Multi-product inventory modeling with demand forecasting and Bayesian optimization

The complexity of supply chains requires advanced methods to schedule companies’ inventories. This paper presents a comparison of model forecasts of demand for multiple products, choosing the best among the following: autoregressive integrated moving average (ARIMA), exponential smoothing (ES), a Ba...

Full description

Autores:
Valencia Cárdenas, Marisol
Díaz Serna, Francisco Javier
Correa Morales, Juan Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/4015
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/4015
Palabra clave:
Cadenas de suministro
Chaîne d'approvisionnement
Supply chains
Prognosis
Pronóstico
Prognóstico
Pronostic
Modelos dinámicos lineales
Dynamic linear models
Estadística bayesiana
Bayesian statistics
Modelos de inventario
Inventory models
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id RepoTdea2_c11982a8a32a7b077c0d4d20dce24702
oai_identifier_str oai:dspace.tdea.edu.co:tdea/4015
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Multi-product inventory modeling with demand forecasting and Bayesian optimization
dc.title.translated.none.fl_str_mv Modelo de inventario multi-producto, con pronósticos de demanda y optimización Bayesiana
title Multi-product inventory modeling with demand forecasting and Bayesian optimization
spellingShingle Multi-product inventory modeling with demand forecasting and Bayesian optimization
Cadenas de suministro
Chaîne d'approvisionnement
Supply chains
Prognosis
Pronóstico
Prognóstico
Pronostic
Modelos dinámicos lineales
Dynamic linear models
Estadística bayesiana
Bayesian statistics
Modelos de inventario
Inventory models
title_short Multi-product inventory modeling with demand forecasting and Bayesian optimization
title_full Multi-product inventory modeling with demand forecasting and Bayesian optimization
title_fullStr Multi-product inventory modeling with demand forecasting and Bayesian optimization
title_full_unstemmed Multi-product inventory modeling with demand forecasting and Bayesian optimization
title_sort Multi-product inventory modeling with demand forecasting and Bayesian optimization
dc.creator.fl_str_mv Valencia Cárdenas, Marisol
Díaz Serna, Francisco Javier
Correa Morales, Juan Carlos
dc.contributor.author.none.fl_str_mv Valencia Cárdenas, Marisol
Díaz Serna, Francisco Javier
Correa Morales, Juan Carlos
dc.subject.agrovoc.none.fl_str_mv Cadenas de suministro
Chaîne d'approvisionnement
Supply chains
topic Cadenas de suministro
Chaîne d'approvisionnement
Supply chains
Prognosis
Pronóstico
Prognóstico
Pronostic
Modelos dinámicos lineales
Dynamic linear models
Estadística bayesiana
Bayesian statistics
Modelos de inventario
Inventory models
dc.subject.decs.none.fl_str_mv Prognosis
Pronóstico
Prognóstico
Pronostic
dc.subject.proposal.none.fl_str_mv Modelos dinámicos lineales
Dynamic linear models
Estadística bayesiana
Bayesian statistics
dc.subject.spines.none.fl_str_mv Modelos de inventario
Inventory models
description The complexity of supply chains requires advanced methods to schedule companies’ inventories. This paper presents a comparison of model forecasts of demand for multiple products, choosing the best among the following: autoregressive integrated moving average (ARIMA), exponential smoothing (ES), a Bayesian regression model (BRM), and a Bayesian dynamic linear model (BDLM). To this end, cases in which the time series is normally distributed are first simulated. Second, sales predictions for three products of a gas service station are estimated using the four models, revealing the BRM to be the best model. Subsequently, the multi-product inventory model is optimized. To define the policies for ordering, inventory, costs, and profits, a Bayesian search integrating elements of a Tabu search is used to improve the solution. This inventory model optimization process is then applied to the case of a gas service station in Colombia. Keywords: Dynamic Linear Models, Inventory Models, Forecasts, Bayesian Statistics.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2023-10-31T22:28:49Z
dc.date.available.none.fl_str_mv 2023-10-31T22:28:49Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0012-7353
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/4015
dc.identifier.eissn.spa.fl_str_mv 2346-2183
identifier_str_mv 0012-7353
2346-2183
url https://dspace.tdea.edu.co/handle/tdea/4015
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 243
dc.relation.citationissue.spa.fl_str_mv 198
dc.relation.citationstartpage.spa.fl_str_mv 235
dc.relation.citationvolume.spa.fl_str_mv 83
dc.relation.ispartofjournal.spa.fl_str_mv Dyna
dc.relation.references.spa.fl_str_mv Simchi-Levi, D., Kaminski, P. and Simchi-Levi, E., Designing and managing the supply chain. 3rd ed. New York: McGraw-Hill; 2008.
