Tropospheric O3 Model from Climatological Approaches in the Colombian Andes

We identified two climatological parameters that are key to modeling the behavior of tropospheric ozone (O3) produced in the urban area of a heavily polluted city in the Colombian Andes. These parameters are the relative humidity (RH) and total radiation intensity (I). In topographically constrained...

Full description

Autores:
Nisperuza Toledo, Daniel José
Avendaño Tamayo, Efrén De Jesús
Rúa Cardona, Alex Fernando
Vásquez Londoño, Leidy Karina
Grajales Vargas, Heazel Janinne
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/2886
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/2886
Palabra clave:
Ozono troposférico
对流层臭氧
Oropospheric ozone
Tropospheric ozone
Ozone troposphérique
数学模型
气候参数
Climatological parameters
Parámetros climáticos
Modelo matemático
Mathematical model
Modèle mathématique
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id RepoTdea2_e781ab30766c0c5e52f38f84e8e967da
oai_identifier_str oai:dspace.tdea.edu.co:tdea/2886
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Tropospheric O3 Model from Climatological Approaches in the Colombian Andes
title Tropospheric O3 Model from Climatological Approaches in the Colombian Andes
spellingShingle Tropospheric O3 Model from Climatological Approaches in the Colombian Andes
Ozono troposférico
对流层臭氧
Oropospheric ozone
Tropospheric ozone
Ozone troposphérique
数学模型
气候参数
Climatological parameters
Parámetros climáticos
Modelo matemático
Mathematical model
Modèle mathématique
title_short Tropospheric O3 Model from Climatological Approaches in the Colombian Andes
title_full Tropospheric O3 Model from Climatological Approaches in the Colombian Andes
title_fullStr Tropospheric O3 Model from Climatological Approaches in the Colombian Andes
title_full_unstemmed Tropospheric O3 Model from Climatological Approaches in the Colombian Andes
title_sort Tropospheric O3 Model from Climatological Approaches in the Colombian Andes
dc.creator.fl_str_mv Nisperuza Toledo, Daniel José
Avendaño Tamayo, Efrén De Jesús
Rúa Cardona, Alex Fernando
Vásquez Londoño, Leidy Karina
Grajales Vargas, Heazel Janinne
dc.contributor.author.none.fl_str_mv Nisperuza Toledo, Daniel José
Avendaño Tamayo, Efrén De Jesús
Rúa Cardona, Alex Fernando
Vásquez Londoño, Leidy Karina
Grajales Vargas, Heazel Janinne
dc.subject.agrovoc.none.fl_str_mv Ozono troposférico
对流层臭氧
Oropospheric ozone
Tropospheric ozone
Ozone troposphérique
数学模型
topic Ozono troposférico
对流层臭氧
Oropospheric ozone
Tropospheric ozone
Ozone troposphérique
数学模型
气候参数
Climatological parameters
Parámetros climáticos
Modelo matemático
Mathematical model
Modèle mathématique
dc.subject.proposal.none.fl_str_mv 气候参数
Climatological parameters
Parámetros climáticos
dc.subject.tee.none.fl_str_mv Modelo matemático
Mathematical model
Modèle mathématique
description We identified two climatological parameters that are key to modeling the behavior of tropospheric ozone (O3) produced in the urban area of a heavily polluted city in the Colombian Andes. These parameters are the relative humidity (RH) and total radiation intensity (I). In topographically constrained areas, the production of tropospheric O3, as a by-product during photo-oxidation of carbon monoxide (CO) and nitrogen oxides (NO and NO2) has received much attention over the last decades. Models used to describe O3 dynamics are based on computationally demanding techniques that require lots of input data, however. This study proposes a simple approach for describing O3. To that end, it evaluates fifteen empirical models based on the combination of four linear regressions: O3 against RH, temperature (T), wind speed (U), and I. Each model is driven by the analyzed climatological parameters over the period from 2012 to 2018 and further run using either daily or monthly averaged data. The best fitting model for monthly averaged data outperformed that for daily averaged data in both mathematical simplicity and accuracy; however, the differences between these models remained <0.4 percent. The results suggest that the O3 produced increases with I and decreases with RH.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-05-15T23:10:07Z
dc.date.available.none.fl_str_mv 2023-05-15T23:10:07Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0033-0124
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/2886
dc.identifier.eissn.spa.fl_str_mv 1467-9272
identifier_str_mv 0033-0124
1467-9272
url https://dspace.tdea.edu.co/handle/tdea/2886
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 775
dc.relation.citationissue.spa.fl_str_mv 4
dc.relation.citationvolume.spa.fl_str_mv 73
dc.relation.ispartofjournal.spa.fl_str_mv The Professional Geographer
dc.relation.references.spa.fl_str_mv Akimoto, H. 2003. Global air quality and pollution. Science 302 (5651):1716–19. doi: https://doi.org/10.1126/science.1092666.
