Valorización de cascarilla de arroz en diferentes sectores industriales

La cascarilla de arroz (CA) es un residuo de alta generación que junto con sus cenizas (CCA) en Colombia y el mundo y por sus características físicas y químicas, ha sido de gran interés académico e industrial. En este capítulo se identifican y analizan los principales usos de la CA y la CCA para cre...

Full description

Autores:
Puerta Cortés, Carlos
Jaramillo Zapata, Leyla
Upegui Sosa, Sergio
Tipo de recurso:
Part of book
Fecha de publicación:
2021
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
spa
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/4858
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/4858
Palabra clave:
Ingeniería y operaciones afines
Residuos sólidos
Economía circular
Cascarilla de arroz
Sector industrial
Agroindustria
Ciencias ambientales e ingeniería
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id RepoTdea2_d3df645c89301e8320717f6cbc2c88ef
oai_identifier_str oai:dspace.tdea.edu.co:tdea/4858
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Valorización de cascarilla de arroz en diferentes sectores industriales
title Valorización de cascarilla de arroz en diferentes sectores industriales
spellingShingle Valorización de cascarilla de arroz en diferentes sectores industriales
Ingeniería y operaciones afines
Residuos sólidos
Economía circular
Cascarilla de arroz
Sector industrial
Agroindustria
Ciencias ambientales e ingeniería
title_short Valorización de cascarilla de arroz en diferentes sectores industriales
title_full Valorización de cascarilla de arroz en diferentes sectores industriales
title_fullStr Valorización de cascarilla de arroz en diferentes sectores industriales
title_full_unstemmed Valorización de cascarilla de arroz en diferentes sectores industriales
title_sort Valorización de cascarilla de arroz en diferentes sectores industriales
dc.creator.fl_str_mv Puerta Cortés, Carlos
Jaramillo Zapata, Leyla
Upegui Sosa, Sergio
dc.contributor.author.none.fl_str_mv Puerta Cortés, Carlos
Jaramillo Zapata, Leyla
Upegui Sosa, Sergio
dc.subject.ddc.spa.fl_str_mv Ingeniería y operaciones afines
topic Ingeniería y operaciones afines
Residuos sólidos
Economía circular
Cascarilla de arroz
Sector industrial
Agroindustria
Ciencias ambientales e ingeniería
dc.subject.proposal.none.fl_str_mv Residuos sólidos
Economía circular
Cascarilla de arroz
Sector industrial
Agroindustria
dc.subject.unesco.none.fl_str_mv Ciencias ambientales e ingeniería
description La cascarilla de arroz (CA) es un residuo de alta generación que junto con sus cenizas (CCA) en Colombia y el mundo y por sus características físicas y químicas, ha sido de gran interés académico e industrial. En este capítulo se identifican y analizan los principales usos de la CA y la CCA para crear nuevos materiales o mejorar productos en varios sectores industriales. Se resaltan sectores como el de la construcción, donde se han usado estos residuos para la fabricación de cemento, como materia prima alternativa del concreto y los ladrillos de arcilla cocida, también como material para la estabilización de suelos. En procesos de obtención de nuevos materiales, se ha usado principalmente CCA para obtener cerámica avanzada y como materia prima en la producción de sílice, así como la CA en la obtención de carbón activado. En el sector energético, a partir de la CA ha sido posible la producción de combustible sólido y su aprovechamiento como combustible alternativo, también con resultados menos prometedores en la generación de biogás y bioetanol. Por último, se analizaron usos importantes de la CA para el acondicionamiento de suelos y las CCA adsorbente de diversos contaminantes para la descontaminación de aguas residuales y purificación de agua. Es indispensable continuar en búsqueda de soluciones que permitan valorizar estos residuos en procesos industriales actuales y en la obtención de nuevos productos, buscando hacer parte del modelo de economía circular.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-22
dc.date.accessioned.none.fl_str_mv 2023-12-12T15:14:57Z
dc.date.available.none.fl_str_mv 2023-12-12T15:14:57Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_3248
status_str publishedVersion
dc.identifier.isbn.spa.fl_str_mv 978-958-8628-69-1
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/4858
dc.identifier.eisbn.spa.fl_str_mv 978-958-8628-70-7
identifier_str_mv 978-958-8628-69-1
978-958-8628-70-7
url https://dspace.tdea.edu.co/handle/tdea/4858
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv Investigación;
dc.relation.citationendpage.spa.fl_str_mv 112
dc.relation.citationstartpage.spa.fl_str_mv 45
dc.relation.ispartofbook.spa.fl_str_mv Prácticas y herramientas de sostenibilidad
dc.relation.references.spa.fl_str_mv M. Acevedo, W. Castrillo, y U. Belmonte, “Origen, evolución y diversidad del arroz,” Agronomía Tropical, vol. 56, nº 2, p. 18, 2006.
S. Gnanamanickam, “Biological control of rice diseases,” Springer Science & Business Media, vol. 8, 2009.
M. Gonçalves, and C. Bergmann, “Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure,” Construction and Building Materials, vol. 21, pp. 2059-2065, 2007.
L. Zen, G. Ocácia, and D. Sadhu, “Prospect of an environmentally balanced energy system from rice husk and wind,” Renewable Energy, vol. 3, nº 8, pp. 885-889, 1993.
J. Cunha, y E. Canepa, “Aproveitamento energético da casca de arroz,” Programa energia. Research Project Report, Porto Alegre, 1986.
R. Vásquez, y P. Bach, “Las cenizas de cáscara de arroz; adición puzolánica en cemento y concreto,” Piura, Perú, 2000.
D. Dendy, y B. Dobraszczyk, “Cereales y productos derivados química y tecnología,” Zaragoza, Editorial Acribia, S.A., 2004.
S. Olmos, “Apunte de morfología, fenología, ecofisiología, y mejoramiento genético del arroz,” 2007.
F. García, B. Lanfranco, y G. Hareau, “Efecto sobre el comercio y bienestar de distintas estrategias tecnológicas para el arroz uruguayo,” vol. 197, 2012.
Organización de las Naciones Unidas para la Alimentación y la Agricultura-FAO, “Perspectivas alimentarias. Resúmenes de mercadeo,” 2019. [Online]. Available: http://www.fao.org/3/ca5040es/ca5040es.pdf. [Último acceso: 13 Julio 2020].
J. Sierra, “Alternativas de aprovechamiento de la cascarilla de arroz en Colombia,” Universidad de Sucre, Sincelejo, 2009.
Unidad De Planificación Rural Agropecuaria, “Análisis situacional Cadena productiva del arroz en Colombia,” 2019. [Online]. Available: https://www.upra.gov.co/documents/10184/101496/20190709_DOCUMENTO+ANALISIS+SITUACIONAL.pdf/9051a2a6-a998- 4386-8c6b-ded8309e8f4f. [Último acceso: 13 Julio 2020].
Federación nacional de arroceros - Fondo nacional del arroz FEDEARROZ, “Estadísticas del arroz,” Revista Arroz, vol. 67, nº 541, 2019.
Federación nacional de arroceros - Fondo nacional del arroz FEDEARROZ, “Estadísticas arroceras,” Revista arroz, vol. 68, nº 545, p. 48, 2020.
I. C. Becerra, A. Díaz, E. García, J. Giraldo, A. Maluendas, L. Quintero, D. Reina, M. Ortegón, H. Samacá, y J. Viveros, “Análisis situacional cadena productiva del arroz en Colombia,” Unidad de Planificación Rural Agropecuaria, Bogotá, 2019.
Departamento administrativo nacional de estadística - DANE, “Boletín Técnico, Encuesta Nacional de Arroz Mecanizado (ENAM), Segundo semestre 2019,” 2019. [Online]. Available: https://www.dane.gov.co/files/investigaciones/boletines/arroz/ bol_arroz_IIsem19.pdf. [Último acceso: 13 Julio 2020].