Chen, X. and Simchi-Levi, D., Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The finite horizon case. Operations Research, 2004, 52(6), pp. 887-896. DOI: 10.1287/opre.1040.0127
Hillier, F. y Hillier, M., Métodos cuantitativos para administración. Third Ed. City: México. McGraw-Hill; 2007.
Garcia, C.A., Ibeas, A., Vilanova, R. and Herrera, J., Inventory control of supply chains: Mitigating the bullwhip effect by centralized and decentralized internal model control approaches. European Journal of Operational Research, 224(2), pp. 261-272, 2013. DOI: 10.1016/J.EJOR.2012.07.029
Sarimveis, H., Patrinos, P., Tarantilis, C.D. and Kiranoudis, C.T., Dynamic modeling and control of supply chain systems: A review. Computers and Operations Research. 35(11), pp. 3530-3561, 2008. DOI: 10.1016/J.COR.2007.01.017
Braun, M.W., Rivera, D.E., Flores, M.E., Carlyle, W.M. and Kempf, K.G., A model predictive control framework for robust management of multi-product, multi-echelon demand networks. Annual Reviews in Control, 27(2), pp. 229-245, 2003. DOI: 10.1016/j.arcontrol.2003.09.006
Pole, A., West, M. and Harrison, J., Nonnormal and nonlinear dynamic Bayesian modeling. In Bayesian analysis of time series and dynamic linear models. New York: Marcel Dekker; 1988, pp. 167-198.
West, M. and Harrison, J., Bayesian forecasting and dynamic models. Second ed. New York: Springer Series in Statistics; 1997.
Petris, G., An R package for dynamic linear models. Journal of Statistical Software [online], 36(12), pp. 1-16, 2010. Available at: http://www.jstatsoft.org/
Bermúdez, J.D., Segura, J.V. and Vercher, E., Bayesian forecasting with the Holt–Winters model. Journal of the Operational Research Society, 61(1), pp. 164-171, 2009. DOI: 10.1057/jors.2008.152.
Harrison, J. and Stevens, C., Bayesian forecasting. Journal of the Royan Statistical Society, 38(3), pp. 205-247, 1976.
Petris, G., Petrone, S. and Campagnoli, P., Dynamic linear models with R [online]. 2009. Available at: http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-77237-0
Kociecki, A., Kolasa, M. and Rubaszek, M., A Bayesian method of combining judgmental and model-based density forecasts. Economic Modelling, 29, pp. 1349-1355, 2012. DOI: 10.1016/j.econmod.2012.03.004
Coelho, C., Pezzulli, S, Balmaseda, M., Doblas-Reyes, F. and Stephenson, D., Forecast calibration and combination: A simple Bayesian approach for ENSO. Journal of Climate. 17(7), pp. 1504-1516, 2004. DOI: DOI: 10.1175/1520-0442(2004)017<1504:FCACAS>2.0.CO;2
Andersson, M. and Karlson, S., Bayesian forecast combination for VAR models. Sveriges Riskbanc-working Papers [online]. pp. 1-17, 2007. Available at: http://www.riksbank.se/Upload/Dokument_riksbank/Kat_publicerat/WorkingPapers/2007/wp216.pdf
Bijak, J., Bayesian methods in international migration forecasting. CEFMR Working Papers. Warsaw: Central European Forum for Migration Research, 2005.
