Principios teórico-prácticos de análisis de biología molecular: desde el aislamiento del ADN al análisis de secuencias
La biología molecular es un área en constante desarrollo y con la aplicación de sus técnicas se han podido explicar procesos biológicos fundamentales en diferentes organismos. La detección y cuantificación específica de material genético y de su expresión génica han mostrado una significativa utilid...
- Autores:
-
F. Gómez, Giovan
Maya Duque, Andrés Felipe
Gómez Piñerez, Luz Miryam
Cadavid Sánchez, Isabel Cristina
Lazarroto, Fernanda
López Rubio, Andrés
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2022
- Institución:
- Tecnológico de Antioquia
- Repositorio:
- Repositorio Tdea
- Idioma:
- spa
- OAI Identifier:
- oai:dspace.tdea.edu.co:tdea/1547
- Acceso en línea:
- https://dspace.tdea.edu.co/handle/tdea/1547
- Palabra clave:
- Biología
ADN, biología molecular, organismos
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
RepoTdea2_9da523dd5deef51c059c4e3b8eb65c83 |
---|---|
oai_identifier_str |
oai:dspace.tdea.edu.co:tdea/1547 |
network_acronym_str |
RepoTdea2 |
network_name_str |
Repositorio Tdea |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Principios teórico-prácticos de análisis de biología molecular: desde el aislamiento del ADN al análisis de secuencias |
title |
Principios teórico-prácticos de análisis de biología molecular: desde el aislamiento del ADN al análisis de secuencias |
spellingShingle |
Principios teórico-prácticos de análisis de biología molecular: desde el aislamiento del ADN al análisis de secuencias Biología ADN, biología molecular, organismos |
title_short |
Principios teórico-prácticos de análisis de biología molecular: desde el aislamiento del ADN al análisis de secuencias |
title_full |
Principios teórico-prácticos de análisis de biología molecular: desde el aislamiento del ADN al análisis de secuencias |
title_fullStr |
Principios teórico-prácticos de análisis de biología molecular: desde el aislamiento del ADN al análisis de secuencias |
title_full_unstemmed |
Principios teórico-prácticos de análisis de biología molecular: desde el aislamiento del ADN al análisis de secuencias |
title_sort |
Principios teórico-prácticos de análisis de biología molecular: desde el aislamiento del ADN al análisis de secuencias |
dc.creator.fl_str_mv |
F. Gómez, Giovan Maya Duque, Andrés Felipe Gómez Piñerez, Luz Miryam Cadavid Sánchez, Isabel Cristina Lazarroto, Fernanda López Rubio, Andrés |
dc.contributor.author.none.fl_str_mv |
F. Gómez, Giovan Maya Duque, Andrés Felipe Gómez Piñerez, Luz Miryam Cadavid Sánchez, Isabel Cristina Lazarroto, Fernanda López Rubio, Andrés |
dc.subject.ddc.none.fl_str_mv |
Biología |
topic |
Biología ADN, biología molecular, organismos |
dc.subject.proposal.spa.fl_str_mv |
ADN, biología molecular, organismos |
description |
La biología molecular es un área en constante desarrollo y con la aplicación de sus técnicas se han podido explicar procesos biológicos fundamentales en diferentes organismos. La detección y cuantificación específica de material genético y de su expresión génica han mostrado una significativa utilidad en áreas de la salud, de ciencias forenses, ciencias agrícolas, etc. La biología molecular permite abordar el conocimiento de la biodiversidad, la evolución, la taxonomía y la conservación de especies, también, estudiar especímenes de museo, por tanto, facilita la comparación y recuperación de información de diferentes escalas temporales, lo cual tiene aplicación en biología y arqueología. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-03-28T20:20:27Z |
dc.date.available.none.fl_str_mv |
2022-12-12 2022-03-28T20:20:27Z |
dc.date.issued.none.fl_str_mv |
2022-12-12 |
dc.type.spa.fl_str_mv |
Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/book |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/WP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2f33 |
status_str |
publishedVersion |
dc.identifier.isbn.spa.fl_str_mv |
978-958-8628-67-7 |
dc.identifier.uri.none.fl_str_mv |
https://dspace.tdea.edu.co/handle/tdea/1547 |
dc.identifier.eisbn.spa.fl_str_mv |
978-958-8628-68-4 |
identifier_str_mv |
978-958-8628-67-7 978-958-8628-68-4 |
url |
https://dspace.tdea.edu.co/handle/tdea/1547 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.none.fl_str_mv |
Serie Académica; |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
150 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Sello Editorial Tecnológico de Antioquia |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Tecnológico de Antioquia |
bitstream.url.fl_str_mv |
https://dspace.tdea.edu.co/bitstream/tdea/1547/1/Principios%20te%c3%b3rico-pr%c3%a1ticos%20de%20an%c3%a1lisis%20de%20biolog%c3%ada%20molecular.pdf https://dspace.tdea.edu.co/bitstream/tdea/1547/2/license.txt https://dspace.tdea.edu.co/bitstream/tdea/1547/3/Principios%20te%c3%b3rico-pr%c3%a1ticos%20de%20an%c3%a1lisis%20de%20biolog%c3%ada%20molecular.pdf.txt https://dspace.tdea.edu.co/bitstream/tdea/1547/4/Principios%20te%c3%b3rico-pr%c3%a1ticos%20de%20an%c3%a1lisis%20de%20biolog%c3%ada%20molecular.pdf.jpg |
bitstream.checksum.fl_str_mv |