R. Ferraro, and A. Nanni, “Effect of off-white rice husk ash on strength, porosity, conductivity and corrosion resistance of white concrete,” Construction and Building Materials, vol. 31, pp. 220-225, 2012.
E. Chicaiza, y F. Oña, “Estabilización de arcillas expansivas de la Provincia de Manabí con puzonala extraída de ceniza de cascarilla de arroz,” Escuela Politécnica Nacional, Quito, 2018.
Ministerio de Agricultura y Desarrollo Rural., “La cadena del arroz en Colombia”, 2005. [Online]. Available: http://bibliotecadigital.agronet.gov.co/bitstream/11348/6376/1/2005112141728_caracterizacion_arroz.pdf. [Último acceso: 13 Julio 2020].
C. Najar, y J. Alvárez, “Mejoras en el proceso productivo y modernización mediante sustitución y tecnologías limpias en un molino de arroz,” 2007.
E. Aprianti, “A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production – a review part II,” Journal of Cleaner Production, vol. 142, pp. 4178-4194, 2017.
B. S. Thomas, “Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 3913-3923, 2018.
A. P. Gursel, H. Maryman, and C. Ostertag, “A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash,” Journal of Cleaner Production, vol. 112, pp. 823-836, 2015.
Unidad De Planificación Rural Agropecuaria, “Línea base cadena productiva del cultivo de arroz,” 2019. [Online]. Available: https://www.upra.gov.co/documents/10184/101496/20190611_DDT_LB-Arroz.pdf/a86401e0-d235-46fa-a749-abd1cf291352. [Último acceso: 13 Julio 2020].
G. Sensale, “Effect of rice-husk ash on durability of cementitious materials,” Cement and Concrete Composites, vol. 32, nº 9, pp. 718-725, 2010.
Valverde, B. Sarria, y J. Monteagudo, “Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz,” Scientia et Technica, vol. XIII, nº 37, pp. 255-260, 2007.
B. I. Treviño Cardona, I. Gómez, y D. Fuente, “Obtención y caracterización de carburo y nitruro de silicio a partir de cascarilla de arroz,” Ingenierías, vol. 6, nº 19, pp. 21-27, 2003.
S. Huang, S. Jing, J. Wang, Z. Wang, and Y. Jin, “Silica white obtained from rice husk in a fluidized bed,” Powder Technology, vol. 117, nº 3, pp. 232-238, 2001.
E. Ayswarya, K. Vidya Francis, V. Renju, and E. Thachil, “Rice husk ash – A valuable reinforcement for high density polyethylene,” Materials & Design, vol. 41, nº 1, pp. 1-7, 2012.
V. Jittin, A. Bahurudeen, and S. Ajinkya, “Utilisation of rice husk ash for cleaner production of different construction products,” Journal of Cleaner Production, vol. 263, 2020.
J. Martínez Ángel, T. Vásquez, J. Zapata, y M. Vélez, “Experimentos de combustión con cascarilla de arroz en lecho fluidizado para la producción de ceniza rica en sílice,” Revista Facultad de Ingeniería Universidad de Antioquia, vol. 51, pp. 97-104, 2010.
A. Salas, S. Delvasto, R. De Gutierrez, and D. Lange, “Comparison of two processes for treating rice husk ash for use in high performance concrete,” Cement and Concrete Research, vol. 39, nº 9, pp. 773-778, 2009.
Banco de Desarrollo de Latinoamérica, CAF, “Economía circular e innovación tecnológica en residuos sólidos, oportunidades en Latinoamérica”, Corporación Andina de Fomento, 2018.
“The European Cement Association, CEMBUREAU, Activity Report,” 2013. [En línea]. Available: www.cembureau.eu
M. Gonçalves, “Thermal insulators made with rice husk ashes: production and correlation between properties and microstructure,” Construction and Building Materials, vol. 21, pp. 2059-2065, 2007.
R. Tomoshige, T. Ashitani, H. Yatsukawa, R. Nagase, A. Kato, and K. Sakai, “Synthesis of ceramic compounds utilizing woody waste materials and rice husk,” Materials Science Forum, Vols. %1 de %2437-438, pp. 411-414, 2003.
E. Basha, R. Hashim, H. Mahmud, and A. Muntobar, “Muntohar, Stabilization of residual soil with RHA and cement,” Construction and Building Materials, vol. 19, nº 6, pp. 448-453, 2005.
G. Cordeiro, R. Toledo, L. Tavares, and E. Fairbairn, “Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes,” Construction and Building Materials, vol. 29, pp. 641-646, 2012.
N. Farzadnia, S. Bahmani, A. Asadi, and S. Hosseini, “Mechanical and microstructural properties of cement pastes with rice husk ash coated with carbon nanofibers using a natural polymer binder,” Construction and Building Materials, vol. 175, pp. 691-704, 2018.
H. Huang, X. Gao, H. Wang, and H. Ye, “Influence of rice husk ash on strength and permeability of ultra-high,” Construction and Building Materials, vol. 149, pp. 621 - 628, 2017.
H. Mahmud, S. Bahri, Y. Yee, and Y. Yeap, “Effect of rice husk ash on strength and durability of high strengh high performance concrete.World,” World Academy of Science, Engineering and Technology, vol. 10, pp. 390 - 395, 2016.
Wahyuni, F. Supriani, and G. A. Elhusna, “Performance of concrete with rice husk ash, sea shell ash and bamboo fibre addition,” Procedia Engineering, vol. 95, pp. 473-478, 2014.
J. Wei, and C. Meyer, “Utilization of rice husk ash in green natural fiber-reinforced cement composites: mitigating degradation of sisal fiber,” Cement and Concrete Research, vol. 81, pp. 94-111, 2016.
S. Azhagarsamy, and K. Jaiganesan, “A Study on Strength Properties of Concrete with Rice Husk Ash and Silica Fume with Addition of Glass,” International Research Journal of Engineering and Technology (IRJET), vol. 03, pp. 1681 - 1684, 2016.
M. Koushkbaghi, M. Kazemi, H. Mosavi, and E. Mohseni, “Acid resistance and durability properties of steel fiber-reinforced.” Construction and Building Materials, nº 202, pp. 266 - 275, 2019.
E. Mohseni, M. Mehrinejad, F. Naseri, and M. Monazami, “Polypropylene fiber reinforced cement mortars containing rice husk ash and nano-alumina,” Construction and Building Materials, vol. 111, pp. 429-439, 2016.
N. Fuentes, O. Fragozo, y L. Vizcaino, “Residuos agroindustriales como adiciones en la elaboración de bloques de concreto no estructural,” Ciencia e ingeniería neogranadina, vol. 25, nº 2, pp. 99-116, 2015.
C. Hendriks, E. Worrell, D. de Jager, and K. R. P. Blok, “Emission reduction of greenhouse gases from the cement industry,” In IEA Greenhouse Gas Control Technologies Conference, 2004.
V. Ajiwe, C. Okeke, and F. Akigwe, “A preliminary study of manufacture of cement from rice husk ash,” Bioresource Technology, vol. 73, pp. 37-39, 2000.
S. Sinyoung, K. Kunchariyakun, and S. Asavapisit, “Synthesis of belite cement from nano-silica extracted from two rice husk ashes,” Journal of Environmental Management, vol. 190, pp. 53-60, 2017.
S. Kazmi, S. Abbas, M. Saleem, M. Munir, and A. Khitab, “Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes,” Construction and Building Materials, vol. 120, pp. 29-41, 2016.
L. Zhang, “Production of bricks from waste materials: a review,” Construction and Building Materials, vol. 47, pp. 643-655, 2013.
L. Henry, B. Shankha, J. William, and S. Melissa, “Test on mercury vapour emission from fly ash bricks,” World of Coal Ash, Covington, Kentucky, USA., 2017.