Clements, M.P. and Hendry, D.F.H., Forecasting non-stationary economic time series. Cambridge: MIT Press; 2000, pp. 1-6.
Craig, P., Goldstein, M., Rougier, J. and Seheult, A.H., Bayesian forecasting for complex systems using computer simulators. Journal of the American Statistical Association, 96(454), pp. 717-729, 2001.
Duncan, G., Gorr, W. and Szczypula, J., Bayesian unrelated time forecasting series: For seemingly to local forecasting application government revenue. Management Science, 39(3), pp. 275-293, 1993.
Li, G., Shi, J. and Zhou, J., Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renewable Energy, 36(1), pp. 352-359, 2011. DOI: 10.1016/j.renene.2010.06.049
Meinhold, R.J. and Singpurwalla, N.D., Understanding the Kalman Filter. The American Statistician, 37(2), pp. 123-127, 1983. DOI: 10.2307/2685871
Neelamegham, R. and Chintagunta, P., A Bayesian model to forecast new product performance in domestic and international markets. Marketing Science [online]. 18(2), pp. 115-136, 1999. Available at: http://bear.warrington.ufl.edu/centers/mks/articles/684541.pdf
Oracle, Inc., The Bayesian Approach to Forecasting [online], 2006. Available at: http://www.oracle.com/us/products/applications/057028.pdf
Pedroza, C., A Bayesian forecasting model: Predicting U.S. male mortality. Biostatistics, 7(4), pp. 530-550, 2006.
Pezzulli, S., Frederic, P., Majithia, S., Sabbagh, S, Black, E, Sutton, R, et al., The seasonal forecast of electricity demand: A simple Bayesian model with climatological weather generator. Applied Stochastic Models in Business and Industry, 22(2), pp. 1-16, 2006. Available at: http://empslocal.ex.ac.uk/people/staff/dbs202/publications/2005/pezzullib.pdf
Popova, I., Popova, E. and George, E., Bayesian forecasting of prepayment rates for individual pools of mortgages. Bayesian Analysis, 3(2), pp. 393-426, 2008.
Putnam, B., Practical experiences in financial markets using Bayesian forecasting systems [online], 2007. Available at: http://www.math.uchicago.edu/~cfm/BP-papers/Lessons_from_Bayesian_Experiences.pdf
Sloughter, J.M., Raftery, A.E. and Gneiting, T., Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Monthly Weather Review, 135(9), pp. 3208-3220, 2006.
Valencia, M., and Correa, J. Un modelo dinámico bayesiano para pronóstico de energía diaria. Revista Ingenieria Industrial. 2013;12(2), pp.7–17.
Valencia, M., Correa J.C., Díaz F. y Ramírez, S., Aplicación de modelación bayesiana y optimización para pronósticos de demanda. Ingenería y Desarrollo, 32(2), pp. 179-199, 2014.
Yelland, P.M., Bayesian forecasting of parts demand. International Journal of Forecasting, 26(2), pp. 374-396, 2010. DOI: 10.1016/j.ijforecast.2009.11.001
Valencia, M., González, D. y Cardona, J., Metodología de un modelo de optimización para el pronóstico y manejo de inventarios usando el metaheurístico Tabu. Revista de Ingeniería. 24(1), pp. 13-27, 2014. DOI: 10.15517/ring.v24i1.13771
Urrea, A. y Torres, F., Optimización de una política de inventarios por medio de búsqueda tabú. In: III Congreso colombiano y I Conferencia Andina internacional [online], 8 P. 2006, Available at: http://dspace.uniandes.edu.co:9090/xmlui/handle/1992/822
Jeyanthi, N. and Radhakrishnan, P., Optimizing multi product inventory using genetic algorithm for efficient supply chain management involving lead time. International Journal of Computer Science and Network Security [online], 10(5), pp. 231-239, 2010. Available at: http://paper.ijcsns.org/07_book/201005/20100534.pdf
Palacio, O. y Adarme, W., Coordinación de inventarios: Un caso de estudio para la logística de ciudad. DYNA, 81(186), pp. 295-303, 2014.
