Numerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications

In this work, the efficiency of two horizontal-axis hydrokinetic turbines, whose blades were designed with and without multi-element hydrofoil cross-sections, has been numerical and experimentally inves- tigated for tip speed ratio (k) values ranging between 2.5 and 9.0 to compare the experimental r...

Full description

Autores:
Aguilar Bedoya, Jonathan
Velásquez García, Laura Isabel
Romero Menco, Fredys
Betancour Osorio, Johan Slayton
Rubio Clemente, Ainhoa
Chica Arrieta, Edwin Lenin
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/2710
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/2710
Palabra clave:
6-DoF
Horizontal-axis hydrokinetic turbine
Multi-element hydrofoil
High-lift hydrofoil
Hydrofoil-flap arrangement
Optimization
Optimización
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id RepoTdea2_cf210bdca257abd0f43af2ac36b51303
oai_identifier_str oai:dspace.tdea.edu.co:tdea/2710
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Numerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications
title Numerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications
spellingShingle Numerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications
6-DoF
Horizontal-axis hydrokinetic turbine
Multi-element hydrofoil
High-lift hydrofoil
Hydrofoil-flap arrangement
Optimization
Optimización
title_short Numerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications
title_full Numerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications
title_fullStr Numerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications
title_full_unstemmed Numerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications
title_sort Numerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications
dc.creator.fl_str_mv Aguilar Bedoya, Jonathan
Velásquez García, Laura Isabel
Romero Menco, Fredys
Betancour Osorio, Johan Slayton
Rubio Clemente, Ainhoa
Chica Arrieta, Edwin Lenin
dc.contributor.author.none.fl_str_mv Aguilar Bedoya, Jonathan
Velásquez García, Laura Isabel
Romero Menco, Fredys
Betancour Osorio, Johan Slayton
Rubio Clemente, Ainhoa
Chica Arrieta, Edwin Lenin
dc.subject.proposal.none.fl_str_mv 6-DoF
Horizontal-axis hydrokinetic turbine
Multi-element hydrofoil
High-lift hydrofoil
Hydrofoil-flap arrangement
topic 6-DoF
Horizontal-axis hydrokinetic turbine
Multi-element hydrofoil
High-lift hydrofoil
Hydrofoil-flap arrangement
Optimization
Optimización
dc.subject.unesco.none.fl_str_mv Optimization
Optimización
description In this work, the efficiency of two horizontal-axis hydrokinetic turbines, whose blades were designed with and without multi-element hydrofoil cross-sections, has been numerical and experimentally inves- tigated for tip speed ratio (k) values ranging between 2.5 and 9.0 to compare the experimental rotor per- formance with numerical results. The Eppler 420 hydrofoil was used for the design of the blades applying the blade element momentum (BEM) theory. The variation of the power coefficient curve of the turbines was analyzed by using computational fluid dynamics (CFD) and experimental tests through ANSYs Fluent software with six-degrees of freedom (6-DoF) user-defined function (UDF) method and an open hydraulic channel, respectively. Numerically, for the turbine with a multi-element hydrofoil and without a multi- element (traditional) hydrofoil, maximum power coefficients (CPmax) of 0.5050 and 0.419 (at a k value equal to 7.129 and 6.739, respectively) were obtained. It is worth noting that a reasonable agreement between the numerical and the experimental results was achieved. In this regard, the blade with a multi-element hydrofoil has a positive influence on the hydrokinetic turbine performance; therefore, it can be used for power generation in river or marine systems.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-03-28T22:40:16Z
dc.date.available.none.fl_str_mv 2023-03-28T22:40:16Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/2710
dc.identifier.eissn.spa.fl_str_mv 2213-1558
url https://dspace.tdea.edu.co/handle/tdea/2710
identifier_str_mv 2213-1558
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 12
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.ispartofjournal.spa.fl_str_mv Journal of King Saud University. Engineering sciences.
dc.relation.references.spa.fl_str_mv Abutunis, A., Hussein, R., Chandrashekhara, K., 2019. A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application. Renewable Energy 136, 1281–1293
Aguilar, J., Rubio-Clemente, A., Velasquez, L., Chica, E., 2019. Design and optimization of a multi-element hydrofoil for a horizontal-axis hydrokinetic turbine. Energies 12, 4679.