A. Kadir, and N. Maasom, “Recycling sugarcane bagasse waste into fired clay brick,” International Journal of Zero Waste Generation, vol. 1, nº 1, pp. 21-26, 2013.
J. Lucas, “Azulejos ou Ladrilhos Ceramicos,” Descricao Geral, Exigencias Normativas, Classificacao Funcional, LNEC, Lisboa, 2003.
G. Görhan, and O. Şimşek, “Porous clay bricks manufactured with rice husks,” Construction and Building Materials, vol. 40, 2013.
N. Phonphuak, C. Saengthong and A. Srisuwan, “Physical and mechanical properties of fired clay bricks with rice husk waste addition as construction materials,” Materials Today: Proceedings, vol. 17, nº 4, pp. 1668-1674, 2019.
G. S. D. Silva, and B. Perera, “Effect of waste rice husk ash (RHA) on structural, thermal and acoustic properties of fired clay bricks,” Journal of Building Engineering, vol. 18, pp. 252-259, 2018.
S. Kazmi, S. Abbas, M. Munir, and A. Khitab, “Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks,” Journal of Building Engineering, vol. 7, pp. 372-378, 2016.
S. Ganta, “Soil Stabilization with Rice Husk Ash and Lime Sludge,” International Journal of Research, vol. 4, nº 14, pp. 1112-1119, 2017.
R. Montejo, J. Raymundo, y J. Chávez, “Materiales alternativos para estabilizar suelos: el uso de ceniza de cáscara de arroz en vías de bajo tránsito de piura,” TZHOECOEN, vol. 12, nº 1, pp. 131-140, 2020.
R. Brooks, “Soil Stabilization with fly ash and rice husk ash,” International Journal of Research and Reviews in Applied Sciences, vol. 1, nº 1, 2009.
Y. Cheng, S. Wang, J. Li, X. Huang, C. Li, and J. Wu, “Engineering and mineralogical properties of stabilized expansive soil compositing lime and natural pozzolans,” Construction and Building Materials, vol. 187, pp. 1031-1038, 2018.
C. Licuy, y K. Román, “Estudio de la estabilización de arcillas expansivas utilizando el 10,20 y 30% en peso, de puzolanas de ceniza del volcán Tungurahua y ceniza de la cascarilla de arroz en composiciones iguales,” Quito, 2020.
C. Aponte, y B. Calderon, “Evaluación del comportamiento de la resistencia de un suelo limoso con adición de ceniza de cascarilla de arroz,” Girardot, 2020.
J. Dávalos, A. Bonilla, M. Villaquirán, R. Gutiérrez, and J. Rincón, “Preparation of glass–ceramic materials from coalash and rice husk ash: Microstructural, physicaland mechanical properties,” Boletín de la Sociedad Española de Cerámica y Vidrio, 2020.
K. Patel, R. Shettigar, and N. Misra, “Recent advance in silica production technologies from agricultural waste stream: review,” Journal of Advanced Agricultural Technologies, vol. 4, pp. 274-279, 2017.
S. Chandrasekhar, K. G. Satyanarayana, P. N. Pramada, P. Raghavan, and T. N. Gupta, “Review Processing, properties and applications of reactive silica from rice husk—an overview,” Journal of Materials Science, vol. 38, p. 3159–3168, 2003.
R. Ghosh, “A Review Study on Precipitated Silica and Activated Carbon from Rice Husk,” Journal of Chemical Engineering & Process Technology, vol. 4, 2013.
S. Pratap Singh, and N. Endley, “Fabrication of nano-silica from agricultural residue and their application,” de Nanomaterials for Agriculture and Forestry Applications, ElSevier, pp. 107-134, 2020.
V. S. N. Yalçin, “Studies on silica obtained from rice hus,” Ceramics International, vol. 29, nº 2, pp. 219-224, 2001.
M. d. Souza, W. Magalhaes, and M. PERSEGIL, “Silica Derived from Burned Rice Hulls,” Materials Research, vol. 5, nº 4, pp. 467- 474, 2002.
P. Deshmukh, J. Bhatt, D. Peshwe, and S. Pathak, “Etermination of silica activity index and XRD, SEM and EDS studies of amorphous SiO 2 extracted from rice Husk Ash,” Transactions of the Indian Institute of Metals, vol. 65, pp. 63-70, 2011.
M. Alam, M. Hossain, M. Hossain, M. Johir, J. Hossen, M. Rahman, J. Zhou, A. Hasan, A. Karmakar, and M. Ahmed, “The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application,” Processes 2020, 8, 203, vol. 8, nº 2, p. 203, 2020.
R. Pode, “Potential applications of rice husk ash waste from rice husk biomass power plant,” Renewable and Sustainable Energy Reviews, vol. 16, pp. 1468-1485, 2016.
E. Menya, P. Olupot, H. Storz, M. Lubwama, and Y. Kiros, “Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review,” Chemical Engineering Research and Design, vol. 129, pp. 271-296, 2018.
I. Ríos, I. Luzardo, J. García, J. Santos, and C. Gutiérrez, “Production and characterization of fuel pellets from rice husk and wheat straw,” Renewable Energy, vol. 145, pp. 500-507, 2019.
M. Jakob, and J. Steckel, “How climate change mitigation could harm development in poor countries,” WIRE Climate Change, vol. 5, nº 2, pp. 161-168, 2014.
G. Alemán, V. Casiano, D. Cárdenas, R. Díaz, N. Scarlat, J. Mahlknecht, J. Dallemand, and R. Parra, “Renewable energy research progress in Mexico: a review,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 140-153, 2014.
Z. Liu, B. Fei, Z. Jiang, Cai, and Y. Z, “The properties of pellets from mixing bamboo and rice straw,” Renewable Energy, vol. 55, pp. 1-5, 2013.
S. Yoon, Y. Son, Y. Kim, and J. Lee, “Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier,” Renewable Energy, vol. 42, pp. 163-167, 2012.
I. Quispe, R. Navia, and R. Kahhat, “Energy potential from rice husk through direct combustion and fast pyrolisis- a review,” Waste Management, vol. 59, pp. 200-210, 2017.
J. Arévalo, G. Quispe, and C. Raymundo, “Sustainable Energy Model for the production of biomass briquettes,” Energy Procedia, vol. 141, pp. 138 - 145, 2017.
I. Quispe, R. Navia y R. Kahhat, “Energy potential from rice husk through direct combustion and fast pyrolysis: A review,” Waste Management, vol. 59, pp. 200-210, 2017.
S. Ndindeng, J. Mbassi, W. Mbacham, J. Manful, S. Graham Acquaah, J. Moreira, J. Dossou, and K. Futakuchi, “Quality optimization in briquettes made from rice milling by-products,” Energy for Sustainable Development, vol. 29, pp. 24-31, 2015.
F. Vitali, S. Parmigiani, M. Vaccari, and C. Collivignarelli, “Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries,” Waste Management, vol. 33, nº 12, pp. 2762-2770, 2013.
S. Ramón-Ramón, J. Cárdenas, y J. Rojas, “Poder calorífico de la cascarilla de arroz usada como combustible en hornos de secado,” Mundo Fesc, vol. 8, nº 16, pp. 63-67, 2018.
S. Shackley, S. Carter, T. Knowles, E. Middelink, S. Haefele, S. Sohi, A. Cross, and S. Haszeldine, “Ustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context chemical properties, environmental and health and safety issues,” Energy Policy, vol. 41, pp. 49-58, 2012.
R. Blissett, R. Sommerville, N. Rowson, J. Jones, and B. Laughlin, “Valorisation of rice husks using a TORBED® combustion process,” Fuel Processing Technology, vol. 159, pp. 247-255, 2017.
F. Okasha, G. Zaater, S. El-Emam, M. Awad, and E. Zeidan, “Co combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Combustion characteristics,” Fuel, vol. 133, pp. 143-152, 2014.