Barna, M., B. Lamb, S. O’Neill, H. Westberg, C. Figueroa-Kaminsky, S. Otterson, C. Bowman, and J. DeMay. 2000. Modeling ozone formation and transport in the Cascadia region of the Pacific Northwest. Journal of Applied Meteorology 39 (3):349–66. doi: https://doi.org/10.1175/1520-0450(2000)039 < 0349:MOFATI>2.0.CO;2
Bedoya-Soto, J. M., E. Aristizábal, A. M. Carmona, and G. Poveda. 2019. Seasonal shift of the diurnal cycle of rainfall over Medellin’s valley, Central Andes of Colombia (1998–2005). Frontiers in Earth Science 7:1–15. doi: https://doi.org/10.3389/feart.2019.00092.
Bravo Alvarez, H., R. Sosa Echeverria, P. Sanchez Alvarez, and S. Krupa. 2013. Air quality standards for particulate matter (PM) at high altitude cities. Environmental Pollution 173:255–56. doi: https://doi.org/10.1016/j.envpol.2012.09.025.
Censo nacional de población y vivienda—Colombia [National census of population and housing—Colombia]. 2018. National microdata archive. Departamento Administrativo Nacional de Estadística [National Administrative Department for Statistics]. Accessed January 10, 2021. http://microdatos.dane.gov.co/index.php/catalog/643/get_microdata.
Cheng, C. H., S. F. Huang, and H. J. Teoh. 2011. Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method. Computers & Mathematics with Applications 62 (4):2016–28. doi: https://doi.org/10.1016/j.camwa.2011.06.044.
Cheng, S., J. Ma, W. Cheng, P. Yan, H. Zhou, L. Zhou, and P. Yang. 2019. Tropospheric NO2 vertical column densities retrieved from ground-based MAX-DOAS measurements at Shangdianzi regional atmospheric background station in China. Journal of Environmental Sciences (China) 80 (2):186–96. doi: https://doi.org/10.1016/j.jes.2018.12.012.
Cooper, O. R., M. Trainer, A. M. Thompson, S. J. Oltmans, D. W. Tarasick, J. C. Witte, A. Stohl, S. Eckhardt, J. Lelieveld, M. J. Newchurch, et al. 2007. Evidence for a recurring eastern North America upper tropospheric ozone maximum during summer. Journal of Geophysical Research 112 (D23):1–12. doi: https://doi.org/10.1029/2007JD008710.
Crippa, A., S. C. Larsson, A. Discacciati, A. Wolk, and N. Orsini. 2018. Red and processed meat consumption and risk of bladder cancer: A dose-response meta-analysis of epidemiological studies. European Journal of Nutrition 57 (2):689–701. doi: https://doi.org/10.1007/s00394-016-1356-0.
Del Río, D., C. Younes, and C. A. M. Rodríguez. 2017. A meteorological variables study and its correlation with thunderstorm activity over Medellin city (Colombia). Paper presented at the 14th International Symposium on Lightning Protection, SIPDA, Natal, Brazil, October 2. doi: https://doi.org/10.1109/SIPDA.2017.8116906.
Gao, J., A. Woodward, S. Vardoulakis, S. Kovats, P. Wilkinson, L. Li, L. Xu, J. Li, J. Yang, J. Li, et al. 2017. Haze, public health and mitigation measures in China: A review of the current evidence for further policy response. The Science of the Total Environment 578 (155):148–57. doi: https://doi.org/10.1016/j.scitotenv.2016.10.231.
Gutmann, E., I. Barstad, M. Clark, J. Arnold, and R. Rasmussen. 2016. The intermediate complexity atmospheric research model (ICAR). Journal of Hydrometeorology 17 (3):957–73. doi: https://doi.org/10.1175/JHM-D-15-0155.1.
IBM SPSS. 2015. SPSS statistics for Windows, version 23.0. Armonk, NY: IBM.
Jiménez Mejía, J. F. 2016. Altura de la capa de mezcla en un área urbana, montañosa y tropical. Caso de estudio: Valle de aburrá, Colombia [Mix layer depth of an urban, mountainous, and tropical area. Case study: Aburrá Valley, Colombia]. PhD dissertation, Universidad de Antioquia.
Judd, L. M., J. A. Al-Saadi, L. C. Valin, R. Bradley Pierce, K. Yang, S. J. Janz, M. G. Kowalewski, J. J. Szykman, M. Tiefengraber, and M. Mueller. 2018. The dawn of geostationary air quality monitoring: Case studies from Seoul and Los Angeles. Frontiers in Environmental Science 6:1–17. doi: https://doi.org/10.3389/fenvs.2018.00085.
Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso. 2017. Tropical convective transition statistics and causality in the water vapor–precipitation relation. Journal of the Atmospheric Sciences 74 (3):915–31. doi: https://doi.org/10.1175/JAS-D-16-0182.1.
Lin, Y., and W. G. Cobourn. 2007. Fuzzy system models combined with nonlinear regression for daily ground-level ozone predictions. Atmospheric Environment 41 (16):3502–13. doi: https://doi.org/10.1016/j.atmosenv.2006.11.060.
Madronich, S., and S. Flocke. 1999. The role of solar radiation in atmospheric chemistry. In The handbook of environmental chemistry, vol. 2/2L, ed. P. Boule, 1–26. Berlin, Germany: Springer. doi: https://doi.org/10.1007/978-3-540-69044-3_1.
Martins Pereira, G., K. Teinilä, D. Custódio, A. Gomes Santos, H. Xian, R. Hillamo, C. A. Alves, J. Bittencourt De Andrade, G. Olímpio Da Rocha, P. Kumar, et al. 2017. Particulate pollutants in the Brazilian city of Saõ Paulo: 1-year investigation for the chemical composition and source apportionment. Atmospheric Chemistry and Physics 17 (19):11943–69. doi: https://doi.org/10.5194/acp-17-11943-2017.
Mendez-Espinosa, J. F., L. C. Belalcazar, and R. Morales Betancourt. 2019. Regional air quality impact of northern South America biomass burning emissions. Atmospheric Environment 203:131–40. doi: https://doi.org/10.1016/j.atmosenv.2019.01.042.
Murillo-Escobar, J., J. P. Sepulveda-Suescun, M. A. Correa, and D. Orrego-Metaute. 2019. Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia. Urban Climate 29:100473. doi: https://doi.org/10.1016/j.uclim.2019.100473.
Nebot, A., V. Mugica, and A. Escobet. 2008. Ozone prediction based on meteorological variables: A fuzzy inductive reasoning approach. Atmospheric Chemistry and Physics Discussions 8 (3):12343–70. doi: https://doi.org/10.5194/acpd-8-12343-2008.
Nisperuza, D. J. 2015. Propiedades ópticas de los aerosoles atmosféricos En La región andina colombiana mediante análisis de mediciones remotas: LIDAR, fotométricas y satelitales [Optical properties of atmospheric aerosols in the Colombian Andean region through remote measurement analysis: LIDAR, photometric, and satellite]. PhD dissertation, Universidad Nacional de Colombia.
Özbay, B., G. A. Keskin, Ş. Ç. Doğruparmak, and S. Ayberk. 2011. Multivariate methods for ground-level ozone modeling. Atmospheric Research 102 (1–2):57–65. doi: https://doi.org/10.1016/j.atmosres.2011.06.005.
Pachón, J. E., B. Galvis, O. Lombana, L. G. Carmona, S. Fajardo, A. Rincón, S. Meneses, R. Chaparro, R. Nedbor-Gross, and B. Henderson. 2018. Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere 9 (2):49. doi: https://doi.org/10.3390/atmos9020049.
Patiño, K. V., S. M. Arroyave, and J. M. Marín. 2012. Oxidación electroquímica y ozonización aplicadas al tratamiento de aguas de lavado de la producción de biodiesel [Electrochemical oxidation and ozonation of wastewater from effluents in biodiesel production]. Información Tecnológica 23 (2):41–52. doi: https://doi.org/10.4067/S0718-07642012000200006.
Posada, E., M. Gómez, and J. Almanza. 2017. Análisis comparativo y modelación de las situaciones de calidad del aire en una muestra de ciudades del mundo. Comparación con el caso de medellín [Comparative analysis and modeling of air quality condition in a sample of world cities: Comparison with the Medellin case]. Revista Politécnica 13 (25):9–53. doi: https://doi.org/10.33571/rpolitec.v13n25a1
Ramos, R., V. Cantillo, J. Arellana, and I. Sarmiento. 2017. From restricting the use of cars by license plate numbers to congestion charging: Analysis for Medellin, Colombia. Transport Policy 60:119–30. doi: https://doi.org/10.1016/j.tranpol.2017.09.012.
Raymond, D., Ž. Fuchs, S. Gjorgjievska, and S. Sessions. 2015. Balanced dynamics and convection in the tropical troposphere. Journal of Advances in Modeling Earth Systems 7 (3):1093–1116. doi: https://doi.org/10.1002/2015MS000467.
Rúa, A., G. Liebezeit, R. Molina, and J. Palacio. 2016. Unmixing progradational sediments in a southwestern Caribbean Gulf through late Holocene: Backwash of low-level atmospheric jets. Journal of Coastal Research 32 (2):397–407. doi: https://doi.org/10.2112/jcoastres-d-14-00216.1.