55882378d90c16fd3a9d5e0a6b1d2d07 2f9959eaf5b71fae44bbf9ec84150c7a 390632adf530de0466df39d13c5618c0 ebe4823048f337790036b817724477f3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Tecnologico de Antioquia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1812189176263606272 |
spelling |
F. Gómez, Giovand5e016d8-995e-41b1-92c1-e694befc357eMaya Duque, Andrés Felipe2d28be7c-ad7b-482a-a6c8-b1993b946ecfGómez Piñerez, Luz Miryamd689f362-2766-4d1a-a294-129685538f4eCadavid Sánchez, Isabel Cristina0b0e6b8a-54bb-4b94-8b99-e1d8c9704f63Lazarroto, Fernandae05024ac-8b10-44ec-bc8c-2d768e8c7340López Rubio, Andrés6409a511-4dfc-417e-88d1-25d95489e2f22022-03-28T20:20:27Z2022-12-122022-03-28T20:20:27Z2022-12-12978-958-8628-67-7https://dspace.tdea.edu.co/handle/tdea/1547978-958-8628-68-4La biología molecular es un área en constante desarrollo y con la aplicación de sus técnicas se han podido explicar procesos biológicos fundamentales en diferentes organismos. La detección y cuantificación específica de material genético y de su expresión génica han mostrado una significativa utilidad en áreas de la salud, de ciencias forenses, ciencias agrícolas, etc. La biología molecular permite abordar el conocimiento de la biodiversidad, la evolución, la taxonomía y la conservación de especies, también, estudiar especímenes de museo, por tanto, facilita la comparación y recuperación de información de diferentes escalas temporales, lo cual tiene aplicación en biología y arqueología.Contenido Presentación...................................................................................................................... 5 Capítulo 1............................................................................................................................. 7 Extracción de ácidos nucleicos Giovan F. Gómez Capítulo 2............................................................................................................................ 23 Cuantificación de ácidos nucleicos: concentración y pureza de las muestras y protocolo de cuantificación mediante fluorometría con Qubit® 3.0 Fluorometer Andrés Felipe Maya Duque Principios Luz Miryam Gómez Piñerez Isabel Cristina Cadavid Sánchez teórico-prácticos Capítulo 3............................................................................................................................ 49 Reacción en cadena de la polimerasa (PCR) y visualización de sus productos en gel Ferndaneda aLanzarároltoisis de biología molecular: Isabel Cristina Cadavid Sánchez (Qiagen) Isabel Cristina Cadavid Sánchez Capítulo 5............................................................................................................................ 115 Secuenciación con didesoxinucleótidos (tipo Sanger) Isabel Cristina Cadavid Sánchez Capítulo 6............................................................................................................................ 124 Edición de secuencias de ADN, un paso a paso para su análisis Andrés López Rubio Luz Miryam Gómez Piñerez1a ed.150application/pdfspaSello Editorial Tecnológico de AntioquiaMedellínSerie Académica;Este libro incorpora contenidos derivados de procesos académicos y estos no representan, necesariamente, los criterios institucionales del Tecnológico de Antioquia. Los contenidos son responsabilidad exclusiva de sus autores. Obra protegida por el derecho de autor. Queda estrictamente prohibida su reproducción, comunicación, divulgación, copia, distribución, comercialización, transformación, puesta a disposición o transferencia en cualquier forma y por cualquier medio, sin la autorización previa, expresa y por escrito de su titular. El incumplimiento de la mencionada restricción podrá dar lugar a las acciones civiles y penales correspondientes.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BiologíaADN, biología molecular, organismosPrincipios teórico-prácticos de análisis de biología molecular: desde el aislamiento del ADN al análisis de secuenciasLibrohttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/bookhttps://purl.org/redcol/resource_type/WPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85ColombiaComunidad científica, estudiantes, profesoresAsghar, U., Malik, M. F., Anwar, F., Javed, A., y Raza, A. (2015). DNA extraction from insects by using different techniques: a review. Advances in Entomology, 3, 132-138.Dash, H. R., Shrivastava, P., y Das, S. (2020). Reliable Use of WhatmanTM FTATM Cards for One-Step Collection and Isolation of DNA. In: H. R. Dash, P.De Wever, J., Tulkens, D., Verwaeren, J., Everaert, H., Rottiers, H., Dewettinck, K., Lefever, S., y Messens, K. (2020). A combined RNA preservation and extraction protocol for gene expression studies in cacao beans. Frontiers in Plant Science, 11, 992. https://doi.org/10.3389/fpls.2020.00992Dong, Y., Sun, F., Ping, Z., Ouyang, Q., y Qian, L. (2020). DNA storage: research landscape and future prospects. National Science Review, 7(6), 1092- 1107. https://doi.org/10.1093/nsr/nwaa007Elliott, D., y Ladomery, M. (2017). Molecular biology of RNA. Oxford University Press.EPRUI Biotech. (2018). Nucleic acid extraction method: The Rise of Magnetic Bead Extraction. EPRUI Biotech Co. Ltd. https://www.epruibiotech.com/ nano-wiki/nucleic-acid-extraction-method-the-rise-of-magnetic-bead- extraction/Farrell, R. E. (2017). RNA