E. R. Abaide, M. V. Tres, G. L. Zabot, and M. A. Mazutti, “Reasons for processing of rice coproducts: Reality and expectations,” Biomass and Bioenergy, vol. 20, pp. 240-256, 2019.
M. Balat, M. Balat, E. Kırtay, and H. Balat, “Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems,” Energy Conversion and Management, vol. 50, nº 12, pp. 3147-3157, 2009.
H. S. Heo, H. J. Park, J.-I. Dong, S. H. Park, S. Kim, D. J. Suh, Y.-W. Suh, S.-S. Kim, and Y.-K. Park, “Fast pyrolysis of rice husk under different reaction conditions,” Journal of Industrial and Engineering Chemistry, vol. 16, nº 1, pp. 27-31, 2010.
P. Díaz Navarro, “Gestión Energética Empresarial en la “Unidad Económica Básica Industrial Victoria de Girón”,” Pinar del Río., 2014.
P. Díaz, J. Rivero, y D. Regalado, “Diseño de un horno para calentar aire empleando la cascarilla del arroz como combustible,” Revista Científica Avances, vol. 18, nº 3, pp. 201-212, 2016.
A. Abbas, and S. Ansumali, “Global potential of rice husk as a renewable feedstock foethanol biofuel production,” Bioenergy Research, vol. 3, pp. 328-334, 2010.
F. Momayez, K. Karimi, and I. Sárvári, “Enhancing ethanol and methane production from rice straw by pretreatment with liquid waste from biogas plant,” Energy Conversion and Management, vol. 178, pp. 290-298, 2018.
B. A. Goodman, “Utilization of waste straw and husks from rice production: A review,” Journal of Bioresources and Bioproducts, vol. 5, nº 3, pp. 143-162, 2020.
C. Lamb, B. Martini, D. Souza, F. Fornasier, L. Riça, Larissa Brixner, and R. Souza, “Bioethanol production from rice hull and evaluation of the final solid residue,” Chemical Engineering Communications, pp. 1-13, 2018.
M. Hans, S. Kumar, A. Chandel, and I. Polikarpov, “A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation,” Process Biochemistry, vol. 85, pp. 125-134, 2018.
M. Nikzad, K., Movagharnejad, G. D. Najafpour, and F. Talebnia, “Comparative studies on the effect of pretreatment of rice husk on enzymatic digestibility and bioethanol production,” International Journal of Engineering, Transactions B: Applications, vol. 26, nº 5, pp. 455-464, 2013.
W. Zhong, Z. Zhang, W. Qiao, P. Fu, and M. Liu, “Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion,” Renewable Energy, vol. 36, nº 6, pp. 1875-1879, 2011.
L. M. Contreras, H. C. Schelle, R. Sebrango, and I. Pereda, “Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process,” Water science & technology, vol. 65.6, pp. 1142-1149, 2012.
Y. Huang, and L. Shang-lien, “Chapter 19. Utilization of rice hull and straw,” de Rice, 2019, pp. 627-661.
B. J. Poddar, S. P. Nakhate, R. K. Gupta, A. R. Chavan, A. K. Singh, A. A. Khardenavis, and H. J. Purohit, “A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion,” International Journal of Environmental Science and Technology, vol. Marzo, 2021.
C. Okeh, C. O. Onwosi, and F. J. C. Odibo, “Biogas production from rice husks generated from various rice mills in,” Renewable Energy, nº 62, pp. 204 - 208, 2014.
A. David, O. Labunmi, L. Albert, A. Bodunde, and J. Owolabi, “Enhanced Biogas Production from Rice Husk Through Solid State Chemical Pretreatments,” Waste and Biomass Valorization, vol. 11, nº 6, pp. 2397-2407, 2020.
F. Kuhn, E. Berghahn, M. Marder, O. Konrad, R. A. Sperotto, and C. Eichelberger Granada, “Inoculation of environmental fungal isolates improve the methane biochemical potential of rice hulls in anaerobic digestion processes,” Journal of Material Cycles and Waste Management, vol. 23, nº 2, pp. 717-726, 2021.
R. Ruan, Y. Zhang, P. Chen, S. Liu, L. Fan, N. Zhou, K. Ding, P. Peng, M. Addy, Y. Cheng, E. Anderson, Y. Wang, Y. Liu, H. Lei, and. B. Li, “Biofuels: Introduction,” de Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, El Sevier, pp. 3-43, 2019.
R. Singh, M. Srivastava, and A. Shukla, Environmental sustainability of bioethanol production from rice straw in India: a review,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 202-2016, 2016.
R. Wuana, and F. Okieimen, “Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation,” International Scholarly Research Notices, 2011.
U. Ashraf, A. Kanu, Z. Mo, S. Hussain, S. Anjum, I. Khan, R. Abbas, and X. Tang, “Lead toxicity in rice: effects, mechanisms and mitigation strategies: a minireview,” Environmental Science and Pollution Research, vol. 22, p. 18318–18332, 2015.
M. Laidlaw, G. Filippelli, S. Brown, J. Paz-Ferreiro, S. Reichman, P. Netherway, A. Truskewycz, A. Ball, and H. Mielke, “Case studies and evidence-based approaches to addressing urban soil lead contamination,” Applied Geochemistry, vol. 83, pp. 14-30, 2017.
C. Atkinson, J. Fitzgerald, and N. Hipps, “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review,” Plant Soil, vol. 337, pp. 1-18, 2010.
F. N. Quintero Peralta, y R. I. Umanzor Amador, “Evaluación del efecto de cascarilla de arroz carbonizada en propiedades físicas y retención de nitrógeno en el suelo,” Universidad Católica del Trópico Seco, Estelí, 2018.
D.-L. A. Evelin, G.-R. C. Abelardo, P.-G. Francisco, V.-I. J. Roberto, and A.-S. Otilio, “Fitorremediación: una alternativa para eliminar la contaminación,” Tropical and Subtropical Agroecosystems, vol. 14, nº 2, pp. 597-612, 2011.
B. Kiran, and M. Prasad, “Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead spiked soils,” Ecotoxicology and Environmental Safety, vol. 183, 2019.
Samsuri, F. Tariq, D. Karam, A. Aris, and G. Jamilu, “The effects of rice husk ashes and inorganic fertilizers application rates on the phytoremediation of gold mine tailings by vetiver grass,” Applied Geochemistry, vol. 108, 2019.
K. Foo, and B. Hameed, “Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste,” Advances in Colloid and Interface Science, vol. 152, pp. 39-47, 2009.
B. Kumar, D. Sengupta, T. Dasgupta, S. Mandal, and S. Datta, “Recovery of value-added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste,” Reviews in Environmental Science and Biotechnology, vol. 15, p. 47–65, 2016.
X. Liu, X. Chen, L. Yang, H. Chen, Y. Tian, and Z. Wang, “A review on recent advances in the comprehensive application of rice husk ash,” Research Chemistry Intermedia, vol. 42, pp. 893-913, 2016.
B. Mathew, M. Jaishankar, V. Biju, and K. Beeregowda, “Role of Bioadsorbents in Reducing Toxic Metals,” Journal of Toxicology, pp. 1-13, 2016.
S. Higuera, “Biofiltro con cascarilla de arroz y pasto vetiver (Chrysopogon zizanioides) para el tratamiento del efluente de la PTAR del INPEC,” Grupo de Investigación CAZAO. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente – ECAPMA. Universidad Nacional Abierta y a Distancia UNAD., Yopal, 2016.
D. He, A. Ikeda-Ohno, D. D. Boland, and T. D. Waite, “Synthesis and Characterization of Antibacterial Silver Nanoparticle Impregnated Rice Husks and Rice Husk Ash,” Environmental Science & Technology, vol. 47, nº 10, pp. 5276-5284, 2013.