Andreadis, K.M., Schumann, G.J.-P., Pavelsky, T., 2013. A simple global river bankfull width and depth database. Water Resources Research 49, 7164–7168.
Atcheson, M., MacKinnon, P., Elsaesser, B., 2015. A large scale model experimental study of a tidal turbine in uniform steady flow. Ocean Engineering 110, 51–61.
Bahaj, A., Molland, A., Chaplin, J., Batten, W., 2007. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renewable Energy 32, 407–426
Batten, W., Bahaj, A., Molland, A., Chaplin, J., 2008. The prediction of the hydrodynamic performance of marine current turbines. Renewable Energy 33, 1085–1096.
Baykov, A., Dar’enkov, A., Kurkin, A., Sosnina, E., 2019. Mathematical modelling of a tidal power station with diesel and wind units. Journal of King Saud University- Science 31, 1491–1498
Bhargava, V., Dwivedi, Y., Rao, P., 2017. Analysis of multi-element airfoil configurations: a numerical approach. MOJ Applied Bionics and Biomechanics 1, 83–88.
Chen, T., Jiang, X., Wang, H., Li, Q., Li, M., Wu, Z., 2020. Investigation of leading-edge slat on aerodynamic performance of wind turbine blade. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 0954406220941883.
Chica, E., Rubio-Clemente, A., 2017. Design of zero head turbines for power generation. IntechOpen.
Chica, E., Perez, F., Rubio-Clemente, A., Agudelo, S., 2015. Design of a hydrokinetic turbine. WIT Transactions on Ecology and the Environment 195, 137–148. Chica, E., Pérez, F., Rubio-Clemente, A., 2016. Rotor structural design of a hydrokinetic turbine. International Journal of Applied Engineering Research 11, 2890–2897.
Doman, D.A., Murray, R.E., Pegg, M.J., Gracie, K., Johnstone, C.M., Nevalainen, T., 2015. Tow-tank testing of a 1/20th scale horizontal axis tidal turbine with uncertainty analysis. International Journal of Marine Energy 11, 105–119.
Franco, A., Shaker, M., Kalubi, D., Hostettler, S., 2017. A review of sustainable energy access and technologies for healthcare facilities in the global south. Sustainable Energy Technologies and Assessments 22, 92–105.
Gallego, E., Rubio-Clemente, A., Pineda, J., Velásquez, L., Chica, E., 2021. Experimental analysis on the performance of a pico-hydro turgo turbine. Journal of King Saud University-Engineering Sciences 33, 266–275.
Goundar, J.N., Ahmed, M.R., Lee, Y.-H., 2012. Numerical and experimental studies on hydrofoils for marine current turbines. Renewable Energy 42, 173–179.
Jaume, A.M., Wild, J., 2016. Aerodynamic design and optimization of a high-lift device for a wind turbine airfoil, in: New Results in Numerical and Experimental
Fluid Mechanics X, Springer, 2016, pp. 859–869..
Jeffcoate, P., Whittaker, T., Boake, C., Elsaesser, B., 2016. Field tests of multiple 1/10 scale tidal turbines in steady flows. Renewable Energy 87, 240–252.
Kang, C., Zhao, H., Zhang, Y., Ding, K., 2021. Effects of upstream deflector on flow characteristics and startup performance of a drag-type hydrokinetic rotor. Renewable Energy 172, 290–303.
Ke, S., Wen-Quan, W., Yan, Y., 2020a. Experimental and numerical analysis of a multilayer composite ocean current turbine blade. Ocean Engineering 198, 106977.
