi: 10.1016/j.fsigen.2016.12.009.
Martinez-Cadenas, C. et al. (2016) ‘The relationship between surname frequency and Y chromosome variation in Spain’, European Journal of Human Genetics, 24(1), pp. 120–128, doi: 10.1038/ejhg.2015.75.
Martinez-Cadenas, C. et al. (2016) ‘The relationship between surname frequency and Y chromosome variation in Spain’, European Journal of Human Genetics, 24(1), pp. 120–128, doi: 10.1038/ejhg.2015.75.
Nei, M. (1973) ‘Analysis of Gene Diversity in Subdivided Populations’, Proceedings of the National Academy of Sciences, 70(12), pp. 3321–3323, doi: 10.1073/pnas.70.12.3321.
Nei, M. et al. (1981) ‘Polymorphism and evolution of the Rh blood groups’, The Japanese Journal of Human Genetics, 26, 263–278, doi: 10.1007/BF01876357.
Pamjav, H., et al. (2017) ‘A Study of the Bodrogköz Population in North-Eastern Hungary by Y Chromosomal Haplotypes and Haplogroups.’, 292(4), pp. 883-894, doi: 10.1007/s00438-017-1319-z.
Pardo-Seco, J. et al. (2019) ‘Biogeographical informativeness of Y-STR haplotypes’, Science Bulletin. Elsevier, 64(19), pp. 1381–1384, doi: 10.1016/J.SCIB.2019.07.025.
Parson, W. et al. (2016) ‘Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements’, Forensic Science International: Genetics, 22, pp. 54–63, doi: 10.1016/j.fsigen.2016.01.009
Purps, J. et al. (2014) ‘A global analysis of Y-chromosomal haplotype diversity for 23 STR loci’, Forensic Science International: Genetics, 12, pp.12-23, doi: 10.1016/j.fsigen.2014.04.008.
R CoreTeam (2017) ‘R: A language and environment for statistical computing’. Vienna, Austria: R Foundation for Statistical Computing.
Ralf, A. et al. (2019) ‘Forensic Y-SNP analysis beyond SNaPshot: High-resolution Ychromosomal haplogrouping from low quality and quantity DNA using Ion AmpliSeq and targeted massively parallel sequencing’, Forensic Science International: Genetics, 41, pp. 93-106, doi: 10.1016/j.fsigen.2019.04.001
Rozen, S. et al. (2003) ‘Abundant gene conversion between arms of palindromes in human and ape Y chromosomes’, Nature, 423(6942), pp.873-876, doi: 10.1038/nature01723.
Schlecht, J. et al. (2008) ‘Machine-learning approaches for classifying haplogroup from Y chromosome STR data’, PLoS Computational Biology, 4(6): e1000093, doi:10.1371/journal.pcbi.1000093.
Šehović et al. (2017) ‘Network analysis on the in silico assigned Y chromosome haplogroups in Western Balkan populations’, Genetics & Applications, 1(2), pp. 36- 43, doi: 10.31383/ga.vol1iss2pp36-43.
Sobrino, B., Brión, M. and Carracedo, A. (2005) ‘SNPs in forensic genetics: A review on SNP typing methodologies’, Forensic Science International, 154 (2-3), pp. 181-194, doi: 10.1016/j.forsciint.2004.10.020.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York, NY: Springer New York (Statistics and Computing), doi: 10.1007/978-0-387-21706-2.
Verdu, P. et al. (2010) ‘Limited dispersal in mobile hunter-gatherer Baka Pygmies’, Biology Letters, 6, pp. 858–861, doi: 10.1098/rsbl.2010.0192.
Warshauer, D. H. et al. (2013) ‘STRait Razor: A length-based forensic STR allelecalling tool for use with second generation sequencing data’, Forensic Science International: Genetics, 7(4):409-17, doi: 10.1016/j.fsigen.2013.04.005.
Young, K.L. et al. (2011) ‘Paternal Genetic History of the Basque Population of Spain’, Human Biology, 83(4), pp. 455-475.
