Normalized difference vegetation index for rice management in El Espinal, Colombia

Aerial images and the Normalized Difference Vegetation Index (NDVI) of the stage after panicle initiation were evaluated as tools that help large-scale rice monitoring and decision-making that favors crop profitability. NDVI was used to identify problems in the development and growth of FEDEARROZ-20...

Full description

Autores:
González Betancourt, Mauricio
Mayorga Ruíz, Zaira Liceth
Tipo de recurso:
Article of investigation
Fecha de publicación:
2018
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/2839
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/2839
Palabra clave:
Normalized difference vegetation index
Indice normalizado diferencial de la vegetación
Indice différentiel normalisé de végétation
Rice
Arroz
Riz
Unmanned aerial vehicles
Vehículos aéreos no tripulados
Veículos aéreos não tripulados
Véhicule aérien sans pilote
NDVI
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id RepoTdea2_c47cf1fb72f2afe9486f7840f68393ce
oai_identifier_str oai:dspace.tdea.edu.co:tdea/2839
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Normalized difference vegetation index for rice management in El Espinal, Colombia
dc.title.translated.none.fl_str_mv Índice de vegetación de diferencia normalizada para el manejo del arroz en El Espinal, Colombia
title Normalized difference vegetation index for rice management in El Espinal, Colombia
spellingShingle Normalized difference vegetation index for rice management in El Espinal, Colombia
Normalized difference vegetation index
Indice normalizado diferencial de la vegetación
Indice différentiel normalisé de végétation
Rice
Arroz
Riz
Unmanned aerial vehicles
Vehículos aéreos no tripulados
Veículos aéreos não tripulados
Véhicule aérien sans pilote
NDVI
title_short Normalized difference vegetation index for rice management in El Espinal, Colombia
title_full Normalized difference vegetation index for rice management in El Espinal, Colombia
title_fullStr Normalized difference vegetation index for rice management in El Espinal, Colombia
title_full_unstemmed Normalized difference vegetation index for rice management in El Espinal, Colombia
title_sort Normalized difference vegetation index for rice management in El Espinal, Colombia
dc.creator.fl_str_mv González Betancourt, Mauricio
Mayorga Ruíz, Zaira Liceth
dc.contributor.author.none.fl_str_mv González Betancourt, Mauricio
Mayorga Ruíz, Zaira Liceth
dc.subject.agrovoc.none.fl_str_mv Normalized difference vegetation index
Indice normalizado diferencial de la vegetación
Indice différentiel normalisé de végétation
Rice
Arroz
Riz
Unmanned aerial vehicles
Vehículos aéreos no tripulados
Veículos aéreos não tripulados
Véhicule aérien sans pilote
topic Normalized difference vegetation index
Indice normalizado diferencial de la vegetación
Indice différentiel normalisé de végétation
Rice
Arroz
Riz
Unmanned aerial vehicles
Vehículos aéreos no tripulados
Veículos aéreos não tripulados
Véhicule aérien sans pilote
NDVI
dc.subject.proposal.none.fl_str_mv NDVI