Ke, S., Wen-Quan, W., Yan, Y., 2020b. The hydrodynamic performance of a tidal- stream turbine in shear flow. Ocean Engineering 199, 107035. Kirke, B., 2019. Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development 52, 1–10.
Manwell, J., McGowan, J., Rogers, A., 2009. Aerodynamics of wind turbines. Wind energy explained, 91–155.
Mao, G., Wang, S., Teng, Q., Zuo, J., Tan, X., Wang, H., Liu, Z., 2017. The sustainable future of hydropower: A critical analysis of cooling units via the theory of inventive problem solving and life cycle assessment methods. Journal of Cleaner Production 142, 2446–2453
Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32, 1598–1605.
Morandi, B., Di Felice, F., Costanzo, M., Romano, G., Dhomé, D., Allo, J., 2016. Experimental investigation of the near wake of a horizontal axis tidal current turbine. International Journal of Marine Energy 14, 229–247.
Muheisen, A.H., Yass, M.A., Irthiea, I.K., 2021. Enhancement of horizontal wind turbine blade performance using multiple airfoils sections and fences. Journal of King Saud University-Engineering Sciences.
Muratoglu, A., Tekin, R., Ertug ̆rul, Ö.F., 2021. Hydrodynamic optimization of high- performance blade sections for stall regulated hydrokinetic turbines using differential evolution algorithm. Ocean Engineering 220, 108389.
Mycek, P., Gaurier, B., Germain, G., Pinon, G., Rivoalen, E., 2014a. Experimental study of the turbulence intensity effects on marine current turbines behaviour. part i: One single turbine. Renewable Energy 66, 729–746.
Mycek, P., Gaurier, B., Germain, G., Pinon, G., Rivoalen, E., 2014b. Experimental study of the turbulence intensity effects on marine current turbines behaviour. part ii: Two interacting turbines. Renewable Energy 68, 876–892.
Narsipur, S., Pomeroy, B., Selig, M., 2012. Cfd analysis of multielement airfoils for wind turbines. In: 30th AIAA Applied Aerodynamics Conference, p. 2781
Prakoso, A.P., Siswantara, A.I., Adanta, D., 2019. Comparison between 6-dof udf and moving mesh approaches in cfd methods for predicting cross-flow pico-hydro turbine performance. CFD Letters 11, 86–96.
Prakoso, A.P., Adanta, D., Irwansyah, R., et al., 2020. Approach for a breastshot waterwheel numerical simulation methodology using six degrees of freedom. Energy Reports 6, 611–616.
Ragheb, A., Selig, M., 2011. Multi-element airfoil configurations for wind turbines. In: 29th AIAA Applied Aerodynamics Conference, p. 3971.
Ragheb, A.M., Selig, M.S., 2017. Multielement airfoils for wind turbines. In: Wind Energy Engineering. Elsevier, pp. 203–219.
Ridway, B., Aditya, R., Delly, J., 2014. Blade number effect for a horizontal axis river current turbine at a low velocity condition utilizing a parametric study with mathematical model of blade element momentum. Journal of Clean Energy Technologies 2.
Schleicher, W., Riglin, J., Oztekin, A., 2015. Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design. Renewable Energy 76, 234–241.
Seo, J., Lee, S.-J., Choi, W.-S., Park, S.T., Rhee, S.H., 2016. Experimental study on kinetic energy conversion of horizontal axis tidal stream turbine. Renewable Energy 97, 784–797
Shinomiya, L., Vaz, J., Mesquita, A., de Oliveira, T., Brasil Jr, A., Silva, P., 2015. An approach for the optimum hydrodynamic design of hydrokinetic turbine blades. Revista de Engenharia Térmica 14, 43–46.
P.A. Silva, T.F. OLIVEIRA, A.C. Brasil Junior, J.R. Vaz, Numerical study of wake characteristics in a horizontal-axis hydrokinetic turbine, Anais da Academia Brasileira de Ciências 88 (2016) 2441–2456..