methodologies: Laboratory guide for isolation and characterization (5th ed.). Academic Press.Goyal, M., Dhillon, S., y Kumar, P. (2020). An improved method for isolation of high-quality RNA from starch-rich wheat grains. Journal of Environmental Biology, 41(3), 586–591. https://doi.org/10.22438/JEB/41/3/MRN-1137Hazman, M., Kabil, F., Abd Elhamid, S., y Nick, P. (2020). Double lysis: an integrative time-saving method yielding high-quality RNA from strawberry. Journal of Genetic Engineering and Biotechnology, 18(1). https://doi.org/10.1186/ s43141-020-00039-5Hung, K. H., y Stumph, W. E. (2011). Regulation of snRNA gene expression by the Drosophila melanogaster small nuclear RNA activating protein complex (DmSNAPc). Critical Reviews in Biochemistry and Molecular Biology, 46(1), 11-26. https://doi.org/10.3109/10409238.2010.518136Ma, Z., Huang, B., Xu, S., Chen, Y., Li, S., & Lin, S. (2015). Isolation of High-Quality Total RNA from Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). PloS One, 10, e0130234. https://doi.org/10.1371/journal.pone.0130234Mayer, F. J., Ratzinger, F., Schmidt, R. L. J., Greiner, G., Landt, O., Am Ende, A., Corman, V. M., Perkmann-Nagele, N., Watkins-Riedel, T., Petermann, D., Abadir, K., Zweimüller-Mayer, J., y Strassl, R. (2020). Development of a fully automated high throughput PCR for the detection of SARS-CoV-2: The need for speed. Virulence, 11(1), 964-967. https://doi.org/10.1080/21 505594.2020.1798041Prendini, L., Hanner, R., y De Salle, R. (2002). Obtaining, storing and archiving specimens and tissue samples for use in molecular studies. In R. DeSalle, G. Giribet, y W. Wheeler (Eds.), Methods and tools in biosciences and medicine (pp. 176–248). Springer Basel AG. https://doi.org/10.1007/978- 3-0348-8125-8_11Sambrook, J., Fritsch, E. F., y Maniatis, T. (2001). Molecular Cloning: A Laboratory Manual. (3rd ed.). New York: Cold Spring Harbor Laboratory Press. https://doi.org/574.873224 1/1989Schwiesow, L. (2020). An outline of the different steps in RNA extraction. https://blog.addgene.org/rna-extraction-without-a-kitSteinmetz, N., Michl, G., Maixner, M., y Hoffmann, C. (2020). A rapid and inexpensive RNA-extraction method for high-throughput virus detection in grapevine. Vitis, 39, 35-39. https://doi.org/10.5073/vitis.2020.59.35-39Sullivan, R., Heavey, S., Graham, D. G., Wellman, R., Khan, S., Thrumurthy, S., Simpson, B. S., Baker, T., Jevons, S., Ariza, J., Eneh, V., Pye, H., Luxton, H., Hamoudi, R., Whitaker, H., y Lovat, L. B. (2020). An optimized saliva collection method to produce high-yield, high-quality RNA for translational research. PLoS ONE, 15(3). https://doi.org/10.1371/journal. pone.0229791Watson, J. D., y Crick, F. H. C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171, 737-738. https://doi. org/10.1038/171737a0Adelis. (s. f.). BIABooster system. https://www.adelis-tech.com/product/ biabooster/ [Consultado: 5 de octubre de 2020].Armbrecht, M. (2013). Detection of contamination in DNA and protein samples by photometric measurements. Eppendorf, Application Note, 279. https:// www.eppendorf.com/product-media/doc/en/59828/Eppendorf_ Detection_Application-Note_279_BioPhotometer-D30_Detection- contamination-DNA-protein-samples-photometric-measurements.pdfAtienzar, F., Evenden, A., Jha, A., Savva, D., y Depledge, M. (2000). Optimized RAPD analysis generates high-quality genomic DNA profiles at high annealing temperature. BioTechniques, 28(1), 52-54. https://doi. org/10.2144/00281bm09Berthold Technologies (2020). DNA quantification methods. Berthold Technologies GmbH y Co.KG. https://www.berthold.com/en/ bioanalytic/applications/dna-quantification/methods/Blater, A. (2018). Choosing the Right Method for Nucleic Acid Quantitation. Promega Corporation. https://worldwide.promega.com/resources/ pubhub/choosing-the-right-method-for-nucleic-acid-quantitation/Enzo Life Sciences (s. f.). AMPIGENE® DNA Ladder 250-10,000 bp—ENZ-GEN103. Enzo Life Sciences. https://www.enzolifesciences.com/ENZ-GEN103/ampigene- dna-ladder-250-10-000-bp/ [Consultado: 5 de octubre de 2020].Gallagher, S. R., y Desjardins, P. (2011). Quantitation of Nucleic Acids and Proteins. Current Protocols Essential Laboratory Techniques, 5(1), 221-236. https:// doi.org/10.1002/9780470089941.et0202s5Gómez P., L. M. (2007). Obtención de ADN de insectos con calidad para la secuenciación. En: G. Amat (Ed.), Fundamentos y métodos para el estudio de los insectos (pp. 140-151). Bogotá: Universidad Nacional de Colombia.Hedman, J., & Rådström, P. (2013). Overcoming Inhibition in Real-Time Diagnostic PCR. In M. Wilks (Ed.), PCR Detection of Microbial Pathogens (pp. 17–48). Humana Press. https://doi.org/10.1007/978-1-60327-353-4_2Lian, D. S., y Zhao, S. J. (2016). Capillary electrophoresis based on nucleic acid detection for diagnosing human infectious disease. Clinical Chemistry and Laboratory Medicine (CCLM), 54(5), 707-738. https://doi.org/10.1515/ cclm-2015-0096Liao, J., Yang, L., Sheppard, A. M., y Liu, Y. F. (2018). Comparison of DNA quality in raw and reconstituted milk during sterilization. Journal of Dairy Science, 101(1), 147-153. https://doi.org/10.3168/jds.2017-13461Life Technologies (2014). Assays Quick Reference. Fluorometer QubitTM 