description Aerial images and the Normalized Difference Vegetation Index (NDVI) of the stage after panicle initiation were evaluated as tools that help large-scale rice monitoring and decision-making that favors crop profitability. NDVI was used to identify problems in the development and growth of FEDEARROZ-2000. FEDEARROZ-2000 is a variety of rice, which is resistant to the “hoja blanca” virus and direct “sogata” damage that affect fields in tropical America. The temporal dynamics of the NDVI for FEDEARROZ-2000 were estimated. An NDVI lower than 0.8 in the Stage of Rice Panicle Development (SRPD) was related to areas with levelling problems, differences in the vegetative stage, water stress, and spacing between plants. The NDVI for the SRPD had a significant positive correlation with yield, 1,000 grain weight and the number of panicles (Pearson's R≥0.86; probability value P ≤0.04). NDVI mapping at milky stage helped to identify production environments and to schedule the harvest areas. Keywords: NDVI; rice; unmanned aerial vehicle
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2023-05-01T16:25:25Z
dc.date.available.none.fl_str_mv 2023-05-01T16:25:25Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0012-7353
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/2839
dc.identifier.eissn.spa.fl_str_mv 2346-2183
identifier_str_mv 0012-7353
2346-2183
url https://dspace.tdea.edu.co/handle/tdea/2839
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 47
dc.relation.citationissue.spa.fl_str_mv 205
dc.relation.citationvolume.spa.fl_str_mv 85
dc.relation.ispartofjournal.spa.fl_str_mv DYNA
dc.relation.references.spa.fl_str_mv Ray, D.K., Mueller, N.D., West, P.C. and Foley, J.A., Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), e66428, 2013. DOI: 10.1371/journal.pone.0066428
Ray, D.K., Gerber, J.S., MacDonald, G.K., and West, P.C., Climate variation explains a third of global crop yield variability. Nature communications, 6, pp. 1-9, 2015. DOI: 10.1038/ncomms6989. [ Links ]
FEDEARROZ and CIAT (2014). Adopción masiva de tecnología (AMTEC). Validación de modelos y parametrización de la variedad FEDEARROZ. [en línea]. 2000. [Consultado: Julio 25 de 2017]. Disponible en: Disponible en: https://es.slideshare.net/cgiarclimate/fe-39197270 [ Links ]
Mapplecroft. Índice de vulnerabilidad y adaptación al cambio climático en la región de América Latina y el Caribe. Corporación Andina de Fomento (CAF), 2014. [ Links ]
Graterol, E. y Torres, E.A., Mejorando la competitividad del arroz en América Latina mediante el cierre de brechas de rendimiento. FLAR, CIAT, CGIAR, [en línea]. 2013. [Consultado: Nov. 21th of 2017]. Disponible en: Disponible en: http://flar.org/wp-content/uploads/2015/06/Taller-GRiSP-Cierre-de-brechas-ESP2.pdf [ Links ]
Chica, J., Tirado, O. and Barreto, J.M., Indicadores de competitividad del cultivo del arroz en Colombia y Estados Unidos. Revista de Ciencias Agrícolas, 33(2), pp. 16-31, 2016. [ Links ]
Sanint, L.R., Nuevos retos y grandes oportunidades tecnológicas para los sistemas arroceros: producción, seguridad alimentaria y disminución de la pobreza en América Latina y el Caribe, en: Degiovanni, B., Víctor, M., Martínez, R., César, P. and Motta, O., Producción eco-eficiente del arroz en América Latina. CIAT, 2010. [ Links ]
World Water Assessment Programme -WWAP. Informe de las Naciones Unidas sobre el desarrollo de los recursos hídricos en el mundo 2016, París, UNESCO, [en líena]. 2016. [Consultado en: Julio 25 de 2017]. Disponible en: Disponible en: http://unesdoc.unesco.org/images/0024/002441/244103s.pdf [ Links ]
Bouman, B.A.M., Humphreys, E., Tuong, T.P. and Barker, R. Rice and water. Advances in Agronomy 92, pp. 187-237, 2006. DOI: 10.1016/S0065-2113(04)92004-4 [ Links ]
Degiovanni, B., Víctor, M., Martínez, R., César, P. and Motta, O., Producción eco-eficiente del arroz en América Latina . CIAT, 2010. [ Links ]
González, M. y Alonso, A.M., Tecnologías para ahorrar agua en el cultivo de arroz. Nova, 14(26), pp. 67-82, 2016. DOI: 10.22490/24629448.1757 [ Links ]