Wallström, P. and Segerstedt, A., Evaluation of forecasting error measurements and techniques for intermittent demand. International Journal of Production Economics, 128(2), pp. 625-636, 2010.
Valencia, M., Dynamic model for the multiproduct inventory optimization with multivariate. PhD. Thesis. Department of Engineering, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Colombia, 2016.
Bowerman, B.L. y Oconnell, R.T., Pronósticos, series de tiempo y regresión: Un enfoque aplicado. Editores. CL, editor. México, 2007.
Valencia, M., Ramírez, S., Tabares, J. y Velásquez, C., Métodos de pronósticos clásicos y bayesianos con aplicaciones. Report. Universidad Nacional de Colombia, 2014.
Valencia-Cárdenas et al / DYNA 83 (198), pp. 236-244, Septiembre, 2016.
Wei, W.W.S., Time series analysis. Reading: Addison-Wesley, 1994.
Makridakis, S., Hibon, M. and Moser, C., Accuracy of forecasting : An empirical Investigation. Journal of the Royal Statistical Society. Series A, 142(2), pp. 97-145, 1979. DOI: 10.2307/2345077.
Makridakis, S., Wheelwright, S. and McGee, V., City: NewYork. Second Ed. John Wiley and Sons, 1983.
Diebold, F., Elementos de pronósticos. City: México. International Thomson editors, 1999.
Wilson, J.H., Keating, B. and Galt, J., Pronósticos en los negocios. Fifth Ed. McGraw-Hill; 2007. 461 P.
Wang, S., Exponential smoothing for forecasting and bayesian validation of computer models [online]. Thesis, Georgia Institute of Technology, [Online]. 2006. Available at: https://smartech.gatech.edu/bitstream/handle/1853/19753/wang_shuchun_200612_phd.pdf
Yelland, P.M. and Lee, E., Forecasting product sales with dynamic linear mixture models. Sun Microsystems, 2003.
Gill, J., Bayesian methods: A social and behavioral sciences approach. Second Ed. Boca Raton: Chapman and Hall, 2007.
Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B., Bayesian data analysis. Second Ed. Boca Raton: Chapman and Hall, 2004.
Barrera, C. y Correa, J., Distribución predictiva bayesiana para modelos de pruebas de vida vía MCMC. Revista Colombiana de Estadística [online], 31(2), pp. 145-155, 2008. Available at: http://www.emis.ams.org/journals/RCE/ingles/V31/bodyv31n2/v31n2a01BarreraCorrea.pdf
Congdon, P., Bayesian statistical modelling. London: Wiley Series in Probability and Statistics, 2002.
Zellner, A., An introduction to bayesian inference in econometrics. Second Ed. New York: Wiley, 1996.
R Core Team., A Language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing, 2014. Available at: http://www.r-project.org/
Wagner, H.M. and Whitin, T.M., Dynamic version of the economic lot size model. Management Science, 5(1), pp. 89-96, 1958.