Soulat, L., Pouangue, A.F., Moreau, S., 2016. A high-order sensitivity method for multi-element high-lift device optimization. Computers & Fluids 124, 105–116.
P. Srihari, P. Narayana, K.L. Rao, J.D. Venkatesh, P. Rajesh, 2019. Influence of slat and flaps arrangement on the performance of modified darrieus wind turbine, in: AIP Conference Proceedings, vol. 2200, AIP Publishing LLC, 2019, p. 020012..
Subhra, S., Kolekar, N., Banerjee, A., Mishra, R., 2011. Numerical investigation and evaluation of optimum hydrodynamic performance of a horizontal axis hydrokinetic turbine. Journal of Renewable and Sustainable Energy 3, 063105.
Tian, W., Mao, Z., Ding, H., 2018a. Design, test and numerical simulation of a low- speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering 10, 782–793.
Tian, W., Mao, Z., Ding, H., 2018b. Design, test and numerical simulation of a low- speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering 10, 782–793.
Wang, W.-Q., Yin, R., Yan, Y., 2019. Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renewable Energy 133, 91–102.
Yavuz, T., Koç, E., Kılkısß, B., Erol, Ö., Balas, C., Aydemir, T., 2015. Performce analysis of the airfoil-slat arrangements for hydro and wind turbine applications. Renewable Energy 74, 414–421.
Yildiz, V., Vrugt, J.A., 2019. A toolbox for the optimal design of run-of-river hydropower plants. Environmental Modelling & Software 111, 134–152. Yuce, M.I., Muratoglu, A., 2015. Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews 43, 72– 82.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Amsterdam: Elsevier
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S101836392100115X
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/2710/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/2710/3/Numerical%20and%20experimental%20study%20of%20hydrofoil-flap%20arrangements%20for%20hydrokinetic%20turbine%20applications.pdf.txt
https://dspace.tdea.edu.co/bitstream/tdea/2710/4/Numerical%20and%20experimental%20study%20of%20hydrofoil-flap%20arrangements%20for%20hydrokinetic%20turbine%20applications.pdf.jpg
https://dspace.tdea.edu.co/bitstream/tdea/2710/1/Numerical%20and%20experimental%20study%20of%20hydrofoil-flap%20arrangements%20for%20hydrokinetic%20turbine%20applications.pdf
bitstream.checksum.fl_str_mv 2f9959eaf5b71fae44bbf9ec84150c7a
36c6f0b2061da514c400c0bc2749b5cf
070fed448b7676a13b7375d6481e3f9f
25f71226235b4c9f087c74c625bedd96
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808408381713547264
spelling Aguilar Bedoya, Jonathan80cce53b-b8d9-402e-9ca3-16e60e2d7354Velásquez García, Laura Isabel11a92509-a1af-4051-a2d5-dccfe020846eRomero Menco, Fredysb04f7558-8816-400a-9a77-dc7e45218130Betancour Osorio, Johan Slaytonea4a5187-e868-44ae-990f-8591df1caf2fRubio Clemente, Ainhoa8924cc9a-a600-460b-b180-3288281741e5Chica Arrieta, Edwin Lenina3a70685-f160-43b7-8bd2-46fcfa5c040e2023-03-28T22:40:16Z2023-03-28T22:40:16Z2021https://dspace.tdea.edu.co/handle/tdea/27102213-1558In this work, the efficiency of two horizontal-axis hydrokinetic turbines, whose blades were designed with and without multi-element hydrofoil cross-sections, has been numerical and experimentally inves- tigated for tip speed ratio (k) values ranging between 2.5 and 9.0 to compare the experimental rotor per- formance with numerical results. The Eppler 420 hydrofoil was used for the design of the blades applying the blade element momentum (BEM) theory. The variation of the power coefficient curve of the turbines was analyzed by using computational fluid dynamics (CFD) and experimental tests through ANSYs Fluent software with six-degrees of freedom (6-DoF) user-defined