Schultz, M. G., H. Akimoto, J. Bottenheim, B. Buchmann, I. E. Galbally, S. Gilge, D. Helmig, H. Koide, A. C. Lewis, P. C. Novelli, et al. 2015. The global atmosphere watch reactive gases measurement network. Elementa 3:1–23. doi: https://doi.org/10.12952/journal.elementa.000067
SIATA. 2018. Sistema de Alerta Temprana del Valle de Aburrá [Early Warning System of the Aburrá Valley]. Accessed January 10, 2021. https://www.siata.gov.co.
Sousa, S. I. V., F. G. Martins, M. C. Pereira, and M. C. M. Alvim-Ferraz. 2006. Prediction of ozone concentrations in Oporto City with statistical approaches. Chemosphere 64 (7):1141–49. doi: https://doi.org/10.1016/j.chemosphere.2005.11.051
Stevenson, D. S., F. J. Dentener, M. G. Schultz, K. Ellingsen, T. P. C. van Noije, O. Wild, G. Zeng, M. Amann, C. S. Atherton, N. Bell, et al. 2006. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of Geophysical Research 111 (D8):1–23. doi: https://doi.org/10.1029/2005JD006338.
Tack, F., A. Merlaud, A. C. Meier, T. Vlemmix, T. Ruhtz, M. D. Iordache, X. Ge, L. Van Der Wal, D. Schuettemeyer, M. Ardelean, et al. 2019. Intercomparison of four airborne imaging DOAS systems for tropospheric NO2 mapping—The AROMAPEX campaign. Atmospheric Measurement Techniques 12 (1):211–36. doi: https://doi.org/10.5194/amt-12-211-2019.
Tan, K. C., H. San Lim, and M. Z. M. Jafri. 2016. Prediction of column ozone concentrations using multiple regression analysis and principal component analysis techniques: A case study in peninsular Malaysia. Atmospheric Pollution Research 7 (3):533–46. doi: https://doi.org/10.1016/j.apr.2016.01.002.
Taylan, O. 2017. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality. Atmospheric Environment 150:356–65. doi: https://doi.org/10.1016/j.atmosenv.2016.11.030.
Thompson, A. M. 1992. The oxidizing capacity of the earth’s atmosphere: Probable past and future changes. Science 256 (5060):1157–65. doi: https://doi.org/10.1126/science.256.5060.1157.
Toro, M. V., L. V. Cremades, and J. Calbó. 2006. Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia). Chemosphere 65 (5):881–88. doi: https://doi.org/10.1016/j.chemosphere.2006.03.013.
Villa, T. F., R. A. Brown, E. R. Jayaratne, L. F. Gonzalez, L. Morawska, and Z. D. Ristovski. 2019. Characterization of the particle emission from a ship operating at sea using an unmanned aerial vehicle. Atmospheric Measurement Techniques 12 (1):691–702. doi: https://doi.org/10.5194/amt-12-691-2019.
Walstra, P., J. T. M. Wouters, and T. J. Geurts. 2005. Dairy science and technology. Boca Raton, FL: CRC Press.
Wang, J., Y. Yang, Y. Zhang, T. Niu, X. Jiang, Y. Wang, and H. Che. 2019. Influence of meteorological conditions on explosive increase in O3 concentration in troposphere. The Science of the Total Environment 652 (46):1228–41. doi: https://doi.org/10.1016/j.scitotenv.2018.10.228.
Wolfram Research. 2018. Mathematica, version 11.3. Champaign, IL: Wolfram Research.
Xiao, Y., J. Murray, and M. Lenzen. 2018. International trade linked with disease burden from airborne particulate pollution. Resources, Conservation and Recycling 129:1–11. doi: https://doi.org/10.1016/j.resconrec.2017.10.002.