Simchi-Levi, D., Chen, X. and Bramel, J., The logic of logistics: Theory, algorithms, and applications for logistics and supply chain management. Second Ed. New York: Springer-Verlag, 2005.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/51310
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/4015/4/Multi-product%20inventory%20modeling%20with%20demand%20forecasting%20and%20Bayesian%20optimization.pdf.jpg
https://dspace.tdea.edu.co/bitstream/tdea/4015/3/Multi-product%20inventory%20modeling%20with%20demand%20forecasting%20and%20Bayesian%20optimization.pdf.txt
https://dspace.tdea.edu.co/bitstream/tdea/4015/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/4015/1/Multi-product%20inventory%20modeling%20with%20demand%20forecasting%20and%20Bayesian%20optimization.pdf
bitstream.checksum.fl_str_mv 873500c3ebb1702560b0a4afb38f23ba
6b27f9934386c930f003d59a2d8ff277
2f9959eaf5b71fae44bbf9ec84150c7a
16891d289a1a75cace885f337565fb1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189200553869312
spelling Valencia Cárdenas, Marisol7d8db2ff-5466-4ebb-a8b6-daf0bdc169d8Díaz Serna, Francisco Javierc3741378-d19d-4e48-901e-28d36d7e22a7Correa Morales, Juan Carlos80dd1582-58bc-447f-85ba-6aaadd85c30a2023-10-31T22:28:49Z2023-10-31T22:28:49Z20160012-7353https://dspace.tdea.edu.co/handle/tdea/40152346-2183The complexity of supply chains requires advanced methods to schedule companies’ inventories. This paper presents a comparison of model forecasts of demand for multiple products, choosing the best among the following: autoregressive integrated moving average (ARIMA), exponential smoothing (ES), a Bayesian regression model (BRM), and a Bayesian dynamic linear model (BDLM). To this end, cases in which the time series is normally distributed are first simulated. Second, sales predictions for three products of a gas service station are estimated using the four models, revealing the BRM to be the best model. Subsequently, the multi-product inventory model is optimized. To define the policies for ordering, inventory, costs, and profits, a Bayesian search integrating elements of a Tabu search is used to improve the solution. This inventory model optimization process is then applied to the case of a gas service station in Colombia. Keywords: Dynamic Linear Models, Inventory Models, Forecasts, Bayesian Statistics.La complejidad de las cadenas de suministro exige mejores métodos para programar los inventarios de una empresa. En este trabajo se presenta una comparación entre modelos de pronósticos de demanda de múltiples productos, eligiendo el mejor entre: ARIMA, Suavización exponencial, Regresión Lineal Bayesiana y un Modelo Lineal Dinámico Bayesiano. Para ello, primero se realiza una simulación de casos donde no hay una Distribución Normal en las series de tiempo, segundo, se estiman las predicciones de ventas de tres productos de una estación de servicios de gasolina con los cuatro modelos, encontrando los mejores resultados para la Regresión Lineal Bayesiana. Seguido a esto, se presenta la optimización de un Modelo de Inventarios Multi-Producto. Para definir la política de pedidos, inventarios, costos y ganancias, se utiliza una búsqueda bayesiana, que integra elementos de búsqueda Tabú para mejorar la solución. Dicha Optimización del Modelo de Inventarios se aplica a un caso de una estación de combustibles en Colombia. Palabras clave: Modelos Dinámicos Lineales, Modelos de Inventarios, Pronósticos, Estadística Bayesiana.9 páginasapplication/pdfengUniversidad Nacional de ColombiaColombiahttps://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.unal.edu.co/index.php/dyna/article/view/51310Multi-product inventory modeling with demand forecasting and Bayesian optimizationModelo de inventario multi-producto, con pronósticos de demanda y optimización BayesianaArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombia24319823583DynaSimchi-Levi, D., Kaminski, P. and Simchi-Levi, E., Designing and managing the supply chain. 