function (UDF) method and an open hydraulic channel, respectively. Numerically, for the turbine with a multi-element hydrofoil and without a multi- element (traditional) hydrofoil, maximum power coefficients (CPmax) of 0.5050 and 0.419 (at a k value equal to 7.129 and 6.739, respectively) were obtained. It is worth noting that a reasonable agreement between the numerical and the experimental results was achieved. In this regard, the blade with a multi-element hydrofoil has a positive influence on the hydrokinetic turbine performance; therefore, it can be used for power generation in river or marine systems.12 páginasapplication/pdfengAmsterdam: ElsevierNetherlandshttps://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S101836392100115XNumerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85121Journal of King Saud University. Engineering sciences.Abutunis, A., Hussein, R., Chandrashekhara, K., 2019. A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application. Renewable Energy 136, 1281–1293Aguilar, J., Rubio-Clemente, A., Velasquez, L., Chica, E., 2019. Design and optimization of a multi-element hydrofoil for a horizontal-axis hydrokinetic turbine. Energies 12, 4679.Andreadis, K.M., Schumann, G.J.-P., Pavelsky, T., 2013. A simple global river bankfull width and depth database. Water Resources Research 49, 7164–7168.Atcheson, M., MacKinnon, P., Elsaesser, B., 2015. A large scale model experimental study of a tidal turbine in uniform steady flow. Ocean Engineering 110, 51–61.Bahaj, A., Molland, A., Chaplin, J., Batten, W., 2007. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renewable Energy 32, 407–426Batten, W., Bahaj, A., Molland, A., Chaplin, J., 2008. The prediction of the hydrodynamic performance of marine current turbines. Renewable Energy 33, 1085–1096.Baykov, A., Dar’enkov, A., Kurkin, A., Sosnina, E., 2019. Mathematical modelling of a tidal power station with diesel and wind units. Journal of King Saud University- Science 31, 1491–1498Bhargava, V., Dwivedi, Y., Rao, P., 2017. Analysis of multi-element airfoil configurations: a numerical approach. MOJ Applied Bionics and Biomechanics 1, 83–88.Chen, T., Jiang, X., Wang, H., Li, Q., Li, M., Wu, Z., 2020. Investigation of leading-edge slat on aerodynamic performance of wind turbine blade. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 0954406220941883.Chica, E., Rubio-Clemente, A., 2017. Design of zero head turbines for power generation. IntechOpen.Chica, E., Perez, F., Rubio-Clemente, A., Agudelo, S., 2015. Design of a hydrokinetic turbine. WIT Transactions on Ecology and the Environment 195, 137–148. Chica, E., Pérez, F., Rubio-Clemente, A., 2016. Rotor structural design of a hydrokinetic turbine. International Journal of Applied Engineering Research 11, 2890–2897.Doman, D.A., Murray, R.E., Pegg, M.J., Gracie, K., Johnstone, C.M., Nevalainen, T., 2015. Tow-tank testing of a 1/20th scale horizontal axis tidal turbine with uncertainty analysis. International Journal of Marine Energy 11, 105–119.Franco, A., Shaker, M., Kalubi, D., Hostettler, S., 2017. A review of sustainable energy access and technologies for healthcare facilities in the global south. Sustainable Energy Technologies and Assessments 22, 92–105.Gallego, E., Rubio-Clemente, A., Pineda, J., Velásquez, L., Chica, E., 2021. Experimental analysis on the performance of a pico-hydro turgo turbine. Journal of King Saud University-Engineering Sciences 33, 266–275.Goundar, J.N., Ahmed, M.R., Lee, Y.