Preciado-Pérez L.G., Época oportuna de cosecha y calibración de cosechadoras para el cultivo del arroz. Memorias del curso internacional sobre el manejo del cultivo de arroz. Ibagué, [en líena]. 2014. [Consultado: enero 21 de 2017]. Disponible en: Disponible en: http://flar.org/ii-curso-internacional/memorias-curso-internacional/ [ Links ]
Preciado-Pérez L.G., Pérdidas al cosechar en el momento no oportuno. Boletín de la Federación Nacional de Arroceros. [en línea]. 243, pp. 1, 2011. [Consultado: enero 21 de 2017]. Disponible en: Disponible en: http://www.fedearroz.com.co/revistanew/correo_243.pdf [ Links ]
López-Pérez, A., Martínez-Menes, M.R. and Fernández-Reynoso, D.S., Priorización de áreas de intervención mediante análisis morfométrico e índice de vegetación. Tecnología y Ciencias del Agua, 6(1), 121-137, 2015. [ Links ]
Chen, R.K. and Yang, C.M., Determining the optimal timing for using LAI and NDVI to predict rice yield. J. Photogramm. Remote Sens, 10(3), pp. 239-254, 2005. [ Links ]
Li, L., Zhang, Q. and Huang, D., A review of imaging techniques for plant phenotyping. Sensors, 14(11), pp. 20078-20111, 2014. DOI: 10.3390/s141120078 [ Links ]
Naito, H., Ogawa, S., Valencia, M.O., Mohri, H., Urano, Y., Hosoi, F. and Omasa, K., Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 125, pp. 50-62, 2017. DOI: 10.1016/j.isprsjprs.2017.01.010 [ Links ]
Barrero, O., Rojas, D., Gonzalez, C. and Perdomo, S., Weed detection in rice fields using aerial images and neural networks. In: Signal Processing, images and artificial vision, XXI Symposium on IEEE, pp.1-4, 2016. DOI: 10.1109/STSIVA.2016.7743317 [ Links ]
Pulver, E., Manejo estratégico y producción competitiva del arroz con riego en América Latina. En: DeGiovanni, V., Martínez, C.P. y Motta, F., eds. Producción ecoeficiente del arroz en América Latina. CIAT, Colombia, 2010. [ Links ]
Romero, L.E., Lozano, I., Garavito, A., Carabali, S.J., Triana, M., Villareal, N. and Lorieux, M., Major QTLs control resistance to rice hoja blanca virus and its vector Tagosodes orizicolus. G3: Genes, Genomes, Genetics, 4(1), pp. 133-142, 2014. DOI: 10.1534/g3.113.009373 [ Links ]
Morales, F.J. and Jennings, P.R., Rice hoja blanca: a complex plant-virus-vector pathosystem. Plant Sciences Reviews, 5(043), pp 1-16, 2010. DOI: 10.1079/PAVSNNR20105043 [ Links ]
Castilla L.y Florez E., SIFA: Sistema de fertilización en el cultivo de arroz a través de la web. Arroz, 62 (509), pp. 4-15, 2014. [ Links ]
Garcés, G. y Castilla, L., Uso del clorofilometro (indice de verdor) como estrategia en la fertilización nitrogenada en el cultivo. Arroz, 63(517), pp. 34 - 43, 2015. [ Links ]
Lin, W., Zhang, F.C., Jing, Y.S., Jiang, X.D., Yang, S.B. and Han, X.M., Multi-temporal detection of rice phenological stages using canopy spectrum. Rice Science, 21(2), pp. 108-115, 2014. DOI: 10.1016/S1672-6308(13)60170-5 [ Links ]
Degiovanni, V.M., Gómez, J.A. y Sierra, J.M., Análisis de crecimiento y etapas de desarrollo de tres variedades de arroz (Oryza sativa L.) en Montería, Córdoba. Temas Agrarios, 9(1), 2004, pp 21-29. [ Links ]
Dobermann, A. and Fairhurst, T., Rice: Nutrient disorders and nutrient management (Vol. 1). Int. Rice Res. Inst. 2000. [ Links ]
Chaudhary R.C., Nanda J.S. y Tran. D.V. Guía para identificar las limitaciones de campo en la producción de arroz. FAO, Rome, 2003. [ Links ]
Yoshida, H., Bhattacharjee, D. and Cabuslay, G.S., Relationship between plant type and root growth in rice. Soil Science and Plant Nutrition, 28, pp. 473-482, 1982. DOI: 10.1080/00380768.1982.10432387 [ Links ]