3rd ed. New York: McGraw-Hill; 2008.Chen, X. and Simchi-Levi, D., Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The finite horizon case. Operations Research, 2004, 52(6), pp. 887-896. DOI: 10.1287/opre.1040.0127Hillier, F. y Hillier, M., Métodos cuantitativos para administración. Third Ed. City: México. McGraw-Hill; 2007.Garcia, C.A., Ibeas, A., Vilanova, R. and Herrera, J., Inventory control of supply chains: Mitigating the bullwhip effect by centralized and decentralized internal model control approaches. European Journal of Operational Research, 224(2), pp. 261-272, 2013. DOI: 10.1016/J.EJOR.2012.07.029Sarimveis, H., Patrinos, P., Tarantilis, C.D. and Kiranoudis, C.T., Dynamic modeling and control of supply chain systems: A review. Computers and Operations Research. 35(11), pp. 3530-3561, 2008. DOI: 10.1016/J.COR.2007.01.017Braun, M.W., Rivera, D.E., Flores, M.E., Carlyle, W.M. and Kempf, K.G., A model predictive control framework for robust management of multi-product, multi-echelon demand networks. Annual Reviews in Control, 27(2), pp. 229-245, 2003. DOI: 10.1016/j.arcontrol.2003.09.006Pole, A., West, M. and Harrison, J., Nonnormal and nonlinear dynamic Bayesian modeling. In Bayesian analysis of time series and dynamic linear models. New York: Marcel Dekker; 1988, pp. 167-198.West, M. and Harrison, J., Bayesian forecasting and dynamic models. Second ed. New York: Springer Series in Statistics; 1997.Petris, G., An R package for dynamic linear models. Journal of Statistical Software [online], 36(12), pp. 1-16, 2010. Available at: http://www.jstatsoft.org/Bermúdez, J.D., Segura, J.V. and Vercher, E., Bayesian forecasting with the Holt–Winters model. Journal of the Operational Research Society, 61(1), pp. 164-171, 2009. DOI: 10.1057/jors.2008.152.Harrison, J. and Stevens, C., Bayesian forecasting. Journal of the Royan Statistical Society, 38(3), pp. 205-247, 1976.Petris, G., Petrone, S. and Campagnoli, P., Dynamic linear models with R [online]. 2009. Available at: http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-77237-0Kociecki, A., Kolasa, M. and Rubaszek, M., A Bayesian method of combining judgmental and model-based density forecasts. Economic Modelling, 29, pp. 1349-1355, 2012. DOI: 10.1016/j.econmod.2012.03.004Coelho, C., Pezzulli, S, Balmaseda, M., Doblas-Reyes, F. and Stephenson, D., Forecast calibration and combination: A simple Bayesian approach for ENSO. Journal of Climate. 17(7), pp. 1504-1516, 2004. DOI: DOI: 10.1175/1520-0442(2004)017<1504:FCACAS>2.0.CO;2Andersson, M. and Karlson, S., Bayesian forecast combination for VAR models. Sveriges Riskbanc-working Papers [online]. pp. 1-17, 2007. Available at: http://www.riksbank.se/Upload/Dokument_riksbank/Kat_publicerat/WorkingPapers/2007/wp216.pdfBijak, J., Bayesian methods in international migration forecasting. CEFMR Working Papers. Warsaw: Central European Forum for Migration Research, 2005.Clements, M.P. and Hendry, D.F.H., Forecasting non-stationary economic time series. Cambridge: MIT Press; 2000, pp. 1-6.Craig, P., Goldstein, M., Rougier, J. and Seheult, A.H., Bayesian forecasting for complex systems using computer simulators. Journal of the American Statistical Association, 96(454), pp. 717-729, 2001.Duncan, G., Gorr, W. and Szczypula, J., Bayesian unrelated time forecasting series: For seemingly to local forecasting application government revenue. Management Science, 39(3), pp. 275-293, 1993.Li, G., Shi, J. and Zhou, J., Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renewable Energy, 36(1), pp. 352-359, 2011. DOI: 10.1016/j.renene.2010.06.049Meinhold, R.J. and Singpurwalla, N.D., Understanding the Kalman Filter. The American Statistician, 37(2), pp. 123-127, 1983. DOI: 10.2307/2685871Neelamegham, R. and Chintagunta, P., A Bayesian model to forecast new product performance in domestic and international markets. Marketing Science [online]. 