-H., 2012. Numerical and experimental studies on hydrofoils for marine current turbines. Renewable Energy 42, 173–179.Jaume, A.M., Wild, J., 2016. Aerodynamic design and optimization of a high-lift device for a wind turbine airfoil, in: New Results in Numerical and ExperimentalFluid Mechanics X, Springer, 2016, pp. 859–869..Jeffcoate, P., Whittaker, T., Boake, C., Elsaesser, B., 2016. Field tests of multiple 1/10 scale tidal turbines in steady flows. Renewable Energy 87, 240–252.Kang, C., Zhao, H., Zhang, Y., Ding, K., 2021. Effects of upstream deflector on flow characteristics and startup performance of a drag-type hydrokinetic rotor. Renewable Energy 172, 290–303.Ke, S., Wen-Quan, W., Yan, Y., 2020a. Experimental and numerical analysis of a multilayer composite ocean current turbine blade. Ocean Engineering 198, 106977.Ke, S., Wen-Quan, W., Yan, Y., 2020b. The hydrodynamic performance of a tidal- stream turbine in shear flow. Ocean Engineering 199, 107035. Kirke, B., 2019. Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development 52, 1–10.Manwell, J., McGowan, J., Rogers, A., 2009. Aerodynamics of wind turbines. Wind energy explained, 91–155.Mao, G., Wang, S., Teng, Q., Zuo, J., Tan, X., Wang, H., Liu, Z., 2017. The sustainable future of hydropower: A critical analysis of cooling units via the theory of inventive problem solving and life cycle assessment methods. Journal of Cleaner Production 142, 2446–2453Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32, 1598–1605.Morandi, B., Di Felice, F., Costanzo, M., Romano, G., Dhomé, D., Allo, J., 2016. Experimental investigation of the near wake of a horizontal axis tidal current turbine. International Journal of Marine Energy 14, 229–247.Muheisen, A.H., Yass, M.A., Irthiea, I.K., 2021. Enhancement of horizontal wind turbine blade performance using multiple airfoils sections and fences. Journal of King Saud University-Engineering Sciences.Muratoglu, A., Tekin, R., Ertug ̆rul, Ö.F., 2021. Hydrodynamic optimization of high- performance blade sections for stall regulated hydrokinetic turbines using differential evolution algorithm. Ocean Engineering 220, 108389.Mycek, P., Gaurier, B., Germain, G., Pinon, G., Rivoalen, E., 2014a. Experimental study of the turbulence intensity effects on marine current turbines behaviour. part i: One single turbine. Renewable Energy 66, 729–746.Mycek, P., Gaurier, B., Germain, G., Pinon, G., Rivoalen, E., 2014b. Experimental study of the turbulence intensity effects on marine current turbines behaviour. part ii: Two interacting turbines. Renewable Energy 68, 876–892.Narsipur, S., Pomeroy, B., Selig, M., 2012. Cfd analysis of multielement airfoils for wind turbines. In: 30th AIAA Applied Aerodynamics Conference, p. 2781Prakoso, A.P., Siswantara, A.I., Adanta, D., 2019. Comparison between 6-dof udf and moving mesh approaches in cfd methods for predicting cross-flow pico-hydro turbine performance. CFD Letters 11, 86–96.Prakoso, A.P., Adanta, D., Irwansyah, R., et al., 2020. Approach for a breastshot waterwheel numerical simulation methodology using six degrees of freedom. Energy Reports 6, 611–616.Ragheb, A., Selig, M., 2011. Multi-element airfoil configurations for wind turbines. In: 29th AIAA Applied Aerodynamics Conference, p. 3971.Ragheb, A.M., Selig, M.S., 2017. Multielement airfoils for wind turbines. In: Wind Energy Engineering. Elsevier, pp. 203–219.Ridway, B., Aditya, R., Delly, J., 2014. Blade number effect for a horizontal axis river current turbine at a low velocity condition utilizing a parametric study with mathematical model of blade element momentum. Journal of Clean Energy Technologies 2.Schleicher, W., Riglin, J., Oztekin, A., 2015. Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design. Renewable Energy 76, 234–241.Seo, J., Lee, S.