C. Malhotra, R. Patil, S. Kausley, and D. Ahmad, “Novel uses of rice-husk-ash (a natural silica-carbon matrix) in low-cost water purification applications,” AIP Conference Proceedings, vol. 113, p. 1538, 2013
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 68
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Sello Editorial Tecnológico de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/4858/4/Valorizaci%c3%b3n%20de%20cascarilla%20de%20arroz%20en%20diferentes%20sectores%20industriales.pdf.jpg
https://dspace.tdea.edu.co/bitstream/tdea/4858/3/Valorizaci%c3%b3n%20de%20cascarilla%20de%20arroz%20en%20diferentes%20sectores%20industriales.pdf.txt
https://dspace.tdea.edu.co/bitstream/tdea/4858/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/4858/1/Valorizaci%c3%b3n%20de%20cascarilla%20de%20arroz%20en%20diferentes%20sectores%20industriales.pdf
bitstream.checksum.fl_str_mv acd5e80dd2dc90b41dada50ae8d5169a
c133136802984504e7bad99c98bb070f
2f9959eaf5b71fae44bbf9ec84150c7a
3d68a5f3a9ab1bce990635c25b2af26a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808408487970996224
spelling Puerta Cortés, Carlos4a76960e-a299-4d36-bf87-314587c812eaJaramillo Zapata, Leyla807c25da-7580-489a-aa2e-e2ef132a48b0Upegui Sosa, Sergio72651c91-1492-44d1-ba54-1ab1a58b01172023-12-12T15:14:57Z2023-12-12T15:14:57Z2021-12-22978-958-8628-69-1https://dspace.tdea.edu.co/handle/tdea/4858978-958-8628-70-7La cascarilla de arroz (CA) es un residuo de alta generación que junto con sus cenizas (CCA) en Colombia y el mundo y por sus características físicas y químicas, ha sido de gran interés académico e industrial. En este capítulo se identifican y analizan los principales usos de la CA y la CCA para crear nuevos materiales o mejorar productos en varios sectores industriales. Se resaltan sectores como el de la construcción, donde se han usado estos residuos para la fabricación de cemento, como materia prima alternativa del concreto y los ladrillos de arcilla cocida, también como material para la estabilización de suelos. En procesos de obtención de nuevos materiales, se ha usado principalmente CCA para obtener cerámica avanzada y como materia prima en la producción de sílice, así como la CA en la obtención de carbón activado. En el sector energético, a partir de la CA ha sido posible la producción de combustible sólido y su aprovechamiento como combustible alternativo, también con resultados menos prometedores en la generación de biogás y bioetanol. Por último, se analizaron usos importantes de la CA para el acondicionamiento de suelos y las CCA adsorbente de diversos contaminantes para la descontaminación de aguas residuales y purificación de agua. Es indispensable continuar en búsqueda de soluciones que permitan valorizar estos residuos en procesos industriales actuales y en la obtención de nuevos productos, buscando hacer parte del modelo de economía circular.1.era ed.68application/pdfspaSello Editorial Tecnológico de AntioquiaMedellínInvestigación;11245Prácticas y herramientas de sostenibilidadM. Acevedo, W. Castrillo, y U. Belmonte, “Origen, evolución y diversidad del arroz,” Agronomía Tropical, vol. 56, nº 2, p. 18, 2006.S. Gnanamanickam, “Biological control of rice diseases,” Springer Science & Business Media, vol. 8, 2009.M. Gonçalves, and C. Bergmann, “Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure,” Construction and Building Materials, vol. 21, pp. 2059-2065, 2007.L. Zen, G. Ocácia, and D. Sadhu, “Prospect of an environmentally balanced energy system from rice husk and wind,” Renewable Energy, vol. 3, nº 8, pp. 885-889, 1993.J. Cunha, y E. Canepa, “Aproveitamento energético da casca de arroz,” Programa energia. Research Project Report, Porto Alegre, 1986.R. Vásquez, y P. Bach, “Las cenizas de cáscara de arroz; adición puzolánica en cemento y concreto,” Piura, Perú, 2000.D. Dendy, y B. Dobraszczyk, “Cereales y productos derivados química y tecnología,” Zaragoza, Editorial Acribia, S.A., 2004.S. Olmos, “Apunte de morfología, fenología, ecofisiología, y mejoramiento genético del arroz,” 2007.F. García, B. Lanfranco, y G. Hareau, “Efecto sobre el comercio y bienestar de distintas estrategias tecnológicas para el arroz uruguayo,” vol. 197, 2012.Organización de las Naciones Unidas para la Alimentación y la Agricultura-FAO, “Perspectivas alimentarias. Resúmenes de mercadeo,” 2019. [Online]. Available: http://www.fao.org/3/ca5040es/ca5040es.pdf. [Último acceso: 13 Julio 2020].J. Sierra, “Alternativas de aprovechamiento de la cascarilla de arroz en Colombia,” Universidad de Sucre, Sincelejo, 2009.Unidad De Planificación Rural Agropecuaria, “Análisis situacional Cadena productiva del arroz en Colombia,” 2019. [Online]. Available: https://www.upra.gov.co/documents/10184/101496/20190709_DOCUMENTO+ANALISIS+SITUACIONAL.pdf/9051a2a6-a998- 4386-8c6b-ded8309e8f4f. [Último acceso: 13 Julio 2020].Federación nacional de arroceros - Fondo nacional del arroz FEDEARROZ, “Estadísticas del arroz,” Revista Arroz, vol. 67, nº 541, 2019.Federación nacional de arroceros - Fondo nacional del arroz FEDEARROZ, “Estadísticas arroceras,” Revista arroz, vol. 68, nº 545, p. 48, 2020.I. C. Becerra, A. Díaz, E. García, J. Giraldo, A. Maluendas, L. Quintero, D. Reina, M. Ortegón, H. Samacá, y J. Viveros, “Análisis situacional cadena productiva del arroz en Colombia,” Unidad de Planificación Rural Agropecuaria, Bogotá, 2019.Departamento administrativo nacional de estadística - DANE, “Boletín Técnico, Encuesta Nacional de Arroz Mecanizado (ENAM), Segundo semestre 2019,” 2019. [Online]. Available: https://www.dane.gov.co/files/investigaciones/boletines/arroz/ bol_arroz_IIsem19.pdf. [Último acceso: 13 Julio 2020].R. Ferraro, and A. Nanni, “Effect of off-white rice husk ash on strength, porosity, conductivity and corrosion resistance of white concrete,” Construction and Building Materials, vol. 31, pp. 220-225, 2012.E. Chicaiza, y F. Oña, “Estabilización de arcillas expansivas de la Provincia de Manabí con puzonala extraída de ceniza de cascarilla de arroz,” Escuela Politécnica Nacional, Quito, 2018.Ministerio de Agricultura y Desarrollo Rural., “La cadena del arroz en Colombia”, 2005. [Online]. Available: http://bibliotecadigital.agronet.gov.co/bitstream/11348/6376/1/2005112141728_caracterizacion_arroz.pdf. [Último acceso: 13 Julio 2020].C. Najar, y J. Alvárez, “Mejoras en el proceso productivo y modernización mediante sustitución y tecnologías limpias en un molino de arroz,” 2007.E. Aprianti, “A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production – a review part II,” Journal of Cleaner Production, vol. 142, pp. 4178-4194, 2017.B. S. Thomas, “Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 3913-3923, 2018.A. P. Gursel, H. Maryman, and C. Ostertag, “A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash,” Journal of Cleaner Production, vol. 112, pp. 823-836, 2015.Unidad De Planificación Rural Agropecuaria, “Línea base cadena productiva del cultivo de arroz,” 2019. [Online]. Available: https://www.upra.gov.co/documents/10184/101496/20190611_DDT_LB-Arroz.pdf/a86401e0-d235-46fa-a749-abd1cf291352. [Último acceso: 13 Julio 2020].G. Sensale, “Effect of rice-husk ash on durability of cementitious materials,” Cement and Concrete Composites, vol. 32, nº 9, pp. 718-725, 2010.Valverde, B. Sarria, y J. Monteagudo, “Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz,” Scientia et Technica, vol. XIII, nº 37, pp. 255-260, 2007.B. I. Treviño Cardona, I. Gómez, y D. Fuente, “Obtención y caracterización de carburo y nitruro de silicio a partir de cascarilla de arroz,” Ingenierías, vol. 6, nº 19, pp. 21-27, 2003.S. Huang, S. Jing, J. Wang, Z. Wang, and Y. Jin, “Silica white obtained from rice husk in a fluidized bed,” Powder Technology, vol. 117, nº 3, pp. 232-238, 2001.E. Ayswarya, K. Vidya Francis, V. Renju, and E. Thachil, “Rice husk ash – A valuable reinforcement for high density polyethylene,” Materials & Design, vol. 41, nº 1, pp. 1-7, 2012.V. Jittin, A. Bahurudeen, and S. Ajinkya, “Utilisation of rice husk ash for cleaner production of different construction products,” Journal of Cleaner Production, vol. 263, 2020.J. Martínez Ángel, T. Vásquez, J. Zapata, y M. Vélez, “Experimentos de combustión con cascarilla de arroz en lecho fluidizado para la producción de ceniza rica en sílice,” Revista Facultad de Ingeniería Universidad de Antioquia, vol. 51, pp. 97-104, 2010.A. Salas, S. Delvasto, R. De Gutierrez, and D. Lange, “Comparison of two processes for treating rice husk ash for use in high performance concrete,” Cement and Concrete Research, vol. 39, nº 9, pp. 773-778, 2009.Banco de Desarrollo de Latinoamérica, CAF, “Economía circular e innovación tecnológica en residuos sólidos, oportunidades en Latinoamérica”, Corporación Andina de Fomento, 2018.“The European Cement Association, CEMBUREAU, Activity Report,” 2013. [En línea]. Available: www.cembureau.euM. Gonçalves, “Thermal insulators made with rice husk ashes: production and correlation between properties and microstructure,” Construction and Building Materials, vol. 21, pp. 2059-2065, 2007.R. Tomoshige, T. Ashitani, H. Yatsukawa, R. Nagase, A. Kato, and K. Sakai, “Synthesis of ceramic compounds utilizing woody waste materials and rice husk,” Materials Science Forum, Vols. %1 de %2437-438, pp. 411-414, 2003.E. Basha, R. Hashim, H. Mahmud, and A. Muntobar, “Muntohar, Stabilization of residual soil with RHA and cement,” Construction and Building Materials, vol. 19, nº 6, pp. 448-453, 2005.G. Cordeiro, R. Toledo, L. Tavares, and E. Fairbairn, “Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes,” Construction and Building Materials, vol. 29, pp. 641-646, 2012.N. Farzadnia, S. Bahmani, A. Asadi, and S. Hosseini, “Mechanical and microstructural properties of cement pastes with rice husk ash coated with carbon nanofibers using a natural polymer binder,” Construction and Building Materials, vol. 175, pp. 691-704, 2018.H. Huang, X. Gao, H. Wang, and H. Ye, “Influence of rice husk ash on strength and permeability of ultra-high,” Construction and Building Materials, vol. 149, pp. 621 - 628, 2017.H. Mahmud, S. Bahri, Y. Yee, and Y. Yeap, “Effect of rice husk ash on strength and durability of high strengh high performance concrete.World,” World Academy of Science, Engineering and Technology, vol. 10, pp. 390 - 395, 2016.Wahyuni, F. Supriani, and G. A. Elhusna, “Performance of concrete with rice husk ash, sea shell ash and bamboo fibre addition,” Procedia Engineering, vol. 95, pp. 473-478, 2014.J. Wei, and C. Meyer, “Utilization of rice husk ash in green natural fiber-reinforced cement composites: mitigating degradation of sisal fiber,” Cement and Concrete Research, vol. 81, pp. 94-111, 2016.S. Azhagarsamy, and K. Jaiganesan, “A Study on Strength Properties of Concrete with Rice Husk Ash and Silica Fume with Addition of Glass,” International Research Journal of Engineering and Technology (IRJET), vol. 03, pp. 1681 - 1684, 2016.M. Koushkbaghi, M. Kazemi, H. Mosavi, and E. Mohseni, “Acid resistance and durability properties of steel fiber-reinforced.” Construction and Building Materials, nº 202, pp. 266 - 275, 2019.E. Mohseni, M. Mehrinejad, F. Naseri, and M. Monazami, “Polypropylene fiber reinforced cement mortars containing rice husk ash and nano-alumina,” Construction and Building Materials, vol. 111, pp. 429-439, 2016.N. Fuentes, O. Fragozo, y L. Vizcaino, “Residuos agroindustriales como adiciones en la elaboración de bloques de concreto no estructural,” Ciencia e ingeniería neogranadina, vol. 25, nº 2, pp. 99-116, 2015.C. Hendriks, E. Worrell, D. de Jager, and K. R. P. Blok, “Emission reduction of greenhouse gases from the cement industry,” In IEA Greenhouse Gas Control Technologies Conference, 2004.V. Ajiwe, C. Okeke, and F. Akigwe, “A preliminary study of manufacture of cement from rice husk ash,” Bioresource Technology, vol. 73, pp. 37-39, 2000.S. Sinyoung, K. Kunchariyakun, and S. Asavapisit, “Synthesis of belite cement from nano-silica extracted from two rice husk ashes,” Journal of Environmental Management, vol. 190, pp. 53-60, 2017.S. Kazmi, S. Abbas, M. Saleem, M. Munir, and A. Khitab, “Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes,” Construction and Building Materials, vol. 120, pp. 29-41, 2016.L. Zhang, “Production of bricks from waste materials: a review,” Construction and Building Materials, vol. 47, pp. 643-655, 2013.L. Henry, B. Shankha, J. William, and S. Melissa, “Test on mercury vapour emission from fly ash bricks,” World of Coal Ash, Covington, Kentucky, USA., 2017.A. Kadir, and N. Maasom, “Recycling sugarcane bagasse waste into fired clay brick,” International Journal of Zero Waste Generation, vol. 1, nº 1, pp. 21-26, 2013.J. Lucas, “Azulejos ou Ladrilhos Ceramicos,” Descricao Geral, Exigencias Normativas, Classificacao Funcional, LNEC, Lisboa, 2003.G. Görhan, and O. Şimşek, “Porous clay bricks manufactured with rice husks,” Construction and Building Materials, vol. 40, 2013.N. Phonphuak, C. Saengthong and A. Srisuwan, “Physical and mechanical properties of fired clay bricks with rice husk waste addition as construction materials,” Materials Today: Proceedings, vol. 17, nº 4, pp. 1668-1674, 2019.G. S. D. Silva, and B. Perera, “Effect of waste rice husk ash (RHA) on structural, thermal and acoustic properties of fired clay bricks,” Journal of Building Engineering, vol. 18, pp. 252-259, 2018.S. Kazmi, S. Abbas, M. Munir, and A. Khitab, “Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks,” Journal of Building Engineering, vol. 7, pp. 372-378, 2016.S. Ganta, “Soil Stabilization with Rice Husk Ash and Lime Sludge,” International Journal of Research, vol. 4, nº 14, pp. 1112-1119, 2017.R. Montejo, J. Raymundo, y J. Chávez, “Materiales alternativos para estabilizar suelos: el uso de ceniza de cáscara de arroz en vías de bajo tránsito de piura,” TZHOECOEN, vol. 12, nº 1, pp. 131-140, 2020.R. Brooks, “Soil Stabilization with fly ash and rice husk ash,” International Journal of Research and Reviews in Applied Sciences, vol. 1, nº 1, 