18(2), pp. 115-136, 1999. Available at: http://bear.warrington.ufl.edu/centers/mks/articles/684541.pdfOracle, Inc., The Bayesian Approach to Forecasting [online], 2006. Available at: http://www.oracle.com/us/products/applications/057028.pdfPedroza, C., A Bayesian forecasting model: Predicting U.S. male mortality. Biostatistics, 7(4), pp. 530-550, 2006.Pezzulli, S., Frederic, P., Majithia, S., Sabbagh, S, Black, E, Sutton, R, et al., The seasonal forecast of electricity demand: A simple Bayesian model with climatological weather generator. Applied Stochastic Models in Business and Industry, 22(2), pp. 1-16, 2006. Available at: http://empslocal.ex.ac.uk/people/staff/dbs202/publications/2005/pezzullib.pdfPopova, I., Popova, E. and George, E., Bayesian forecasting of prepayment rates for individual pools of mortgages. Bayesian Analysis, 3(2), pp. 393-426, 2008.Putnam, B., Practical experiences in financial markets using Bayesian forecasting systems [online], 2007. Available at: http://www.math.uchicago.edu/~cfm/BP-papers/Lessons_from_Bayesian_Experiences.pdfSloughter, J.M., Raftery, A.E. and Gneiting, T., Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Monthly Weather Review, 135(9), pp. 3208-3220, 2006.Valencia, M., and Correa, J. Un modelo dinámico bayesiano para pronóstico de energía diaria. Revista Ingenieria Industrial. 2013;12(2), pp.7–17.Valencia, M., Correa J.C., Díaz F. y Ramírez, S., Aplicación de modelación bayesiana y optimización para pronósticos de demanda. Ingenería y Desarrollo, 32(2), pp. 179-199, 2014.Yelland, P.M., Bayesian forecasting of parts demand. International Journal of Forecasting, 26(2), pp. 374-396, 2010. DOI: 10.1016/j.ijforecast.2009.11.001Valencia, M., González, D. y Cardona, J., Metodología de un modelo de optimización para el pronóstico y manejo de inventarios usando el metaheurístico Tabu. Revista de Ingeniería. 24(1), pp. 13-27, 2014. DOI: 10.15517/ring.v24i1.13771Urrea, A. y Torres, F., Optimización de una política de inventarios por medio de búsqueda tabú. In: III Congreso colombiano y I Conferencia Andina internacional [online], 8 P. 2006, Available at: http://dspace.uniandes.edu.co:9090/xmlui/handle/1992/822Jeyanthi, N. and Radhakrishnan, P., Optimizing multi product inventory using genetic algorithm for efficient supply chain management involving lead time. International Journal of Computer Science and Network Security [online], 10(5), pp. 231-239, 2010. Available at: http://paper.ijcsns.org/07_book/201005/20100534.pdfPalacio, O. y Adarme, W., Coordinación de inventarios: Un caso de estudio para la logística de ciudad. DYNA, 81(186), pp. 295-303, 2014.Wallström, P. and Segerstedt, A., Evaluation of forecasting error measurements and techniques for intermittent demand. International Journal of Production Economics, 128(2), pp. 625-636, 2010.Valencia, M., Dynamic model for the multiproduct inventory optimization with multivariate. PhD. Thesis. Department of Engineering, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Colombia, 2016.Bowerman, B.L. y Oconnell, R.T., Pronósticos, series de tiempo y regresión: Un enfoque aplicado. Editores. CL, editor. México, 2007.Valencia, M., Ramírez, S., Tabares, J. y Velásquez, C., Métodos de pronósticos clásicos y bayesianos con aplicaciones. Report. Universidad Nacional de Colombia, 2014.Valencia-Cárdenas et al / DYNA 83 (198), pp. 236-244, Septiembre, 2016.Wei, W.W.S., Time series analysis. Reading: Addison-Wesley, 1994.Makridakis, S., Hibon, M. and Moser, C., Accuracy of forecasting : An empirical Investigation. Journal of the Royal Statistical Society. Series A, 142(2), pp. 97-145, 1979. DOI: 10.2307/2345077.Makridakis, S., Wheelwright, S. and McGee, V., City: NewYork. Second Ed. John Wiley and Sons, 1983.Diebold, F., Elementos de pronósticos. City: México. International Thomson editors, 1999.Wilson, J.H., Keating, B. and Galt, J., Pronósticos en los negocios. Fifth Ed. McGraw-Hill; 2007. 