Zapata, C., and N. Cano. 2014. Inhalable particulate matter measurements (PM2.5) in the metropolitan area of Valle de Aburrá, Colombia. Journal of Engineering Research and Applications 4 (2):179–85
dc.relation.citationedition.spa.fl_str_mv 784
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv image/jpeg
dc.coverage.spatial.none.fl_str_mv Andes colombianos
dc.publisher.spa.fl_str_mv Taylor and Francis Group
dc.publisher.place.spa.fl_str_mv Estados Unidos
dc.source.spa.fl_str_mv https://www.tandfonline.com/doi/abs/10.1080/00330124.2021.1922295
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/2886/1/Tropospheric%20O3%20Model%20from%20Climatological%20Approaches%20in%20the%20Colombian%20Andes.jpg
https://dspace.tdea.edu.co/bitstream/tdea/2886/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/2886/3/Tropospheric%20O3%20Model%20from%20Climatological%20Approaches%20in%20the%20Colombian%20Andes.jpg.jpg
bitstream.checksum.fl_str_mv 74b6b1fa8db722c7db7b135633a82540
2f9959eaf5b71fae44bbf9ec84150c7a
5c8ad31ec5a72ce9fd111130563bd7d7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189339381137408
spelling Nisperuza Toledo, Daniel José97a59355-02da-4d24-aff9-990b2aaf4d2aAvendaño Tamayo, Efrén De Jesúse1190af9-a1d6-4dfe-bd61-9f8d5cc94c86Rúa Cardona, Alex Fernando191d78ce-69bd-4fa9-89a1-2e5f9b795e9bVásquez Londoño, Leidy Karina9be503d9-c430-4765-b129-f3984fce8b1dGrajales Vargas, Heazel Janinne4fd56385-f57c-40c0-b41a-759544ee806dAndes colombianos2023-05-15T23:10:07Z2023-05-15T23:10:07Z20210033-0124https://dspace.tdea.edu.co/handle/tdea/28861467-9272We identified two climatological parameters that are key to modeling the behavior of tropospheric ozone (O3) produced in the urban area of a heavily polluted city in the Colombian Andes. These parameters are the relative humidity (RH) and total radiation intensity (I). In topographically constrained areas, the production of tropospheric O3, as a by-product during photo-oxidation of carbon monoxide (CO) and nitrogen oxides (NO and NO2) has received much attention over the last decades. Models used to describe O3 dynamics are based on computationally demanding techniques that require lots of input data, however. This study proposes a simple approach for describing O3. To that end, it evaluates fifteen empirical models based on the combination of four linear regressions: O3 against RH, temperature (T), wind speed (U), and I. Each model is driven by the analyzed climatological parameters over the period from 2012 to 2018 and further run using either daily or monthly averaged data. The best fitting model for monthly averaged data outperformed that for daily averaged data in both mathematical simplicity and accuracy; however, the differences between these models remained <0.4 percent. The results suggest that the O3 produced increases with I and decreases with RH.在对哥伦比亚安第斯山脉一个严重污染城市产生的对流层臭氧的行为模拟中, 我们确定了两个关键的气候学参数:相对湿度和总辐射强度。在地形受限地区, 对流层臭氧是一氧化碳和氮氧化合物(一氧化氮和二氧化氮)的光氧化过程的副产品。过去几十年中, 对流层臭氧受到广泛的关注。然而, 描述臭氧动力学的模式, 依赖于基于大量输入数据的计算技术。本研究提出一个简单的方法来描述臭氧。为此, 本文基于四种线性回归组合(臭氧与相对湿度、温度、风速和总辐射强度), 对15个经验模式进行了评估。每个模式都由2012年至2018年的气候参数所驱动, 并利用日平均或月平均数据进一步运行模式。月平均数据的最佳拟合模式, 在数学简单性和精度上均优于日平均数据。然而, 这些模式之间的差异在0.4%以内。结果表明, 臭氧随着总辐射强度的增加而增加, 随着相对湿度的增加而减少。Identificamos dos parámetros climatológicos que son claves para modelar el comportamiento del ozono troposférico (O3) producido en el área urbana de una ciudad altamente contaminada, en los Andes colombianos. Estos parámetros son la humedad relativa (RH) y la intensidad de la radiación total (I). En áreas constreñidas topográficamente la producción de O3 troposférico, como subproducto del proceso de foto-oxidación del monóxido de carbono (CO) y los óxidos de nitrógeno (NO y NO2), ha recibido considerable atención durante las últimas décadas. Sin embargo, los modelos que se usan para describir la dinámica del O3 se basan en técnicas computacionales que requieren grandes cantidades de datos. En este estudio se propone un enfoque simple para describir el O3. Con tal fin, se evalúan quince modelos empíricos basados en la combinación de cuatro regresiones lineales: O3 contra RH, temperatura (T), velocidad del viento (U), e I. Cada modelo es controlado por los parámetros climatológicos analizados a lo largo del período de 2012 a 2018 y por una corrida adicional usando datos promedio diarios o mensuales. El modelo más adecuado para los datos promedio mensuales superó al de los datos promedio diarios tanto