Nuruzzaman, M., Yamamoto, Y., Nitta, Y., Yoshida, T and Miyazaki, A., Varietal differences in tillering ability of fourteen japonica and indica rice varieties. Soil Science and Plant Nutrition , 46, pp. 381-391, 2000. DOI: 10.1080/00380768.2000.10408792 [ Links ]
García, J., Andres, S., Martínez, M. y Joel, L., Método para identificación de cultivos de arroz (Oryza sativa L.) con base en imágenes de satélite. Agronomía Colombiana, [en línea]. 28(2), pp. 281-290, 2010. Disponible en: http://www.redalyc.org/articulo.oa?id=180315602018 [ Links ]
Castilla A., Morales F., Ramirez O. y Mayorga Z., Manejo agronómico por ambiente rumbo a una agricultura de precisión en el cultivo de arroz. Arroz, 63(519), pp. 38-43, 2015. [ Links ]
Barrios, P.C., Giraldo, D., Llanos, L., Obando, D., Espinoza, J. and Gourdji, S., Agro-climatic risk management for better agricultural decision making in Latin America. Conference: ASABE 1st Climate Change Symposium, Illinois, 2015. DOI: 10.13031/cc.20152122545 [ Links ]
Beget, M.E. and Di Bella, C.M., Flooding: the effect of water depth on the spectral response of grass canopies. J Hydrol, 335, pp. 285-294, 2007. DOI: 10.1016/j.jhydrol.2006.11.018 [ Links ]
Cock, J.H. and Yoshida, S., Accumulation of 14 C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Japanese Journal of Crop Science, 41(2), pp. 226-234, 1972. DOI: 10.1626/jcs.41.226 [ Links ]
Verma, R., Katara, J.L., Samantaray, S., Patra, B.C., Sahu, R.K., Patnaik, S. and Mohapatra, T., A practical guide for successful hybrid seed production in rice-A Profitable Venture, Research Gate, pp. 1-21, 2016. DOI: 10.13140/RG.2.1.2333.5443 [ Links ]
Galiano, S.G., Assessment of vegetation indexes from remote sensing: Theoretical basis. Options Méditerranéennes, 67, pp. 65-75, 2012. [ Links ]
Zheng, H., Cheng, T., Yao, X., Deng, X., Tian, Y., Cao, W. and Zhu, Y., Detection of rice phenology through time series analysis of ground-based spectral index data. Field Crops Research, 198, pp. 131-139, 2016. DOI: 10.1016/j.fcr.2016.08.027 [ Links ]
Wang, H., Lin, H., Munroe, D.K., Zhang, X. and Liu, P., Reconstructing rice phenology curves with frequency-based analysis and multi-temporal NDVI in double-cropping area in Jiangsu, China. Frontiers of Earth Science, 10(2), pp. 292-302, 2016. DOI: 10.1007/s11707-016-0552-9 [ Links ]
Berrio, V.A.M., Téllez, J.M. y Velasquez, D.F.A., Uso de drones para el análisis de imágenes multiespectrales en agricultura de precisión. @limentech, Ciencia y Tecnología Alimentaria, 13(1), pp. 28-40, 2015. [ Links ]
Ajith, K., Geethalakshmi, V., Ragunath, K.P., Pazhanivelan, S. and Dheebakaran, G., Rice yield prediction using MODIS-NDVI (MOD13Q1) and land based observations. Int. J. Curr. Microbiol. App. Sci, 6(12), pp. 2277-2293, 2017. DOI: 10.20546/ijcmas.2017.612.263 [ Links ]
FEDEARROZ (2017, Nov. 10). Precio promedio mensual arroz paddy verde en Colombia Pesos / Tonelada 2009 - 2017. [en línea]. [Consultado: Nov 01, 2017]. Disponible en: Disponible en: http://www.fedearroz.com.co/new/precios.php [ Links ]
Li, Z., Zhu, Q. and Gold, C., Digital terrain modeling: principles and methodology. CRC Press. Boca Raton, 2005. [ Links ]
dc.relation.citationedition.spa.fl_str_mv 56
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Centroamérica
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv http://www.scielo.org.co/scielo.php?pid=S0012-73532018000200047&script=sci_arttext
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/2839/1/Normalized%20difference%20vegetation%20index%20for%20rice%20management%20in%20el%20Espinal%2c%20Colombia.pdf