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv image/jpeg
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S1872497320301150
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/2903/1/PREDIC~1.JPG
https://dspace.tdea.edu.co/bitstream/tdea/2903/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/2903/3/PREDIC~1.JPG.jpg
bitstream.checksum.fl_str_mv 779823f32b5865ed8d67ab4f6dd3b4bf
2f9959eaf5b71fae44bbf9ec84150c7a
a26d8795c2db21a8f8e95f802b7bbc88
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189173335982080
spelling Bouakaze, Caroline959b5604-e092-4bf5-978d-e35b8d6b4a75Delehelle, Franklina3eae646-f495-446f-89d7-043ec6074b13Sáenz Oyhéréguy, Nancyeb52a7fd-a58a-4d60-abe6-1600b9091ff9Moreira, Andreiafc9b819c-1acf-4e4a-9a3b-81030c58853dSchiavinato, Stéphaniee199222b-9541-4869-9d7b-5bc8772c80b5Croze, Myriamcadfbe86-d101-4e75-bcef-dd18ef20c363Delon, Solèned6c225d2-05bd-452f-9e88-6c82a4d35919Fortes Lima, Cesar Augusto0708f51f-f39b-4127-b451-6ebf1faa89f8Gibert, Morgane449de500-b4a2-4b0e-b877-97234a9be9d5Bujan, Louis49de449a-dae1-4c82-8fef-c3df5e9e0cdeHuyghe, Éricedaee03c-68ee-4446-a865-08a3173d579eBellis, Gilb8539ca8-5fb8-4dff-a6cf-4a441c0c9a14Calderón Fernández, María del Rosario2936602b-2d75-4add-b777-08bc1f01c318Hernández de la Fuente, Candela Lucíaf9696841-77f9-4616-a49b-5803e6794bfeAvendaño Tamayo, Efrén De Jesúse1190af9-a1d6-4dfe-bd61-9f8d5cc94c86Bedoya Berrío, Gabriel de Jesús18c5ce6d-baa3-4b8e-948d-f5ca61601ba0Salas Ellacuriaga, Antonioca165818-0f49-4a80-9d6e-becce9a56caeMazières, Stéphane83ddd1e3-ee2d-4e56-85c9-f13d5fb8fac5Charioni, Jacques0def1b23-fc79-40f0-a32c-3112a678bdd7Migot Nabias, Florence1d3dcc91-f5da-4413-86fb-a7ee1d7745beRuiz Linarès, Andrésba367171-4142-4558-8f8d-5bff29096870Dugoujon, Jean Michel H.e23f98b2-6b42-4586-a8e7-d29ec3dcfd43Thèves, Catherine746eddda-a055-49cf-a49d-e495ecc1b66cMollereau Manaute, Catherine315b1ddf-c252-4d5e-8fb5-06019b569ec9Noûs, Camillecd9190cd-05b2-434a-bb3f-5913b0475d5dPoulet, Nicolasedd9a6d5-c704-4e47-acef-80560d85301cKing, Turica10348b-c268-4206-a249-afac5340f488D'Amato, María Eugenia455bcc70-d873-4843-8a05-508f2554bdf7Balaresque, Patricia L.d44370d5-b0e7-4830-941c-1139456dee252023-05-17T03:03:09Z2023-05-17T03:03:09Z20201872-4973https://dspace.tdea.edu.co/handle/tdea/29031878-0326We developed a new mutationally well-balanced 32 Y-STR multiplex (CombYplex) together with a machine learning (ML) program PredYMaLe to assess the impact of STR mutability on haplogourp prediction, while respecting forensic community criteria (high DC/HD). We designed CombYplex around two sub-panels M1 and M2 characterized by average and high-mutation STR panels. Using these two sub-panels, we tested how our program PredYmale reacts to mutability when considering basal branches and, moving down, terminal branches. We tested first the discrimination capacity of CombYplex on 996 human samples using various forensic and statistical parameters and showed that its resolution is sufficient to separate haplogroup classes. In parallel, PredYMaLe was designed and used to test whether a ML approach can predict haplogroup classes from Y-STR profiles. Applied to our kit, SVM and Random Forest classifiers perform very well (average 97 %), better than Neural Network (average 91 %) and Bayesian methods (< 90 %). We observe heterogeneity in haplogroup assignation accuracy among classes, with most haplogroups having high prediction scores (99–100 %) and two (E1b1b and G) having lower scores (67 %). The small sample sizes of these classes explain the high tendency to misclassify the Y-profiles of these haplogroups; results were measurably improved as soon as more training data were added. We provide evidence that our ML approach is a robust method to accurately predict haplogroups when it is combined with a