en simplicidad matemática como en exactitud; sin embargo, las diferencias entre estos modelos permanecieron en <0.4 porciento. Los resultados sugieren que el O3 producido se incrementa con I y decrece con RH.10 páginasimage/jpegengTaylor and Francis GroupEstados Unidoshttps://www.tandfonline.com/doi/abs/10.1080/00330124.2021.1922295Tropospheric O3 Model from Climatological Approaches in the Colombian AndesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85775473The Professional GeographerAkimoto, H. 2003. Global air quality and pollution. Science 302 (5651):1716–19. doi: https://doi.org/10.1126/science.1092666.Barna, M., B. Lamb, S. O’Neill, H. Westberg, C. Figueroa-Kaminsky, S. Otterson, C. Bowman, and J. DeMay. 2000. Modeling ozone formation and transport in the Cascadia region of the Pacific Northwest. Journal of Applied Meteorology 39 (3):349–66. doi: https://doi.org/10.1175/1520-0450(2000)039 < 0349:MOFATI>2.0.CO;2Bedoya-Soto, J. M., E. Aristizábal, A. M. Carmona, and G. Poveda. 2019. Seasonal shift of the diurnal cycle of rainfall over Medellin’s valley, Central Andes of Colombia (1998–2005). Frontiers in Earth Science 7:1–15. doi: https://doi.org/10.3389/feart.2019.00092.Bravo Alvarez, H., R. Sosa Echeverria, P. Sanchez Alvarez, and S. Krupa. 2013. Air quality standards for particulate matter (PM) at high altitude cities. Environmental Pollution 173:255–56. doi: https://doi.org/10.1016/j.envpol.2012.09.025.Censo nacional de población y vivienda—Colombia [National census of population and housing—Colombia]. 2018. National microdata archive. Departamento Administrativo Nacional de Estadística [National Administrative Department for Statistics]. Accessed January 10, 2021. http://microdatos.dane.gov.co/index.php/catalog/643/get_microdata.Cheng, C. H., S. F. Huang, and H. J. Teoh. 2011. Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method. Computers & Mathematics with Applications 62 (4):2016–28. doi: https://doi.org/10.1016/j.camwa.2011.06.044.Cheng, S., J. Ma, W. Cheng, P. Yan, H. Zhou, L. Zhou, and P. Yang. 2019. Tropospheric NO2 vertical column densities retrieved from ground-based MAX-DOAS measurements at Shangdianzi regional atmospheric background station in China. Journal of Environmental Sciences (China) 80 (2):186–96. doi: https://doi.org/10.1016/j.jes.2018.12.012.Cooper, O. R., M. Trainer, A. M. Thompson, S. J. Oltmans, D. W. Tarasick, J. C. Witte, A. Stohl, S. Eckhardt, J. Lelieveld, M. J. Newchurch, et al. 2007. Evidence for a recurring eastern North America upper tropospheric ozone maximum during summer. Journal of Geophysical Research 112 (D23):1–12. doi: https://doi.org/10.1029/2007JD008710.Crippa, A., S. C. Larsson, A. Discacciati, A. Wolk, and N. Orsini. 2018. Red and processed meat consumption and risk of bladder cancer: A dose-response meta-analysis of epidemiological studies. European Journal of Nutrition 57 (2):689–701. doi: https://doi.org/10.1007/s00394-016-1356-0.Del Río, D., C. Younes, and C. A. M. Rodríguez. 2017. A meteorological variables study and its correlation with thunderstorm activity over Medellin city (Colombia). Paper presented at the 14th International Symposium on Lightning Protection, SIPDA, Natal, Brazil, October 2. doi: https://doi.org/10.1109/SIPDA.2017.8116906.Gao, J., A. Woodward, S. Vardoulakis, S. Kovats, P. Wilkinson, L. Li, L. Xu, J. Li, J. Yang, J. Li, et al. 2017. Haze, public health and mitigation measures in China: A review of the current evidence for further policy response. The Science of the Total Environment 578 (155):148–57. doi: https://doi.org/10.1016/j.scitotenv.2016.10.231.Gutmann, E., I. Barstad, M. Clark, J. Arnold, and R. Rasmussen. 2016. The intermediate complexity atmospheric research model (ICAR). Journal of Hydrometeorology 17 (3):957–73. doi: https://doi.org/10.1175/JHM-D-15-0155.1.IBM SPSS. 2015. SPSS statistics for Windows, version 23.0. Armonk, NY: IBM.Jiménez Mejía, J. F. 2016. Altura de la capa de mezcla en un área urbana, montañosa y tropical. Caso de estudio: Valle de aburrá, Colombia [Mix layer depth of an urban, mountainous, and tropical area. Case study: Aburrá Valley, Colombia]. PhD dissertation, Universidad de Antioquia.Judd, L. M., J. A. Al-Saadi, L. C. Valin, R. Bradley Pierce, K. Yang, S. J. Janz, M. G. Kowalewski, J. J. Szykman, M. Tiefengraber, and M. Mueller. 2018. The dawn of geostationary air quality monitoring: Case studies from Seoul and Los Angeles. Frontiers in Environmental Science 6:1–17. doi: https://doi.org/10.3389/fenvs.2018.00085.Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso. 2017. Tropical convective transition statistics and causality in the water vapor–precipitation relation. Journal of the Atmospheric Sciences 74 (3):915–31. doi: https://doi.org/10.1175/JAS-D-16-0182.1.Lin, Y., and W. G. Cobourn. 2007. Fuzzy system models combined with nonlinear regression for daily ground-level ozone predictions. Atmospheric Environment 41 (16):3502–13. doi: https://doi.org/10.1016/j.atmosenv.2006.11.060.Madronich, S., and S. Flocke. 1999. The role of solar radiation in atmospheric chemistry. In The handbook of environmental chemistry, vol. 2/2L, ed. P. Boule, 1–26. Berlin, Germany: Springer. doi: https://doi.org/10.1007/978-3-540-69044-3_1.Martins Pereira, G., K. Teinilä, D. Custódio, A. Gomes Santos, H. Xian, R. Hillamo, C. A. Alves, J. Bittencourt De Andrade, G. Olímpio Da Rocha, P. Kumar, et al. 2017. Particulate pollutants in the Brazilian city of Saõ Paulo: 1-year investigation for the chemical composition and source apportionment. Atmospheric Chemistry and Physics 17 (19):11943–69. doi: https://doi.org/10.5194/acp-17-11943-2017.Mendez-Espinosa, J. F., L. C. Belalcazar, and R. Morales Betancourt. 2019. Regional air quality impact of northern South America biomass burning emissions. Atmospheric Environment 203:131–40. doi: https://doi.org/10.1016/j.atmosenv.2019.01.042.Murillo-Escobar, J., J. P. Sepulveda-Suescun, M. A. Correa, and D. Orrego-Metaute. 2019. Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia. Urban Climate 29:100473. doi: https://doi.org/10.1016/j.uclim.2019.100473.Nebot, A., V. Mugica, and A. Escobet. 2008. Ozone prediction based on meteorological variables: A fuzzy inductive reasoning approach. Atmospheric Chemistry and Physics Discussions 8 (3):12343–70. doi: https://doi.org/10.5194/acpd-8-12343-2008.Nisperuza, D. J. 2015. Propiedades ópticas de los aerosoles atmosféricos En La región andina colombiana mediante análisis de mediciones remotas: LIDAR, fotométricas y satelitales [Optical properties of atmospheric aerosols in the Colombian Andean region through remote measurement analysis: LIDAR, photometric, and satellite]. PhD dissertation, Universidad Nacional de Colombia.Özbay, B., G. A. Keskin, Ş. Ç. Doğruparmak, and S. Ayberk. 2011. Multivariate methods for ground-level ozone modeling. Atmospheric Research 102 (1–2):57–65. doi: https://doi.org/10.1016/j.atmosres.2011.06.005.Pachón, J. E., B. Galvis, O. Lombana, L. G. Carmona, S. Fajardo, A. Rincón, S. Meneses, R. Chaparro, R. Nedbor-Gross, and B. Henderson. 2018. Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere 9 (2):49. doi: https://doi.org/10.3390/atmos9020049.Patiño, K. V., S. M. Arroyave, and J. M. Marín. 2012. Oxidación electroquímica y ozonización aplicadas al tratamiento de aguas de lavado de la producción de biodiesel [Electrochemical oxidation and ozonation of wastewater from effluents in biodiesel production]. Información Tecnológica 23 (2):41–52. doi: https://doi.org/10.4067/S0718-07642012000200006.Posada, E., M. Gómez, and J. Almanza. 2017. Análisis comparativo y modelación de las situaciones de calidad del aire en una muestra de ciudades del mundo. Comparación con el caso de medellín [Comparative analysis and modeling of air quality condition in a sample of world cities: Comparison with the Medellin case]. Revista Politécnica 13 (25):9–53. doi: https://doi.org/10.33571/rpolitec.v13n25a1Ramos, R., V. Cantillo, J. Arellana, and I. Sarmiento. 2017. From restricting the use of cars by license plate numbers to congestion charging: Analysis for Medellin, Colombia. Transport Policy 60:119–30. doi: https://doi.org/10.1016/j.tranpol.2017.09.012.Raymond, D., Ž. Fuchs, S. Gjorgjievska, and S. Sessions. 2015. Balanced dynamics and convection in the tropical troposphere. Journal of Advances in Modeling Earth Systems 7 (3):1093–1116. doi: https://doi.org/10.1002/2015MS000467.Rúa, A., G. Liebezeit, R. Molina, and J. Palacio. 2016. Unmixing progradational sediments in a southwestern Caribbean Gulf through late Holocene: Backwash of low-level atmospheric jets. Journal of Coastal Research 32 (2):397–407. doi: https://doi.org/10.2112/jcoastres-d-14-00216.1.Schultz, M. G., H. Akimoto, J. Bottenheim, B. Buchmann, I. E. Galbally, S. Gilge, D. Helmig, H. Koide, A. C. Lewis, P. C. Novelli, et al. 2015. The global atmosphere watch reactive gases measurement network. Elementa 3:1–23. doi: https://doi.org/10.12952/journal.elementa.000067SIATA. 