https://dspace.tdea.edu.co/bitstream/tdea/2839/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/2839/3/Normalized%20difference%20vegetation%20index%20for%20rice%20management%20in%20el%20Espinal%2c%20Colombia.pdf.txt
https://dspace.tdea.edu.co/bitstream/tdea/2839/4/Normalized%20difference%20vegetation%20index%20for%20rice%20management%20in%20el%20Espinal%2c%20Colombia.pdf.jpg
bitstream.checksum.fl_str_mv 22f58cfa88dc4e4e9eb5088200b03c00
2f9959eaf5b71fae44bbf9ec84150c7a
6663eb041aa39865863ad08a708149e0
75b2252c608873dce5c74cb9693b8750
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189140771405824
spelling González Betancourt, Mauricioff407eb0-e361-450b-a3eb-9b6bb67b3551Mayorga Ruíz, Zaira Licetha024f255-3a93-4138-982e-3f645e8d10a7CentroaméricaColombia2023-05-01T16:25:25Z2023-05-01T16:25:25Z20180012-7353https://dspace.tdea.edu.co/handle/tdea/28392346-2183Aerial images and the Normalized Difference Vegetation Index (NDVI) of the stage after panicle initiation were evaluated as tools that help large-scale rice monitoring and decision-making that favors crop profitability. NDVI was used to identify problems in the development and growth of FEDEARROZ-2000. FEDEARROZ-2000 is a variety of rice, which is resistant to the “hoja blanca” virus and direct “sogata” damage that affect fields in tropical America. The temporal dynamics of the NDVI for FEDEARROZ-2000 were estimated. An NDVI lower than 0.8 in the Stage of Rice Panicle Development (SRPD) was related to areas with levelling problems, differences in the vegetative stage, water stress, and spacing between plants. The NDVI for the SRPD had a significant positive correlation with yield, 1,000 grain weight and the number of panicles (Pearson's R≥0.86; probability value P ≤0.04). NDVI mapping at milky stage helped to identify production environments and to schedule the harvest areas. Keywords: NDVI; rice; unmanned aerial vehicleSe evaluaron las imágenes aéreas y el NDVI como herramientas para la supervisión del arroz a gran escala. El índice de vegetación de diferencia normalizada (NDVI) se utilizó para identificar problemas en el desarrollo de la variedad de arroz FEDEARROZ-2000, la cual es resistente al virus de la hoja blanca y al daño directo de la "sogata". Se estimó la dinámica temporal del NDVI para FEDEARROZ-2000. En la Etapa de Desarrollo de la Panícula del Arroz (EDPA), el NDVI inferior a 0,8 se relacionó con áreas con problemas de nivelación, estrés hídrico y diferencias en el estado de las plantas. El NDVI de la EDPA tuvo una correlación positiva significativa con las panículas/m2, el peso de los 1000 granos, y con el rendimiento (Coeficiente de correlación de Pearson R≥0.86; Probabilidad≤0.04). El NDVI en la etapa lechosa ayudó a identificar ambientes de producción y a programar áreas para la cosecha. Palabras clave: NDVI; arroz; vehículo aéreo no tripulado10 páginasapplication/pdfengUniversidad Nacional de ColombiaColombiahttps://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2http://www.scielo.org.co/scielo.php?pid=S0012-73532018000200047&script=sci_arttextNormalized difference vegetation index for rice management in El Espinal, ColombiaÍndice de vegetación de diferencia normalizada para el manejo del arroz en El Espinal, ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a854720585DYNARay, D.K., Mueller, N.D., West, P.C. and Foley, J.A., Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), e66428, 2013. DOI: 10.1371/journal.pone.0066428Ray, D.K., Gerber, J.S., MacDonald, G.K., and West, P.C., Climate variation explains a third of global crop yield variability. Nature communications, 6, pp. 1-9, 2015. DOI: 10.1038/ncomms6989. [ Links ]FEDEARROZ and CIAT (2014). Adopción masiva de tecnología (AMTEC). Validación de modelos y parametrización de la variedad FEDEARROZ. [en línea]. 