sufficient number of markers, well-balanced mutation rate Y-STR panels, and large ML training sets. Further research on confounding factors (such as CNV-STR or gene conversion) and ideal STR panels in regard to the branches analysed can be developed to help classifiers further optimize prediction scores.image/jpegengElsevier BVNetherlandshttps://www.sciencedirect.com/science/article/abs/pii/S1872497320301150Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parametersArtículo de revistaTextinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb165Forensic Science International: GeneticsAizerman, M. et al. (1964) ‘Theoretical foundations of the potential function method in pattern recognition learning’, Automation and Remote Control, 25, pp. 821-837.Athey, T.W. (2006) ‘Haplogroup Prediction from Y-STR Values Using a BayesianAllele-Frequency Approach’, Journal of Genetic Genealogy, 2, pp. 34-39.Austerlitz, F. and Heyer, E. (1998) ‘Social transmission of reproductive behavior increases frequency of inherited disorders in a young-expanding population.’, Proceedings of the National Academy of Sciences of the United States of America. The National Academy of Sciences, 95(25), pp. 15140–15144.Balaresque, P. et al. (2008) ‘Dynamic nature of the proximal AZFc region of the human Y chromosome: multiple independent deletion and duplication events revealed by microsatellite analysis.’, Human mutation, 29(10), pp. 1171–80, doi: 10.1002/humu.20757.Balaresque, P. et al. (2014) ‘Gene conversion violates the stepwise mutation model for microsatellites in y-chromosomal palindromic repeats.’, Human mutation, 35(5), pp. 609–17, doi: 10.1002/humu.22542.Bishop, C. M. (2006) Pattern recognition and machine learning. Springer.Bowden, G. R. et al. (2008) ‘Excavating past population structures by surname-based sampling: the genetic legacy of the Vikings in northwest England.’, Molecular biology and evolution, 25(2), pp. 301–9, doi: 10.1093/molbev/msm255Breiman, L. et al. (1984) Classification and regression trees. Chapman & Hall/CRC, p368. Cadamuro, V. C. et al. (2015) ‘Determined about sex: sex-testing in 45 primate species using a 2Y/1X sex-typing assay.’, Forensic science international: Genetics, 14, pp. 96– 107, doi: 10.1016/j.fsigen.2014.09.010.Calafell, F. and Larmuseau, M. H. D. (2017) ‘The Y chromosome as the most popular marker in genetic genealogy benefits interdisciplinary research’, Human Genetics, 136(5), pp. 559–573, doi: 10.1007/s00439-016-1740-0Chaix, R. et al. (2008) ‘Genetic traces of east-to-west human expansion waves in Eurasia’, American Journal of Physical Anthropology, 136(3), pp. 309-317, doi: 10.1002/ajpa.20813.Chih-Wei Hsu and Chih-Jen Lin (2002) ‘A comparison of methods for multiclass support vector machines’, IEEE Transactions on Neural Networks, 13(2), pp. 415–425, doi: 10.1109/72.991427.Cortes, C. and Vapnik, V. (1995) ‘Support-Vector Networks’, Machine Learning. Kluwer Academic Publishers-Plenum Publishers, 20(3), pp. 273–297, doi: 10.1023/A:1022627411411Cortes, C. and Vapnik, V. (1995) ‘Support-Vector Networks’, Machine Learning. Kluwer Academic Publishers-Plenum Publishers, 20(3), pp. 273–297, doi: 10.1023/A:1022627411411Excoffier, L. and Lischer, H. E. L. (2010) ‘Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows’, Molecular Ecology Resources. John Wiley & Sons, Ltd (10.1111), 10(3), pp. 564–567, doi: 10.1111/j.1755-0998.2010.02847.Fernández-Delgado, M. et al. (2014) ‘Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?’, Journal of Machine Learning Research, 15, pp. 3133–3181.Fortes-Lima, C. et al. (2015) ‘Genetic population study of Y-chromosome markers in Benin and Ivory Coast ethnic groups.’, Forensic science international: Genetics, 19, pp. 232–237, doi: 10.1016/j.fsigen.2015.07.021.Freund, Y. and