-J., Choi, W.-S., Park, S.T., Rhee, S.H., 2016. Experimental study on kinetic energy conversion of horizontal axis tidal stream turbine. Renewable Energy 97, 784–797Shinomiya, L., Vaz, J., Mesquita, A., de Oliveira, T., Brasil Jr, A., Silva, P., 2015. An approach for the optimum hydrodynamic design of hydrokinetic turbine blades. Revista de Engenharia Térmica 14, 43–46.P.A. Silva, T.F. OLIVEIRA, A.C. Brasil Junior, J.R. Vaz, Numerical study of wake characteristics in a horizontal-axis hydrokinetic turbine, Anais da Academia Brasileira de Ciências 88 (2016) 2441–2456..Soulat, L., Pouangue, A.F., Moreau, S., 2016. A high-order sensitivity method for multi-element high-lift device optimization. Computers & Fluids 124, 105–116.P. Srihari, P. Narayana, K.L. Rao, J.D. Venkatesh, P. Rajesh, 2019. Influence of slat and flaps arrangement on the performance of modified darrieus wind turbine, in: AIP Conference Proceedings, vol. 2200, AIP Publishing LLC, 2019, p. 020012..Subhra, S., Kolekar, N., Banerjee, A., Mishra, R., 2011. Numerical investigation and evaluation of optimum hydrodynamic performance of a horizontal axis hydrokinetic turbine. Journal of Renewable and Sustainable Energy 3, 063105.Tian, W., Mao, Z., Ding, H., 2018a. Design, test and numerical simulation of a low- speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering 10, 782–793.Tian, W., Mao, Z., Ding, H., 2018b. Design, test and numerical simulation of a low- speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering 10, 782–793.Wang, W.-Q., Yin, R., Yan, Y., 2019. Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renewable Energy 133, 91–102.Yavuz, T., Koç, E., Kılkısß, B., Erol, Ö., Balas, C., Aydemir, T., 2015. Performce analysis of the airfoil-slat arrangements for hydro and wind turbine applications. Renewable Energy 74, 414–421.Yildiz, V., Vrugt, J.A., 2019. A toolbox for the optimal design of run-of-river hydropower plants. Environmental Modelling & Software 111, 134–152. Yuce, M.I., Muratoglu, A., 2015. Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews 43, 72– 82.6-DoFHorizontal-axis hydrokinetic turbineMulti-element hydrofoilHigh-lift hydrofoilHydrofoil-flap arrangementOptimizationOptimizaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/2710/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTNumerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications.pdf.txtNumerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications.pdf.txtExtracted texttext/plain12https://dspace.tdea.edu.co/bitstream/tdea/2710/3/Numerical%20and%20experimental%20study%20of%20hydrofoil-flap%20arrangements%20for%20hydrokinetic%20turbine%20applications.pdf.txt36c6f0b2061da514c400c0bc2749b5cfMD53open accessTHUMBNAILNumerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications.pdf.jpgNumerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications.pdf.jpgGenerated Thumbnailimage/jpeg17343https://dspace.tdea.edu.co/bitstream/tdea/2710/4/Numerical%20and%20experimental%20study%20of%20hydrofoil-flap%20arrangements%20for%20hydrokinetic%20turbine%20applications.pdf.jpg070fed448b7676a13b7375d6481e3f9fMD54open accessORIGINALNumerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications.pdfNumerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications.pdfapplication/pdf10557928https://dspace.tdea.edu.co/bitstream/tdea/2710/1/Numerical%20and%20experimental%20study%20of%20hydrofoil-flap%20arrangements%20for%20hydrokinetic%20turbine%20applications.pdf25f71226235b4c9f087c74c625bedd96MD51open accesstdea/2710oai:dspace.tdea.edu.co:tdea/27102023-05-06 22:21:30.41An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=