2000. [Consultado: Julio 25 de 2017]. Disponible en: Disponible en: https://es.slideshare.net/cgiarclimate/fe-39197270 [ Links ]Mapplecroft. Índice de vulnerabilidad y adaptación al cambio climático en la región de América Latina y el Caribe. Corporación Andina de Fomento (CAF), 2014. [ Links ]Graterol, E. y Torres, E.A., Mejorando la competitividad del arroz en América Latina mediante el cierre de brechas de rendimiento. FLAR, CIAT, CGIAR, [en línea]. 2013. [Consultado: Nov. 21th of 2017]. Disponible en: Disponible en: http://flar.org/wp-content/uploads/2015/06/Taller-GRiSP-Cierre-de-brechas-ESP2.pdf [ Links ]Chica, J., Tirado, O. and Barreto, J.M., Indicadores de competitividad del cultivo del arroz en Colombia y Estados Unidos. Revista de Ciencias Agrícolas, 33(2), pp. 16-31, 2016. [ Links ]Sanint, L.R., Nuevos retos y grandes oportunidades tecnológicas para los sistemas arroceros: producción, seguridad alimentaria y disminución de la pobreza en América Latina y el Caribe, en: Degiovanni, B., Víctor, M., Martínez, R., César, P. and Motta, O., Producción eco-eficiente del arroz en América Latina. CIAT, 2010. [ Links ]World Water Assessment Programme -WWAP. Informe de las Naciones Unidas sobre el desarrollo de los recursos hídricos en el mundo 2016, París, UNESCO, [en líena]. 2016. [Consultado en: Julio 25 de 2017]. Disponible en: Disponible en: http://unesdoc.unesco.org/images/0024/002441/244103s.pdf [ Links ]Bouman, B.A.M., Humphreys, E., Tuong, T.P. and Barker, R. Rice and water. Advances in Agronomy 92, pp. 187-237, 2006. DOI: 10.1016/S0065-2113(04)92004-4 [ Links ]Degiovanni, B., Víctor, M., Martínez, R., César, P. and Motta, O., Producción eco-eficiente del arroz en América Latina . CIAT, 2010. [ Links ]González, M. y Alonso, A.M., Tecnologías para ahorrar agua en el cultivo de arroz. Nova, 14(26), pp. 67-82, 2016. DOI: 10.22490/24629448.1757 [ Links ]Preciado-Pérez L.G., Época oportuna de cosecha y calibración de cosechadoras para el cultivo del arroz. Memorias del curso internacional sobre el manejo del cultivo de arroz. Ibagué, [en líena]. 2014. [Consultado: enero 21 de 2017]. Disponible en: Disponible en: http://flar.org/ii-curso-internacional/memorias-curso-internacional/ [ Links ]Preciado-Pérez L.G., Pérdidas al cosechar en el momento no oportuno. Boletín de la Federación Nacional de Arroceros. [en línea]. 243, pp. 1, 2011. [Consultado: enero 21 de 2017]. Disponible en: Disponible en: http://www.fedearroz.com.co/revistanew/correo_243.pdf [ Links ]López-Pérez, A., Martínez-Menes, M.R. and Fernández-Reynoso, D.S., Priorización de áreas de intervención mediante análisis morfométrico e índice de vegetación. Tecnología y Ciencias del Agua, 6(1), 121-137, 2015. [ Links ]Chen, R.K. and Yang, C.M., Determining the optimal timing for using LAI and NDVI to predict rice yield. J. Photogramm. Remote Sens, 10(3), pp. 239-254, 2005. [ Links ]Li, L., Zhang, Q. and Huang, D., A review of imaging techniques for plant phenotyping. Sensors, 14(11), pp. 20078-20111, 2014. DOI: 10.3390/s141120078 [ Links ]Naito, H., Ogawa, S., Valencia, M.O., Mohri, H., Urano, Y., Hosoi, F. and Omasa, K., Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 125, pp. 50-62, 2017. DOI: 