Schapire, R. E. (1997) ‘A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting’, Journal of Computer and System Sciences, Academic Press, 55(1), pp. 119–139, doi: 10.1006/JCSS.1997.1504Gill, P. et al. (1994) ‘Identification of the remains of the romanov family by DNA analysis’, Nature Genetics, 6(2), pp.130-135, doi: 10.1038/ng0294-130Gopinath, S. et al. (2016) ‘Developmental validation of the Yfiler ® Plus PCR Amplification Kit: An enhanced Y-STR multiplex for casework and database applications’, Forensic Science International: Genetics, 24, pp. 164–175, doi: 10.1016/j.fsigen.2016.07.006.Hanson, E. et al. (2012) ‘Performance evaluation and optimization of multiplex PCRs for the highly discriminating OSU 10-locus set Y-STRs.’, Journal of forensic sciences, 57(1), pp. 52–9, doi: 10.1111/j.1556-4029.2011.01910Heraclides, A. et al. (2017) ‘Y-chromosomal Analysis of Greek Cypriots Reveals a Primarily Common pre-Ottoman Paternal Ancestry With Turkish Cypriots’, PLoS One, 12(6):e0179474, doi: 10.1371/journal.pone.0179474.Heyer, E. et al. (2009) ‘Genetic diversity and the emergence of ethnic groups in Central Asia.’, BMC Genetics, 10 (49), pp. 1-8, doi: 10.1186/1471-2156-10-49.Heyer, E. et al. (2015) ‘Patrilineal populations show more male transmission of reproductive success than cognatic populations in Central Asia, which reduces their genetic diversity.’, American Journal of Physical Anthropology, 157(4), pp. 537-543, doi: 10.1002/ajpa.22739.Ho, T. K. (1995) ‘Random Decision Forest’, in Proceedings of the 3rd International Conference on Document Analysis and Recognition. Montréal, pp. 278–282.Jannuzzi, J. et al. (2020) ‘Male lineages in Brazilian populations and performance of haplogroup prediction tools’, Forensic Science International: Genetics., 44, pp. 1-7, doi: 10.1016/j.fsigen.2019.102163.Jobling, M. A. and Tyler-Smith, C. (2003) ‘The human Y chromosome: An evolutionary marker comes of age’, Nature Reviews Genetics, 4, 598–612, doi: 10.1038/nrg1124.Kayser, M. et al. (2004) ‘A Comprehensive Survey of Human Y-Chromosomal Microsatellites’, The American Journal of Human Genetics, 74(6), pp. 1183–1197, doi: 10.1086/421531.Kayser, M. (2017) ‘Forensic use of Y-chromosome DNA: a general overview’, Human Genetics, 136(5), pp. 621–635, doi: 10.1007/s00439-017-1776-9.King, T. E. et al. (2007) ‘Thomas Jefferson’s Y chromosome belongs to a rare European lineage’, American Journal of Physical Anthropology, 132(4), pp. 584–589, doi: 10.1002/ajpa.20557.King, T. E. et al. (2014) ‘Identification of the remains of King Richard III’, Nature Communications. Nature Publishing Group, 5: 5631, pp. 1-8, doi: 10.1038/ncomms6631.King, T. E. and Jobling, M. A. (2009a) ‘Founders, drift, and infidelity: The relationship between y chromosome diversity and patrilineal surnames’, Molecular Biology and Evolution, 26(5), pp. 1093-1102, doi: 10.1093/molbev/msp022.King, T. E. and Jobling, M. A. (2009b) ‘What’s in a name? Y chromosomes, surnames and the genetic genealogy revolution’, Trends in Genetics, 25(8), pp. 351-360, doi: 10.1016/j.tig.2009.06.003.Kivisild T. (2017) ‘The study of human Y chromosome variation through ancient DNA’, Human Genetics, 136, pp. 529–546, doi: 10.1007/s00439-017-1773-zLacerenza, D.S. et al. (2017) ‘Investigation of extended Y chromosome STR haplotypes in Sardinia.’ Forensic Science International: Genetics, 27, pp. 172-174, doi: 10.1016/j.fsigen.2016.12.009.Martinez-Cadenas, C. et al. (2016) ‘The relationship between surname frequency and Y chromosome variation in Spain’, European Journal of Human Genetics, 24(1), pp. 120–128, doi: 10.1038/ejhg.2015.75.Martinez-Cadenas, C. et al. (2016) ‘The relationship between surname frequency and Y chromosome variation in Spain’, European Journal of Human Genetics, 24(1), pp. 120–128, doi: 10.1038/ejhg.2015.75.Nei, M. (1973) ‘Analysis of Gene Diversity in Subdivided Populations’, Proceedings of the National Academy of Sciences, 70(12), pp. 3321–3323, doi: 10.1073/pnas.70.12.3321.Nei, M. et al. (1981) ‘Polymorphism and evolution of the Rh blood groups’, The Japanese Journal of Human Genetics, 26, 263–278, doi: 10.1007/BF01876357.Pamjav, H., et al. (2017) ‘A Study of the Bodrogköz Population in North-Eastern Hungary by Y Chromosomal Haplotypes and Haplogroups.’, 292(4), pp. 883-894, doi: 10.1007/s00438-017-1319-z.Pardo-Seco, J. et al. (2019) ‘Biogeographical informativeness of Y-STR haplotypes’, Science Bulletin. Elsevier, 64(19), pp. 1381–1384, doi: 10.1016/J.SCIB.2019.07.025.Parson, W. et al. (2016) ‘Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements’, Forensic Science International: Genetics, 22, pp. 54–63, doi: 10.1016/j.fsigen.2016.01.009Purps, J. et al. (2014) ‘A global analysis of Y-chromosomal haplotype diversity for 23 STR loci’, Forensic Science International: Genetics, 12, pp.12-23, doi: 10.1016/j.fsigen.2014.04.008.R CoreTeam (2017) ‘R: A language and environment for statistical computing’. Vienna, Austria: R Foundation for Statistical Computing.Ralf, A. et al. (2019) ‘Forensic Y-SNP analysis beyond SNaPshot: High-resolution Ychromosomal haplogrouping from low quality and quantity DNA using Ion AmpliSeq and targeted massively parallel sequencing’, Forensic Science International: Genetics, 41, pp. 93-106, doi: 10.1016/j.fsigen.2019.04.001Rozen, S. et al. (2003) ‘Abundant gene conversion between arms of palindromes in human and ape Y chromosomes’, Nature, 423(6942), pp.873-876, doi: 10.1038/nature01723.Schlecht, J. et al. (2008) ‘Machine-learning approaches for classifying haplogroup from Y chromosome STR data’, PLoS Computational Biology, 4(6): e1000093, doi:10.1371/journal.pcbi.1000093.Šehović et al. (2017) ‘Network analysis on the in silico assigned Y chromosome haplogroups in Western Balkan populations’, Genetics & Applications, 1(2), pp. 36- 43, doi: 10.31383/ga.vol1iss2pp36-43.Sobrino, B., Brión, M. and Carracedo, A. (2005) ‘SNPs in forensic genetics: A review on SNP typing methodologies’, Forensic Science International, 154 (2-3), pp. 181-194, doi: 10.1016/j.forsciint.2004.10.020.Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York, NY: Springer New York (Statistics and Computing), doi: 10.1007/978-0-387-21706-2.Verdu, P. et al. (2010) ‘Limited dispersal in mobile hunter-gatherer Baka Pygmies’, Biology Letters, 6, pp. 858–861, doi: 10.1098/rsbl.2010.0192.Warshauer, D. H. et al. (2013) ‘STRait Razor: A length-based forensic STR allelecalling tool for use with second generation sequencing data’, Forensic Science International: Genetics, 7(4):409-17, doi: 10.1016/j.fsigen.2013.04.005.Young, K.L. et al. (2011) ‘Paternal Genetic History of the Basque Population of Spain’, Human Biology, 83(4), pp. 455-475.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbMachine learningApprentissage machineAprendizagem electrónicaAprendizaje automáticoY-STRPrecisión de asignación y haplogrupo predicción (hg predicción)Assignation accuracy and haplogroup prediction (hg prediction)Incremental mutation ratesTasas de mutación incrementalesORIGINALPREDIC~1.JPGPREDIC~1.JPGSolo datos del documentoimage/jpeg1628390https://dspace.tdea.edu.co/bitstream/tdea/2903/1/PREDIC~1.JPG779823f32b5865ed8d67ab4f6dd3b4bfMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/2903/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTHUMBNAILPREDIC~1.JPG.jpgPREDIC~1.JPG.jpgGenerated Thumbnailimage/jpeg2144https://dspace.tdea.edu.co/bitstream/tdea/2903/3/PREDIC~1.JPG.jpga26d8795c2db21a8f8e95f802b7bbc88MD53open accesstdea/2903oai:dspace.tdea.edu.co:tdea/29032023-05-17 03:00:56.704open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=