2009.Y. Cheng, S. Wang, J. Li, X. Huang, C. Li, and J. Wu, “Engineering and mineralogical properties of stabilized expansive soil compositing lime and natural pozzolans,” Construction and Building Materials, vol. 187, pp. 1031-1038, 2018.C. Licuy, y K. Román, “Estudio de la estabilización de arcillas expansivas utilizando el 10,20 y 30% en peso, de puzolanas de ceniza del volcán Tungurahua y ceniza de la cascarilla de arroz en composiciones iguales,” Quito, 2020.C. Aponte, y B. Calderon, “Evaluación del comportamiento de la resistencia de un suelo limoso con adición de ceniza de cascarilla de arroz,” Girardot, 2020.J. Dávalos, A. Bonilla, M. Villaquirán, R. Gutiérrez, and J. Rincón, “Preparation of glass–ceramic materials from coalash and rice husk ash: Microstructural, physicaland mechanical properties,” Boletín de la Sociedad Española de Cerámica y Vidrio, 2020.K. Patel, R. Shettigar, and N. Misra, “Recent advance in silica production technologies from agricultural waste stream: review,” Journal of Advanced Agricultural Technologies, vol. 4, pp. 274-279, 2017.S. Chandrasekhar, K. G. Satyanarayana, P. N. Pramada, P. Raghavan, and T. N. Gupta, “Review Processing, properties and applications of reactive silica from rice husk—an overview,” Journal of Materials Science, vol. 38, p. 3159–3168, 2003.R. Ghosh, “A Review Study on Precipitated Silica and Activated Carbon from Rice Husk,” Journal of Chemical Engineering & Process Technology, vol. 4, 2013.S. Pratap Singh, and N. Endley, “Fabrication of nano-silica from agricultural residue and their application,” de Nanomaterials for Agriculture and Forestry Applications, ElSevier, pp. 107-134, 2020.V. S. N. Yalçin, “Studies on silica obtained from rice hus,” Ceramics International, vol. 29, nº 2, pp. 219-224, 2001.M. d. Souza, W. Magalhaes, and M. PERSEGIL, “Silica Derived from Burned Rice Hulls,” Materials Research, vol. 5, nº 4, pp. 467- 474, 2002.P. Deshmukh, J. Bhatt, D. Peshwe, and S. Pathak, “Etermination of silica activity index and XRD, SEM and EDS studies of amorphous SiO 2 extracted from rice Husk Ash,” Transactions of the Indian Institute of Metals, vol. 65, pp. 63-70, 2011.M. Alam, M. Hossain, M. Hossain, M. Johir, J. Hossen, M. Rahman, J. Zhou, A. Hasan, A. Karmakar, and M. Ahmed, “The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application,” Processes 2020, 8, 203, vol. 8, nº 2, p. 203, 2020.R. Pode, “Potential applications of rice husk ash waste from rice husk biomass power plant,” Renewable and Sustainable Energy Reviews, vol. 16, pp. 1468-1485, 2016.E. Menya, P. Olupot, H. Storz, M. Lubwama, and Y. Kiros, “Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review,” Chemical Engineering Research and Design, vol. 129, pp. 271-296, 2018.I. Ríos, I. Luzardo, J. García, J. Santos, and C. Gutiérrez, “Production and characterization of fuel pellets from rice husk and wheat straw,” Renewable Energy, vol. 145, pp. 500-507, 2019.M. Jakob, and J. Steckel, “How climate change mitigation could harm development in poor countries,” WIRE Climate Change, vol. 5, nº 2, pp. 161-168, 2014.G. Alemán, V. Casiano, D. Cárdenas, R. Díaz, N. Scarlat, J. Mahlknecht, J. Dallemand, and R. Parra, “Renewable energy research progress in Mexico: a review,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 140-153, 2014.Z. Liu, B. Fei, Z. Jiang, Cai, and Y. Z, “The properties of pellets from mixing bamboo and rice straw,” Renewable Energy, vol. 55, pp. 1-5, 2013.S. Yoon, Y. Son, Y. Kim, and J. Lee, “Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier,” Renewable Energy, vol. 42, pp. 163-167, 2012.I. Quispe, R. Navia, and R. Kahhat, “Energy potential from rice husk through direct combustion and fast pyrolisis- a review,” Waste Management, vol. 59, pp. 200-210, 2017.J. Arévalo, G. Quispe, and C. Raymundo, “Sustainable Energy Model for the production of biomass briquettes,” Energy Procedia, vol. 141, pp. 138 - 145, 2017.I. Quispe, R. Navia y R. Kahhat, “Energy potential from rice husk through direct combustion and fast pyrolysis: A review,” Waste Management, vol. 59, pp. 200-210, 2017.S. Ndindeng, J. Mbassi, W. Mbacham, J. Manful, S. Graham Acquaah, J. Moreira, J. Dossou, and K. Futakuchi, “Quality optimization in briquettes made from rice milling by-products,” Energy for Sustainable Development, vol. 29, pp. 24-31, 2015.F. Vitali, S. Parmigiani, M. Vaccari, and C. Collivignarelli, “Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries,” Waste Management, vol. 33, nº 12, pp. 2762-2770, 2013.S. Ramón-Ramón, J. Cárdenas, y J. Rojas, “Poder calorífico de la cascarilla de arroz usada como combustible en hornos de secado,” Mundo Fesc, vol. 8, nº 16, pp. 63-67, 2018.S. Shackley, S. Carter, T. Knowles, E. Middelink, S. Haefele, S. Sohi, A. Cross, and S. Haszeldine, “Ustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context chemical properties, environmental and health and safety issues,” Energy Policy, vol. 41, pp. 49-58, 2012.R. Blissett, R. Sommerville, N. Rowson, J. Jones, and B. Laughlin, “Valorisation of rice husks using a TORBED® combustion process,” Fuel Processing Technology, vol. 159, pp. 247-255, 2017.F. Okasha, G. Zaater, S. El-Emam, M. Awad, and E. Zeidan, “Co combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Combustion characteristics,” Fuel, vol. 133, pp. 143-152, 2014.E. R. Abaide, M. V. Tres, G. L. Zabot, and M. A. Mazutti, “Reasons for processing of rice coproducts: Reality and expectations,” Biomass and Bioenergy, vol. 20, pp. 240-256, 2019.M. Balat, M. Balat, E. Kırtay, and H. Balat, “Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems,” Energy Conversion and Management, vol. 50, nº 12, pp. 3147-3157, 2009.H. S. Heo, H. J. Park, J.-I. Dong, S. H. Park, S. Kim, D. J. Suh, Y.-W. Suh, S.-S. Kim, and Y.-K. Park, “Fast pyrolysis of rice husk under different reaction conditions,” Journal of Industrial and Engineering Chemistry, vol. 16, nº 1, pp. 27-31, 2010.P. Díaz Navarro, “Gestión Energética Empresarial en la “Unidad Económica Básica Industrial Victoria de Girón”,” Pinar del Río., 2014.P. Díaz, J. Rivero, y D. Regalado, “Diseño de un horno para calentar aire empleando la cascarilla del arroz como combustible,” Revista Científica Avances, vol. 18, nº 3, pp. 201-212, 2016.A. Abbas, and S. Ansumali, “Global potential of rice husk as a renewable feedstock foethanol biofuel production,” Bioenergy Research, vol. 3, pp. 328-334, 2010.F. Momayez, K. Karimi, and I. Sárvári, “Enhancing ethanol and methane production from rice straw by pretreatment with liquid waste from biogas plant,” Energy Conversion and Management, vol. 178, pp. 290-298, 2018.B. A. Goodman, “Utilization of waste straw and husks from rice production: A review,” Journal of Bioresources and Bioproducts, vol. 5, nº 3, pp. 143-162, 2020.C. Lamb, B. Martini, D. Souza, F. Fornasier, L. Riça, Larissa Brixner, and R. Souza, “Bioethanol production from rice hull and evaluation of the final solid residue,” Chemical Engineering Communications, pp. 1-13, 2018.M. Hans, S. Kumar, A. Chandel, and