10.1016/j.isprsjprs.2017.01.010 [ Links ]Barrero, O., Rojas, D., Gonzalez, C. and Perdomo, S., Weed detection in rice fields using aerial images and neural networks. In: Signal Processing, images and artificial vision, XXI Symposium on IEEE, pp.1-4, 2016. DOI: 10.1109/STSIVA.2016.7743317 [ Links ]Pulver, E., Manejo estratégico y producción competitiva del arroz con riego en América Latina. En: DeGiovanni, V., Martínez, C.P. y Motta, F., eds. Producción ecoeficiente del arroz en América Latina. CIAT, Colombia, 2010. [ Links ]Romero, L.E., Lozano, I., Garavito, A., Carabali, S.J., Triana, M., Villareal, N. and Lorieux, M., Major QTLs control resistance to rice hoja blanca virus and its vector Tagosodes orizicolus. G3: Genes, Genomes, Genetics, 4(1), pp. 133-142, 2014. DOI: 10.1534/g3.113.009373 [ Links ]Morales, F.J. and Jennings, P.R., Rice hoja blanca: a complex plant-virus-vector pathosystem. Plant Sciences Reviews, 5(043), pp 1-16, 2010. DOI: 10.1079/PAVSNNR20105043 [ Links ]Castilla L.y Florez E., SIFA: Sistema de fertilización en el cultivo de arroz a través de la web. Arroz, 62 (509), pp. 4-15, 2014. [ Links ]Garcés, G. y Castilla, L., Uso del clorofilometro (indice de verdor) como estrategia en la fertilización nitrogenada en el cultivo. Arroz, 63(517), pp. 34 - 43, 2015. [ Links ]Lin, W., Zhang, F.C., Jing, Y.S., Jiang, X.D., Yang, S.B. and Han, X.M., Multi-temporal detection of rice phenological stages using canopy spectrum. Rice Science, 21(2), pp. 108-115, 2014. DOI: 10.1016/S1672-6308(13)60170-5 [ Links ]Degiovanni, V.M., Gómez, J.A. y Sierra, J.M., Análisis de crecimiento y etapas de desarrollo de tres variedades de arroz (Oryza sativa L.) en Montería, Córdoba. Temas Agrarios, 9(1), 2004, pp 21-29. [ Links ]Dobermann, A. and Fairhurst, T., Rice: Nutrient disorders and nutrient management (Vol. 1). Int. Rice Res. Inst. 2000. [ Links ]Chaudhary R.C., Nanda J.S. y Tran. D.V. Guía para identificar las limitaciones de campo en la producción de arroz. FAO, Rome, 2003. [ Links ]Yoshida, H., Bhattacharjee, D. and Cabuslay, G.S., Relationship between plant type and root growth in rice. Soil Science and Plant Nutrition, 28, pp. 473-482, 1982. DOI: 10.1080/00380768.1982.10432387 [ Links ]Nuruzzaman, M., Yamamoto, Y., Nitta, Y., Yoshida, T and Miyazaki, A., Varietal differences in tillering ability of fourteen japonica and indica rice varieties. Soil Science and Plant Nutrition , 46, pp. 381-391, 2000. DOI: 10.1080/00380768.2000.10408792 [ Links ]García, J., Andres, S., Martínez, M. y Joel, L., Método para identificación de cultivos de arroz (Oryza sativa L.) con base en imágenes de satélite. Agronomía Colombiana, [en línea]. 28(2), pp. 281-290, 2010. Disponible en: http://www.redalyc.org/articulo.oa?id=180315602018 [ Links ]Castilla A., Morales F., Ramirez O. y Mayorga Z., Manejo agronómico por ambiente rumbo a una agricultura de precisión en el cultivo de arroz. Arroz, 63(519), pp. 38-43, 2015. [ Links ]Barrios, P.C., Giraldo, D., Llanos, L., Obando, D., Espinoza, J. and Gourdji, S., Agro-climatic risk management for better agricultural decision making in Latin America. Conference: ASABE 1st Climate Change Symposium, Illinois, 2015. DOI: 10.13031/cc.20152122545 [ Links ]Beget, M.E. and Di Bella, C.M., Flooding: the effect of water depth on the spectral response of grass canopies. J Hydrol, 335, pp. 285-294, 2007. DOI: 10.1016/j.jhydrol.2006.11.018 [ Links ]Cock, J.H. and Yoshida, S., Accumulation of 14 C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Japanese Journal of Crop Science, 41(2), pp. 