2018. Sistema de Alerta Temprana del Valle de Aburrá [Early Warning System of the Aburrá Valley]. Accessed January 10, 2021. https://www.siata.gov.co.Sousa, S. I. V., F. G. Martins, M. C. Pereira, and M. C. M. Alvim-Ferraz. 2006. Prediction of ozone concentrations in Oporto City with statistical approaches. Chemosphere 64 (7):1141–49. doi: https://doi.org/10.1016/j.chemosphere.2005.11.051Stevenson, D. S., F. J. Dentener, M. G. Schultz, K. Ellingsen, T. P. C. van Noije, O. Wild, G. Zeng, M. Amann, C. S. Atherton, N. Bell, et al. 2006. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of Geophysical Research 111 (D8):1–23. doi: https://doi.org/10.1029/2005JD006338.Tack, F., A. Merlaud, A. C. Meier, T. Vlemmix, T. Ruhtz, M. D. Iordache, X. Ge, L. Van Der Wal, D. Schuettemeyer, M. Ardelean, et al. 2019. Intercomparison of four airborne imaging DOAS systems for tropospheric NO2 mapping—The AROMAPEX campaign. Atmospheric Measurement Techniques 12 (1):211–36. doi: https://doi.org/10.5194/amt-12-211-2019.Tan, K. C., H. San Lim, and M. Z. M. Jafri. 2016. Prediction of column ozone concentrations using multiple regression analysis and principal component analysis techniques: A case study in peninsular Malaysia. Atmospheric Pollution Research 7 (3):533–46. doi: https://doi.org/10.1016/j.apr.2016.01.002.Taylan, O. 2017. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality. Atmospheric Environment 150:356–65. doi: https://doi.org/10.1016/j.atmosenv.2016.11.030.Thompson, A. M. 1992. The oxidizing capacity of the earth’s atmosphere: Probable past and future changes. Science 256 (5060):1157–65. doi: https://doi.org/10.1126/science.256.5060.1157.Toro, M. V., L. V. Cremades, and J. Calbó. 2006. Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia). Chemosphere 65 (5):881–88. doi: https://doi.org/10.1016/j.chemosphere.2006.03.013.Villa, T. F., R. A. Brown, E. R. Jayaratne, L. F. Gonzalez, L. Morawska, and Z. D. Ristovski. 2019. Characterization of the particle emission from a ship operating at sea using an unmanned aerial vehicle. Atmospheric Measurement Techniques 12 (1):691–702. doi: https://doi.org/10.5194/amt-12-691-2019.Walstra, P., J. T. M. Wouters, and T. J. Geurts. 2005. Dairy science and technology. Boca Raton, FL: CRC Press.Wang, J., Y. Yang, Y. Zhang, T. Niu, X. Jiang, Y. Wang, and H. Che. 2019. Influence of meteorological conditions on explosive increase in O3 concentration in troposphere. The Science of the Total Environment 652 (46):1228–41. doi: https://doi.org/10.1016/j.scitotenv.2018.10.228.Wolfram Research. 2018. Mathematica, version 11.3. Champaign, IL: Wolfram Research.Xiao, Y., J. Murray, and M. Lenzen. 2018. International trade linked with disease burden from airborne particulate pollution. Resources, Conservation and Recycling 129:1–11. doi: https://doi.org/10.1016/j.resconrec.2017.10.002.Zapata, C., and N. Cano. 2014. Inhalable particulate matter measurements (PM2.5) in the metropolitan area of Valle de Aburrá, Colombia. Journal of Engineering Research and Applications 4 (2):179–85784info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbOzono troposférico对流层臭氧Oropospheric ozoneTropospheric ozoneOzone troposphérique数学模型气候参数Climatological parametersParámetros climáticosModelo matemáticoMathematical modelModèle mathématiqueORIGINALTropospheric O3 Model from Climatological Approaches in the Colombian Andes.jpgTropospheric O3 Model from Climatological Approaches in the Colombian Andes.jpgSolo datos del documentoimage/jpeg481912https://dspace.tdea.edu.co/bitstream/tdea/2886/1/Tropospheric%20O3%20Model%20from%20Climatological%20Approaches%20in%20the%20Colombian%20Andes.jpg74b6b1fa8db722c7db7b135633a82540MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/2886/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTHUMBNAILTropospheric O3 Model from Climatological Approaches in the Colombian Andes.jpg.jpgTropospheric O3 Model from Climatological Approaches in the Colombian Andes.jpg.jpgGenerated Thumbnailimage/jpeg11741https://dspace.tdea.edu.co/bitstream/tdea/2886/3/Tropospheric%20O3%20Model%20from%20Climatological%20Approaches%20in%20the%20Colombian%20Andes.jpg.jpg5c8ad31ec5a72ce9fd111130563bd7d7MD53open accesstdea/2886oai:dspace.tdea.edu.co:tdea/28862023-05-16 03:03:28.451open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=