I. Polikarpov, “A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation,” Process Biochemistry, vol. 85, pp. 125-134, 2018.M. Nikzad, K., Movagharnejad, G. D. Najafpour, and F. Talebnia, “Comparative studies on the effect of pretreatment of rice husk on enzymatic digestibility and bioethanol production,” International Journal of Engineering, Transactions B: Applications, vol. 26, nº 5, pp. 455-464, 2013.W. Zhong, Z. Zhang, W. Qiao, P. Fu, and M. Liu, “Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion,” Renewable Energy, vol. 36, nº 6, pp. 1875-1879, 2011.L. M. Contreras, H. C. Schelle, R. Sebrango, and I. Pereda, “Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process,” Water science & technology, vol. 65.6, pp. 1142-1149, 2012.Y. Huang, and L. Shang-lien, “Chapter 19. Utilization of rice hull and straw,” de Rice, 2019, pp. 627-661.B. J. Poddar, S. P. Nakhate, R. K. Gupta, A. R. Chavan, A. K. Singh, A. A. Khardenavis, and H. J. Purohit, “A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion,” International Journal of Environmental Science and Technology, vol. Marzo, 2021.C. Okeh, C. O. Onwosi, and F. J. C. Odibo, “Biogas production from rice husks generated from various rice mills in,” Renewable Energy, nº 62, pp. 204 - 208, 2014.A. David, O. Labunmi, L. Albert, A. Bodunde, and J. Owolabi, “Enhanced Biogas Production from Rice Husk Through Solid State Chemical Pretreatments,” Waste and Biomass Valorization, vol. 11, nº 6, pp. 2397-2407, 2020.F. Kuhn, E. Berghahn, M. Marder, O. Konrad, R. A. Sperotto, and C. Eichelberger Granada, “Inoculation of environmental fungal isolates improve the methane biochemical potential of rice hulls in anaerobic digestion processes,” Journal of Material Cycles and Waste Management, vol. 23, nº 2, pp. 717-726, 2021.R. Ruan, Y. Zhang, P. Chen, S. Liu, L. Fan, N. Zhou, K. Ding, P. Peng, M. Addy, Y. Cheng, E. Anderson, Y. Wang, Y. Liu, H. Lei, and. B. Li, “Biofuels: Introduction,” de Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, El Sevier, pp. 3-43, 2019.R. Singh, M. Srivastava, and A. Shukla, Environmental sustainability of bioethanol production from rice straw in India: a review,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 202-2016, 2016.R. Wuana, and F. Okieimen, “Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation,” International Scholarly Research Notices, 2011.U. Ashraf, A. Kanu, Z. Mo, S. Hussain, S. Anjum, I. Khan, R. Abbas, and X. Tang, “Lead toxicity in rice: effects, mechanisms and mitigation strategies: a minireview,” Environmental Science and Pollution Research, vol. 22, p. 18318–18332, 2015.M. Laidlaw, G. Filippelli, S. Brown, J. Paz-Ferreiro, S. Reichman, P. Netherway, A. Truskewycz, A. Ball, and H. Mielke, “Case studies and evidence-based approaches to addressing urban soil lead contamination,” Applied Geochemistry, vol. 83, pp. 14-30, 2017.C. Atkinson, J. Fitzgerald, and N. Hipps, “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review,” Plant Soil, vol. 337, pp. 1-18, 2010.F. N. Quintero Peralta, y R. I. Umanzor Amador, “Evaluación del efecto de cascarilla de arroz carbonizada en propiedades físicas y retención de nitrógeno en el suelo,” Universidad Católica del Trópico Seco, Estelí, 2018.D.-L. A. Evelin, G.-R. C. Abelardo, P.-G. Francisco, V.-I. J. Roberto, and A.-S. Otilio, “Fitorremediación: una alternativa para eliminar la contaminación,” Tropical and Subtropical Agroecosystems, vol. 14, nº 2, pp. 597-612, 2011.B. Kiran, and M. Prasad, “Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead spiked soils,” Ecotoxicology and Environmental Safety, vol. 183, 2019.Samsuri, F. Tariq, D. Karam, A. Aris, and G. Jamilu, “The effects of rice husk ashes and inorganic fertilizers application rates on the phytoremediation of gold mine tailings by vetiver grass,” Applied Geochemistry, vol. 108, 2019.K. Foo, and B. Hameed, “Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste,” Advances in Colloid and Interface Science, vol. 152, pp. 39-47, 2009.B. Kumar, D. Sengupta, T. Dasgupta, S. Mandal, and S. Datta, “Recovery of value-added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste,” Reviews in Environmental Science and Biotechnology, vol. 15, p. 47–65, 2016.X. Liu, X. Chen, L. Yang, H. Chen, Y. Tian, and Z. Wang, “A review on recent advances in the comprehensive application of rice husk ash,” Research Chemistry Intermedia, vol. 42, pp. 893-913, 2016.B. Mathew, M. Jaishankar, V. Biju, and K. Beeregowda, “Role of Bioadsorbents in Reducing Toxic Metals,” Journal of Toxicology, pp. 1-13, 2016.S. Higuera, “Biofiltro con cascarilla de arroz y pasto vetiver (Chrysopogon zizanioides) para el tratamiento del efluente de la PTAR del INPEC,” Grupo de Investigación CAZAO. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente – ECAPMA. Universidad Nacional Abierta y a Distancia UNAD., Yopal, 2016.D. He, A. Ikeda-Ohno, D. D. Boland, and T. D. Waite, “Synthesis and Characterization of Antibacterial Silver Nanoparticle Impregnated Rice Husks and Rice Husk Ash,” Environmental Science & Technology, vol. 47, nº 10, pp. 5276-5284, 2013.C. Malhotra, R. Patil, S. Kausley, and D. Ahmad, “Novel uses of rice-husk-ash (a natural silica-carbon matrix) in low-cost water purification applications,” AIP Conference Proceedings, vol. 113, p. 1538, 2013Ingeniería y operaciones afinesResiduos sólidosEconomía circularCascarilla de arrozSector industrialAgroindustriaCiencias ambientales e ingenieríaValorización de cascarilla de arroz en diferentes sectores industrialesCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Comunidad científicaEnseñanza universitaria o superiorTHUMBNAILValorización de cascarilla de arroz en diferentes sectores industriales.pdf.jpgValorización de cascarilla de arroz en diferentes sectores industriales.pdf.jpgGenerated Thumbnailimage/jpeg9632https://dspace.tdea.edu.co/bitstream/tdea/4858/4/Valorizaci%c3%b3n%20de%20cascarilla%20de%20arroz%20en%20diferentes%20sectores%20industriales.pdf.jpgacd5e80dd2dc90b41dada50ae8d5169aMD54open accessTEXTValorización de cascarilla de arroz en diferentes sectores industriales.pdf.txtValorización de cascarilla de arroz en diferentes sectores industriales.pdf.txtExtracted texttext/plain109370https://dspace.tdea.edu.co/bitstream/tdea/4858/3/Valorizaci%c3%b3n%20de%20cascarilla%20de%20arroz%20en%20diferentes%20sectores%20industriales.pdf.txtc133136802984504e7bad99c98bb070fMD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/4858/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessORIGINALValorización de cascarilla de arroz en diferentes sectores industriales.pdfValorización de cascarilla de arroz en diferentes sectores industriales.pdfapplication/pdf2512067https://dspace.tdea.edu.co/bitstream/tdea/4858/1/Valorizaci%c3%b3n%20de%20cascarilla%20de%20arroz%20en%20diferentes%20sectores%20industriales.pdf3d68a5f3a9ab1bce990635c25b2af26aMD51open accesstdea/4858oai:dspace.tdea.edu.co:tdea/48582023-12-13 03:03:59.985open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=