226-234, 1972. DOI: 10.1626/jcs.41.226 [ Links ]Verma, R., Katara, J.L., Samantaray, S., Patra, B.C., Sahu, R.K., Patnaik, S. and Mohapatra, T., A practical guide for successful hybrid seed production in rice-A Profitable Venture, Research Gate, pp. 1-21, 2016. DOI: 10.13140/RG.2.1.2333.5443 [ Links ]Galiano, S.G., Assessment of vegetation indexes from remote sensing: Theoretical basis. Options Méditerranéennes, 67, pp. 65-75, 2012. [ Links ]Zheng, H., Cheng, T., Yao, X., Deng, X., Tian, Y., Cao, W. and Zhu, Y., Detection of rice phenology through time series analysis of ground-based spectral index data. Field Crops Research, 198, pp. 131-139, 2016. DOI: 10.1016/j.fcr.2016.08.027 [ Links ]Wang, H., Lin, H., Munroe, D.K., Zhang, X. and Liu, P., Reconstructing rice phenology curves with frequency-based analysis and multi-temporal NDVI in double-cropping area in Jiangsu, China. Frontiers of Earth Science, 10(2), pp. 292-302, 2016. DOI: 10.1007/s11707-016-0552-9 [ Links ]Berrio, V.A.M., Téllez, J.M. y Velasquez, D.F.A., Uso de drones para el análisis de imágenes multiespectrales en agricultura de precisión. @limentech, Ciencia y Tecnología Alimentaria, 13(1), pp. 28-40, 2015. [ Links ]Ajith, K., Geethalakshmi, V., Ragunath, K.P., Pazhanivelan, S. and Dheebakaran, G., Rice yield prediction using MODIS-NDVI (MOD13Q1) and land based observations. Int. J. Curr. Microbiol. App. Sci, 6(12), pp. 2277-2293, 2017. DOI: 10.20546/ijcmas.2017.612.263 [ Links ]FEDEARROZ (2017, Nov. 10). Precio promedio mensual arroz paddy verde en Colombia Pesos / Tonelada 2009 - 2017. [en línea]. [Consultado: Nov 01, 2017]. Disponible en: Disponible en: http://www.fedearroz.com.co/new/precios.php [ Links ]Li, Z., Zhu, Q. and Gold, C., Digital terrain modeling: principles and methodology. CRC Press. Boca Raton, 2005. [ Links ]56Normalized difference vegetation indexIndice normalizado diferencial de la vegetaciónIndice différentiel normalisé de végétationRiceArrozRizUnmanned aerial vehiclesVehículos aéreos no tripuladosVeículos aéreos não tripuladosVéhicule aérien sans piloteNDVIORIGINALNormalized difference vegetation index for rice management in el Espinal, Colombia.pdfNormalized difference vegetation index for rice management in el Espinal, Colombia.pdfapplication/pdf959016https://dspace.tdea.edu.co/bitstream/tdea/2839/1/Normalized%20difference%20vegetation%20index%20for%20rice%20management%20in%20el%20Espinal%2c%20Colombia.pdf22f58cfa88dc4e4e9eb5088200b03c00MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/2839/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTNormalized difference vegetation index for rice management in el Espinal, Colombia.pdf.txtNormalized difference vegetation index for rice management in el Espinal, Colombia.pdf.txtExtracted texttext/plain50508https://dspace.tdea.edu.co/bitstream/tdea/2839/3/Normalized%20difference%20vegetation%20index%20for%20rice%20management%20in%20el%20Espinal%2c%20Colombia.pdf.txt6663eb041aa39865863ad08a708149e0MD53open accessTHUMBNAILNormalized difference vegetation index for rice management in el Espinal, Colombia.pdf.jpgNormalized difference vegetation index for rice management in el Espinal, Colombia.pdf.jpgGenerated Thumbnailimage/jpeg15961https://dspace.tdea.edu.co/bitstream/tdea/2839/4/Normalized%20difference%20vegetation%20index%20for%20rice%20management%20in%20el%20Espinal%2c%20Colombia.pdf.jpg75b2252c608873dce5c74cb9693b8750MD54open accesstdea/2839oai:dspace.tdea.edu.co:tdea/28392023-05-06 23:12:48.317An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=