461 P.Wang, S., Exponential smoothing for forecasting and bayesian validation of computer models [online]. Thesis, Georgia Institute of Technology, [Online]. 2006. Available at: https://smartech.gatech.edu/bitstream/handle/1853/19753/wang_shuchun_200612_phd.pdfYelland, P.M. and Lee, E., Forecasting product sales with dynamic linear mixture models. Sun Microsystems, 2003.Gill, J., Bayesian methods: A social and behavioral sciences approach. Second Ed. Boca Raton: Chapman and Hall, 2007.Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B., Bayesian data analysis. Second Ed. Boca Raton: Chapman and Hall, 2004.Barrera, C. y Correa, J., Distribución predictiva bayesiana para modelos de pruebas de vida vía MCMC. Revista Colombiana de Estadística [online], 31(2), pp. 145-155, 2008. Available at: http://www.emis.ams.org/journals/RCE/ingles/V31/bodyv31n2/v31n2a01BarreraCorrea.pdfCongdon, P., Bayesian statistical modelling. London: Wiley Series in Probability and Statistics, 2002.Zellner, A., An introduction to bayesian inference in econometrics. Second Ed. New York: Wiley, 1996.R Core Team., A Language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing, 2014. Available at: http://www.r-project.org/Wagner, H.M. and Whitin, T.M., Dynamic version of the economic lot size model. Management Science, 5(1), pp. 89-96, 1958.Simchi-Levi, D., Chen, X. and Bramel, J., The logic of logistics: Theory, algorithms, and applications for logistics and supply chain management. Second Ed. New York: Springer-Verlag, 2005.Cadenas de suministroChaîne d'approvisionnementSupply chainsPrognosisPronósticoPrognósticoPronosticModelos dinámicos linealesDynamic linear modelsEstadística bayesianaBayesian statisticsModelos de inventarioInventory modelsTHUMBNAILMulti-product inventory modeling with demand forecasting and Bayesian optimization.pdf.jpgMulti-product inventory modeling with demand forecasting and Bayesian optimization.pdf.jpgGenerated Thumbnailimage/jpeg15238https://dspace.tdea.edu.co/bitstream/tdea/4015/4/Multi-product%20inventory%20modeling%20with%20demand%20forecasting%20and%20Bayesian%20optimization.pdf.jpg873500c3ebb1702560b0a4afb38f23baMD54open accessTEXTMulti-product inventory modeling with demand forecasting and Bayesian optimization.pdf.txtMulti-product inventory modeling with demand forecasting and Bayesian optimization.pdf.txtExtracted texttext/plain45835https://dspace.tdea.edu.co/bitstream/tdea/4015/3/Multi-product%20inventory%20modeling%20with%20demand%20forecasting%20and%20Bayesian%20optimization.pdf.txt6b27f9934386c930f003d59a2d8ff277MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/4015/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessORIGINALMulti-product inventory modeling with demand forecasting and Bayesian optimization.pdfMulti-product inventory modeling with demand forecasting and Bayesian optimization.pdfapplication/pdf653159https://dspace.tdea.edu.co/bitstream/tdea/4015/1/Multi-product%20inventory%20modeling%20with%20demand%20forecasting%20and%20Bayesian%20optimization.pdf16891d289a1a75cace885f337565fb1dMD51open accesstdea/4015oai:dspace.tdea.edu.co:tdea/40152023-11-01 03:01:29.431An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=