3 Fluo- rometer. http://tools.thermofisher.com/content/sfs/manuals/qubit_as- says_qrc.pdfMolinari, H. B., y Crochemore, M. L. (2001). Extração de DNA genômico de Passiflora spp. para análises PCR-RAPD. Revista Brasileira de Fruticultura, 23(2), 447-450. https://doi.org/10.1590/S0100-29452001000200051Ruíz S., B., Rojas M., R. I., Ruíz H., H., Mendoza N., P., Oliva Ll., M. Á., Ibarra M., C. E., Aguilar T., G., Herrera H., J. G., Hernández G., A., Sanzon G., D., Bautista T., G. U., Ruíz M., A. de J., y Medina S., L. M. (2010). Extracción y cuantificación de ADN de pajillas de semen bovino criopreservado. Revista Científica UDO Agrícola, 10(1), 103-108.Stephenson, F. H. (2016). Nucleic Acid Quantification. In F. H. Stephenson (Org.), Calculations for Molecular Biology and Biotechnology (3rd edition) (pp. 97-129). Academic Press. https://doi.org/10.1016/B978-0-12-802211- 5.00005-9Thermo Fisher Scientific. (s. f.). Qubit Fluorometric Quantification. www. thermofisher.com/br/en/home/industrial/spectroscopy-elemental- isotope-analysis/molecular-spectroscopy/fluorometers/qubit.html/ [Consultado: 5 de octubre de 2020].Bustin, S. A., Mueller, R., y Nolan, T. (2020). Parameters for Successful PCR Primer Design. In: R. Biassoni y A. Raso (Eds.), Quantitative Real-Time PCR: Methods and Protocols (pp. 5-22). Springer. https://doi.org/10.1007/978- 1-4939-9833-3_2Cadavid, I. (2018). Uso del termociclador piko 96 Thermo Scientific. En: Del campo al laboratorio: Integración de procedimientos para el estudio de moscas (pp. 117-125). Medellín: Sello Editorial Publicar-T. Tecnológico de Antioquia.Cariello, N. F., Keohavong, P., Sanderson, B. J., y Thilly, W. G. (1988). DNA damage produced by ethidium bromide staining and exposure to ultraviolet light. Nucleic Acids Research, 16(9), 4157.Chrambach, A., y Rodbard, D. (1971). Polyacrylamide gel electrophoresis. Science (New York, N.Y.), 172(3982), 440-451. https://doi.org/10.1126/ science.172.3982.440Dieffenbach, C. W., Lowe, T. M., y Dveksler, G. S. (1993). General concepts for PCR primer design. Genome Research, 3(3), S30-S37.Dragan, A. I., Pavlovic, R., McGivney, J. B., Casas-Finet, J. R., Bishop, E. S., Strouse, R. J., Schenerman, M. A., y Geddes, C. D. (2012). SYBR Green I: Fluorescence properties and interaction with DNA. Journal of Fluorescence, 22(4), 1189-1199. https://doi.org/10.1007/s10895-012-1059-8Hall, A. C. (2019). A comparison of DNA stains and staining methods for Agarose Gel Electrophoresis. BioRxiv, 568253. https://doi.org/10.1101/568253Hall, A. C. (2019). A comparison of DNA stains and staining methods for Agarose Gel Electrophoresis. BioRxiv, 568253. https://doi.org/10.1101/568253Koshland, D. E. (1992). The molecule of the year (Editorial). Science, 258(5090), 1861. https://doi.org/10.1126/science.1470903Kramer, M. F., y Coen, D. M. (2001). Enzymatic amplification of DNA by PCR: Standard procedures and optimization. In: Current Protocols in Immunology, Chapter 10, Unit 10.20. https://doi.org/10.1002/0471142735. im1020s24Lee, P. Y., Costumbrado, J., Hsu, C.-Y., y Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments: JoVE, 62. https://doi.org/10.3791/3923Markoulatos, P., Siafakas, N., y Moncany, M. (2002). Multiplex polymerase chain reaction: A practical approach. Journal of Clinical Laboratory Analysis, 16(1), 47-51. https://doi.org/10.1002/jcla.2058Mullis, K. B. (1990). The unusual origin of the polymerase chain reaction. Scientific American, 262(4), 56-61, 64-65. https://doi.org/10.1038/ scientificamerican0490-56Najafov, A., y Hoxhaj, G. (2017). PCR guru: An ultimate benchtop reference for molecular biologists. Academic Press. http://public.ebookcentral. proquest.com/choice/publicfullrecord.aspx?p=4749913Pérez, A., y Gómez, L. M. (2018). Electroforesis de ácido desoxirribonucleico (ADN) en gel de agarosa. En: Del campo al laboratorio: Integración de procedimientos para el estudio de moscas (pp. 163-169). Medellín: Sello Editorial Publicar-T. Tecnológico de Antioquia.Raynie, D. E. (2000). Andrews AT (1986) Electrophoresis Theory, Techniques and Biochemical and Clinical Applications, 2nd edn Oxford: Oxford University Press.Camilleri P (1997). Capillary Electrophoresis: Theory and Practice, 2nd edn. Boca Raton, FL: CRC Press.Singer, V. L., Lawlor, T. E., y Yue, S. (1999). Comparison of SYBR® Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 439(1), 37-47. https://doi.org/10.1016/S1383-5718(98)00172-7Templeton, N. S. (1992). The polymerase chain reaction. History, methods, and applications. Diagnostic Molecular Pathology: The American Journal of Surgical Pathology, Part B, 1(1), 58-72. https://doi.org/10.1097/00019606- 199203000-00008Van Pelt-Verkuil, E., van Belkum, A., y Hays, J. P. (Eds.). (2008). The PCR in Practice. In: Principles and Technical Aspects of PCR Amplification (pp. 17-23), Springer, Netherlands. https://doi.org/10.1007/978-1-4020-6241-4_3Varela, A., y Cadavid, I. (2018). Amplificación de fragmentos de ADN mediante la reacción en cadena de la polimerasa clásica. En: Del campo al laboratorio: Integración de procedimientos para el estudio de moscas (pp. 105-116). Medellín: Sello Editorial Publicar-T. Tecnológico de Antioquia.Yazdi, S. M. H. T., Kiah, H. M., Garcia-Ruiz, E., Ma, J., Zhao, H., y Milenkovic, O. (2015). DNA-Based Storage: Trends and Methods. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 1(3), 230-248. https://doi.org/10.1109/TMBMC.2016.2537305Alvares, L. E., Mantoani, A., Corrente, J. E., y Coutinho, L. L. (2003). Standard- curve competitive RT-PCR quantification of myogenic regulatory factors in chicken embryos. Brazilian Journal of Medical and Biological Research, 36(12), 1629-1641. https://doi.org/10.1590/S0100-879X2003001200004Alaruri, S. D. (2014). High-power white LED-based system incorporating a CCD Offner imaging spectrometer for real-time fluorescence qPCR measurements. Measurement Science and Technology, 25(12), 125502. https://doi.org/10.1088/0957-0233/25/12/125502Andersen, C. L., Jensen, J. L., y Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15), 5245- 5250. https://doi.org/10.1158/0008-5472.CAN-04-0496Bai, B., Ren, J., Bai, F., y Hao, L. (2020). Selection and validation of reference genes for gene expression studies in Pseudomonas brassicacearum GS20 using real-time quantitative reverse transcription PCR. PLOS ONE, 15(1), e0227927. https://doi.org/10.1371/journal.pone.0227927Borah, B., Hussain, M., Wann, S. B., y Bhau, B. S. (2020). Selection and validation of suitable reference genes for quantitative real time PCR analysis of gene expression studies in patchouli under Meloidogyne incognita attack and PGPR treatment. Gene Reports, 19, 100625. https://doi.org/10.1016/j. genrep.2020.100625Bregu, J., Conklin, D., Coronado, E., Terrill, M., Cotton, R. W., y Grgicak, C. M. (2013). Analytical Thresholds and Sensitivity: Establishing RFU Thresholds for Forensic DNA Analysis. Journal of Forensic Sciences, 58(1), 120-129. https://doi.org/10.1111/1556-4029.12008Busser, F. D., Coelho, V. C., Fonseca, C. de A., Del Negro, G. M. B., Shikanai- Yasuda, M. A., Lopes, M. H., Magri, M. M. C., y Freitas, V. L. T. de. (2020). A Real Time PCR strategy for the detection and quantification of Candida albicans in human blood. Revista Do Instituto de Medicina Tropical de São Paulo, 62. https://doi.org/10.1590/s1678-9946202062009Cadavid, I. C., Guzmán, F., de Oliveira-Busatto, L., de Almeida, R. M. C., y Margis, R. (2020). Transcriptional analyses of two soybean cultivars under salt stress. Molecular Biology Reports, 47(4), 2871-2888. https:// doi.org/10.1007/s11033-020-05398-3Castagnetta, M., Pfeffer, U., Chiesa, A., Gennaro, E., Cecconi, M., Coviello, D., y Sacchi, N. (2020). QPCR Applications for the Determination of the Biological Age. In: R. Biassoni y A. Raso (Eds.), Quantitative Real- Time PCR: Methods and Protocols (pp. 191-197). Springer. https://doi. org/10.1007/978-1-4939-9833-3_14Castañeda-Gulla, K., Sattlegger, E., y Mutukumira, A. N. (2019). Persistent contamination of Salmonella, Campylobacter, Escherichia coli, and Staphylococcus aureus at a broiler farm in New Zealand. Canadian Journal of Microbiology, 66(3), 171-185. https://doi.org/10.1139/cjm-2019- 0280Dash, H. R., Shrivastava, P., y Das, S. (2020). Quantification of DNA by Using qRT- PCR. In: H. R. Dash, P. Shrivastava, y S. Das (Eds.), Principles and Practices of DNA Analysis: A Laboratory Manual for Forensic DNA Typing (pp. 133- 147). Springer US. https://doi.org/10.1007/978-1-0716-0274-4_17De Jonge, H. J. M., Fehrmann, R. S. N., de Bont, E. S. J. M., Hofstra, R. M. W., Gerbens, F., Kamps, W. A., de Vries, E. G. E., van der Zee, A. G. J., te Meerman, G. J., y ter Elst, A. (2007). Evidence Based Selection of Housekeeping Genes. PLoS ONE, 2(9). https://doi.org/10.1371/journal.pone.0000898Demeke, T., Gräfenhan, T., Holigroski, M., Fernando, U., Bamforth, J., y Lee, S.-J. (2014). Assessment of droplet digital PCR for absolute quantification of genetically engineered OXY235 canola and DP305423 soybean samples. Food Control, 46, 470-474. https://doi.org/10.1016/j.foodcont.2014.06.018Désiré, N., Dehée, A., Schneider, V., Jacomet, C., Goujon, C., Girard, P.- M., Rozenbaum, W., y Nicolas, J.-C. (2001). Quantification of Human Immunodeficiency Virus Type 1 Proviral Load by a TaqMan Real-Time PCR Assay. Journal of Clinical Microbiology, 39(4), 1303-1310. https://doi. org/10.1128/JCM.39.4.1303-1310.2001Fan, L., Zhang, X., Zeng, R., Wang, S., Jin, C., He, Y., y Shuai, J. (2020). Verification of Bacteroidales 16S rRNA markers as a complementary tool for detecting swine fecal pollution in the Yangtze Delta. Journal of Environmental Sciences, 90, 59-66. https://doi.org/10.1016/j.jes.2019.11.016Gao, W., Wu, J., Chen, X., Lin, L., Fei, X., Shen, K., y Huang, O. (2019). Clinical validation of Ki67 by quantitative reverse transcription-polymerase chain reaction (RT-PCR) in HR+/HER2- early breast cancer. Journal of Cancer, 10(5), 1110-1116. https://doi.org/10.7150/jca.29337Gheni, N., y Westenberg, D. (2020). Quantitative real-time PCR assay with immunohistochemical evaluation of HER2/neu oncogene in breast cancer patients and its correlation with clinicopathological findings. Indian Journal of Pathology and Microbiology, 63(5), 123. https://doi. org/10.4103/IJPM.IJPM_136_19Ginzinger, D. G. (2002). Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Experimental Hematology, 30(6), 503-512. https://doi.org/10.1016/s0301-472x(02)00806-8Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., y Mathieu, C. (2001). An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods (San Diego, Calif.), 25(4), 386-401. https://doi.org/10.1006/meth.2001.1261Gravitt, P. E., Peyton, C., Wheeler, C., Apple, R., Higuchi, R., y Shah, K. V. (2003). Reproducibility of HPV 16 and HPV 18 viral load quantitation using TaqMan real-time PCR assays. Journal of Virological Methods, 112(1), 23- 33. https://doi.org/10.1016/S0166-0934(03)00186-1Heid, C. A., Stevens, J., Livak, K. J., y Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6 (10), 986-994. https://doi.org/10.1101/ gr.6.10.986Josefsen, M. H. (2012). Instrumentation and Fluorescent Chemistries Used in qPCR. In: M. Filion (ed.), Quantitative Real-Time Pcr in Applied Microbiology (pp. 27-52). Caister Academic Press.Kamau, E., Alemayehu, S., Feghali, K. C., Saunders, D., y Ockenhouse, C. F. (2013). Multiplex qPCR for Detection and Absolute Quantification of Malaria. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0071539Kim, Y., Sohn, D., y Tan, W. (2008). Molecular Beacons in Biomedical Detection and Clinical Diagnosis. International Journal of Clinical and Experimental Pathology, 1(2), 105-116.Kozera, B., y Rapacz, M. (2013). Reference genes in real-time PCR. Journal of Applied Genetics, 54(4), 391-406. https://doi.org/10.1007/s13353-013- 0173-xLalonde, L. F., Reyes, J., y Gajadhar, A. A. (2013). Application of a qPCR Assay with Melting Curve Analysis for Detection and Differentiation of Protozoan Oocysts in Human Fecal Samples from Dominican Republic. The American Journal of Tropical Medicine and Hygiene, 89(5), 892-898. https://doi.org/10.4269/ajtmh.13-0106Lévêque, M. F., Lachaud, L., Simon, L., Battery, E., Marty, P., y Pomares, C. (2020). Place of Serology in the Diagnosis of Zoonotic Leishmaniases With a Focus on Visceral Leishmaniasis Due to Leishmania infantum. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/ fcimb.2020.00067Lim, J., Jeon, S., Shin, H.-Y., Kim, M. J., Seong, Y. M., Lee, W. J., Choe, K.-W., Kang, Y. M., Lee, B., y Park, S.-J. (2020). Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea: The Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Pneumonia Monitored by Quantitative RT-PCR. Journal of Korean Medical Science, 35(6). https://doi.org/10.3346/jkms.2020.35.e79Liu, H., Wang, H., Shi, Z., Wang, H., Yang, C., Silke, S., Tan, W., y Lu, Z. (2006). TaqMan probe array for quantitative detection of DNA targets. Nucleic Acids Research, 34(1), e4. https://doi.org/10.1093/nar/gnj006Livak, K. J., y Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods (San Diego, Calif.), 25(4), 402-408. https://doi.org/10.1006/ meth.2001.1262Lynch, C., y Fleming, R. (2019). A review of direct polymerase chain reaction of DNA and RNA for forensic purposes. WIREs Forensic Science, 1(4), e1335. https://doi.org/10.1002/wfs2.1335Mozayeni, F., Rezaee, S. A., Jabbari Azad, F., Shabestari, M., Faridhosseini, R., Rafatpanah, H., Yousefzadeh, H., Garivani, Y. A., Jarahi, L., Valizadeh, N., Sabet, F., Moshirahmadi, S., Mohammadi, F. S., y Shabestari, M. (2020). High proviral load of human T cell lymphotropic virus type-1 facilitates coronary artery diseases. Iranian Journal of Basic Medical Sciences, 23(4), 500-506. https://doi.org/10.22038/ijbms.2020.36317.8649Muñoz, J. J., Anauate, A. C., Amaral, A. G., Ferreira, F. M., Meca, R., Ormanji, M. S., Boim, M. A., Onuchic, L. F., y Heilberg, I. P. (2020). Identification of housekeeping genes for microRNA expression analysis in kidney tissues of Pkd1 deficient mouse models. Scientific Reports, 10(1), 1-12. https://doi. org/10.1038/s41598-019-57112-4Nagy, A., Vitásková, E., Černíková, L., Křivda, V., Jiřincová, H., Sedlák, K., Horníčková, J., y Havlíčková, M. (2017). Evaluation of TaqMan qPCR System Integrating Two Identically Labelled Hydrolysis Probes in Single Assay. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/srep41392Navarro, E., Serrano-Heras, G., Castaño, M. J., y Solera, J. (2015). Real-time PCR detection chemistry. Clinica Chimica Acta; International Journal of Clinical Chemistry, 439, 231-250. https://doi.org/10.1016/j.cca.2014.10.017Olsvik, P. A., Lie, K. K., Jordal, A.-E. O., Nilsen, T. O., y Hordvik, I. (2005). Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Molecular Biology, 6(1), 21. https://doi.org/10.1186/1471- 2199-6-21Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9), e45. https://doi. org/10.1093/nar/29.9.e45Ponchel, F., Toomes, C., Bransfield, K., Leong, F. T., Douglas, S. H., Field, S. L., Bell, S. M., Combaret, V., Puisieux, A., Mighell, A. J., Robinson, P. A., Inglehearn, C. F., Isaacs, J. D., y Markham, A. F. (2003). Real-time PCR based on SYBR- Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnology, 3, 18. https://doi.org/10.1186/1472- 6750-3-18Potoczniak, M. J., Chermak, M., Quarino, L., Tobe, S. S., y Conte, J. (2020). Development of a multiplex, PCR-based genotyping assay for African and Asian elephants for forensic purposes. International Journal of Legal Medicine, 134(1), 55-62. https://doi.org/10.1007/s00414-019-02097-yPryor, R. J., y Wittwer, C. T. (2006). Real-time polymerase chain reaction and melting curve analysis. Methods in Molecular Biology (Clifton, N. J.), 336, 19-32. https://doi.org/10.1385/1-59745-074-X:19Rački, N., Morisset, D., Gutierrez-Aguirre, I., y Ravnikar, M. (2014). One-step RT- droplet digital PCR: A breakthrough in the quantification of waterborne RNA viruses. Analytical and Bioanalytical Chemistry, 406(3), 661-667. https://doi.org/10.1007/s00216-013-7476-yRamakers, C., Ruijter, J. M., Deprez, R. H. L., y Moorman, A. F. M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters, 339(1), 62-66. https://doi. org/10.1016/S0304-3940(02)01423-4RayBiotech (s. f.). COVID-19 1-Step High Throughput PCR Kit. RayBiotech.com. https://www.raybiotech.com/covid19-high-throughput-real-time-rt- pcr-nucleic-acid-detection-kit/Rebouças, E. de L., Costa, J. J. do N., Passos, M. J., Passos, J. R. de S., Hurk, R. van den, y Silva, J. R. V. (2013). Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. Brazilian Archives of Biology and Technology, 56(1), 143- 154. https://doi.org/10.1590/S1516-89132013000100019Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O., van den Hoff, M. J. B., y Moorman, A. F. M. (2009). Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 37(6), e45. https://doi.org/10.1093/nar/gkp045Rutledge, R. G., y Côté, C. (2003). Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Research, 31(16), e93. https://doi.org/10.1093/nar/gng093Rutledge, R. G, y Stewart, D. (2008). Critical evaluation of methods used to determine amplification efficiency refutes the exponential character of real-time PCR. BMC Molecular Biology, 9, 96. https://doi.org/10.1186/1471- 2199-9-96Schefe, J. H., Lehmann, K. E., Buschmann, I. R., Unger, T., y Funke-Kaiser, H. (2006). Quantitative real-time RT-PCR data analysis: Current concepts and the novel «gene expression’s CT difference» formula. Journal of Molecular Medicine (Berlin, Germany), 84(11), 901-910. https://doi.org/10.1007/ s00109-006-0097-6Schena, L., Nigro, F., Ippolito, A., y Gallitelli, D. (2004). Real-time quantitative PCR: A new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, 110(9), 893-908. https://doi.org/10.1007/s10658-004-4842-9Schmittgen, T. D., y Zakrajsek, B. A. (2000). Effect of experimental treatment on housekeeping gene expression: Validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods, 46(1-2), 69-81. https://doi.org/10.1016/s0165-022x(00)00129-9Schmittgen, T. D., y Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. https://doi. org/10.1038/nprot.2008.73Shang, Y., Ren, L., Yang, L., Wang, S., Chen, W., Dong, J., Ma, H., Qi, X., y Guo, Y. (2020). Differential Gene Expression for Age Estimation of Forensically Important Sarcophaga peregrina (Diptera: Sarcophagidae) Intrapuparial. Journal of Medical Entomology, 57(1), 65-77. https://doi.org/10.1093/ jme/tjz137Shanks, O. C., Kelty, C. A., Sivaganesan, M., Varma, M., y Haugland, R. A. (2009). Quantitative PCR for Genetic Markers of Human Fecal Pollution. Applied and Environmental Microbiology, 75(17), 5507-5513. https://doi. org/10.1128/AEM.00305-09Song, J., Zhao, S., Li, Y., Wang, H., Zhang, L., Wang, J., Ning, C., y Peng, Y. (2020). Duplex TaqMan real-time PCR assay for simultaneous detection and quantification of Anaplasma capra and Anaplasma phagocytophilum infection. Molecular and Cellular Probes, 49, 101487. https://doi. org/10.1016/j.mcp.2019.101487St-Pierre, J., Grégoire, J.-C., y Vaillancourt, C. (2017). A simple method to assess group difference in RT-qPCR reference gene selection using GeNorm: The case of the placental sex. Scientific Reports, 7(1), 1-7. https://doi. org/10.1038/s41598-017-16916-ySvec, D., Tichopad, A., Novosadova, V., Pfaffl, M. W., y Kubista, M. (2015). How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomolecular Detection and Quantification, 3, 9-16. https://doi.org/10.1016/j.bdq.2015.01.005Taylor, S. C., Nadeau, K., Abbasi, M., Lachance, C., Nguyen, M., y Fenrich, J. (2019). The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time. Trends in Biotechnology, 37(7), 761- 774. https://doi.org/10.1016/j.tibtech.2018.12.002Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., Grisar, T., Igout, A., y Heinen, E. (1999). Housekeeping genes as internal standards: Use and limits. Journal of Biotechnology, 75(2), 291-295. https://doi.org/10.1016/S0168-1656 (99)00163-7Tichopad, A., Dilger, M., Schwarz, G., y Pfaffl, M. W. (2003). Standardized determination of real–time PCR efficiency from a single reaction set–up. Nucleic Acids Research, 31(20), e122. https://doi.org/10.1093/nar/gng122Udvardi, M. K., Czechowski, T., y Scheible, W.-R. (2008). Eleven Golden Rules of Quantitative RT-PCR. The Plant Cell, 20(7), 1736-1737. https://doi. org/10.1105/tpc.108.061143Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., y Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), RESEARCH0034. https://doi.org/10.1186/gb-2002- 3-7-research0034Wang, Y. (2016). Universal reference dye for quantitative amplification (United States Patent N.o US9493824B2). https://patents.google.com/patent/ US9493824B2/enWard, C. L., Dempsey, M. H., Ring, C. J. A., Kempson, R. E., Zhang, L., Gor, D., Snowden, B. W., y Tisdale, M. (2004). Design and performance testing of quantitative real time PCR assays for influenza A and B viral load measurement. Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology, 29(3), 179-188. https://doi. org/10.1016/S1386-6532(03)00122-7Whelan, J. A., Russell, N. B., y Whelan, M. A. (2003). A method for the absolute quantification of cDNA using real-time PCR. Journal of Immunological Methods, 278(1-2), 261-269. https://doi.org/10.1016/s0022-1759(03)00223- 0Zajac, B. K., Amendt, J., Verhoff, M. A., y Zehner, R. (2018). Dating Pupae of the Blow Fly Calliphora vicina Robineau–Desvoidy 1830 (Diptera: Calliphoridae) for Post Mortem Interval—Estimation: Validation of Molecular Age Markers. Genes, 9(3), 153. https://doi.org/10.3390/genes9030153Zare, S., Nazarian-Firouzabadi, F., Ismaili, A., y Pakniyat, H. (2019). Identification of miRNAs and evaluation of candidate genes expression profile associated with drought stress in barley. Plant Gene, 20, 100205. https:// doi.org/10.1016/j.plgene.2019.100205Zeng, A., Xu, Y., Song, L., Li, J., y Yan, J. (2020). Validation of suitable reference genes for qRT-PCR in cabbage (Brassica oleracea L.) under different abiotic stress experimental conditions. Journal of Plant Biochemistry and Biotechnology. https://doi.org/10.1007/s13562-020-00556-xZeng, Y., Guo, Z., Hu, Z., Liu, M., Chen, Y., Chen, S., Peng, B., Zhang, P., Wu, Z., Luo, H., Zhong, F., Jiang, K., Lu, Y., Yuan, G., y He, S. (2020). FGD1 exhibits oncogenic properties in hepatocellular carcinoma through regulating cell morphology, autophagy and mitochondrial function. Biomedicine y Pharmacotherapy, 125, 110029. https://doi.org/10.1016/j. biopha.2020.110029Dovichi,N.J.(1997).DNAsequencingbycapillaryelectrophoresis.Electrophoresis, 18(12-13), 2393-2399. https://doi.org/10.1002/elps.1150181229Elyazghi, Z., Yazouli, L. E., Sadki, K., y Radouani, F. (2017). ABI Base Recall: Automatic Correction and Ends Trimming of DNA Sequences. IEEE Transactions on NanoBioscience, 16(8), 682-686. https://doi.org/10.1109/ TNB.2017.2755004Haan, N. M., y Godsill, S. J. (2000). Modelling electropherogram data for DNA sequencing using variable dimension MCMC. 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100), 6, 3542-3545. https://doi.org/10.1109/ ICASSP.2000.860166Illumina. (2020). NGS vs. Sanger Sequencing. https://www.illumina.com/ science/technology/next-generation-sequencing/ngs-vs-sanger- sequencing.htmlSanger, F., Nicklen, S., y Coulson, A. R. (1977). DNA sequencing with chain- terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463-5467. https://doi. org/10.1073/pnas.74.12.5463Wu, J., Griffith, B., Bassinger, S., Moehlenkamp, C., Brodie, S., Wu, Y., Gribble, G., Troup, G., y Williams, T. (1996). Strategies for unambiguous detection of allelic heterozygosity via direct dna sequencing of PCR products: Application to the hla drb1 locus. Molecular Diagnosis, 1(2), 89-98. https:// doi.org/10.1016/S1084-8592(96)70024-3Zhang, J., Yang, M., Puyang, X., Fang, Y., Cook, L. M., y Dovichi, N. J. (2001). Two-Dimensional Direct-Reading Fluorescence Spectrograph for DNA Sequencing by Capillary Array Electrophoresis. Analytical Chemistry, 73(6), 1234-1239. https://doi.org/10.1021/ac001001cApplied Biosystems. (2011). Sequence Scanner Software v1.0 Sequence Trace Viewer and Editor. Product Bulletin website. https://www.thermofisher. com/co/en/home/life-science/sequencing/sanger-sequencing/ sanger-dna-sequencing/sanger-sequencing-data-analysis.html [Consultado: 13 de octubre de 2021].Bonfield, J. K., y Staden, R. (1995). The application of numerical estimates of base calling accuracy to DNA sequencing projects. Nucleic Acids Research, 23(8), 1406-1410. https://doi.org/10.1093/nar/23.8.1406Ewing, B., y Green, P. (1998). Base-Calling of Automated Sequencer Traces Using Phred. II. Error Probabilities. Genome Research, 8(3), 186-194. https://doi. org/10.1101/gr.8.3.186Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) version 3.6. http:// evolution.genetics.washington.edu/phylip.htmlHall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98. http://www.mbio.ncsu.edu/jwb/papers/1999Hall1.pdfLarkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mcgettigan, P. A., McWilliam, H., Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. https://doi.org/http://dx.doi. org/10.1093/bioinformatics/btm404ORIGINALPrincipios teórico-práticos de análisis de biología molecular.pdfPrincipios teórico-práticos de análisis de biología molecular.pdfapplication/pdf45658863https://dspace.tdea.edu.co/bitstream/tdea/1547/1/Principios%20te%c3%b3rico-pr%c3%a1ticos%20de%20an%c3%a1lisis%20de%20biolog%c3%ada%20molecular.pdf55882378d90c16fd3a9d5e0a6b1d2d07MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/1547/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTPrincipios teórico-práticos de análisis de biología molecular.pdf.txtPrincipios teórico-práticos de análisis de biología molecular.pdf.txtExtracted texttext/plain272918https://dspace.tdea.edu.co/bitstream/tdea/1547/3/Principios%20te%c3%b3rico-pr%c3%a1ticos%20de%20an%c3%a1lisis%20de%20biolog%c3%ada%20molecular.pdf.txt390632adf530de0466df39d13c5618c0MD53open accessTHUMBNAILPrincipios teórico-práticos de análisis de biología molecular.pdf.jpgPrincipios teórico-práticos de análisis de biología molecular.pdf.jpgGenerated Thumbnailimage/jpeg11616https://dspace.tdea.edu.co/bitstream/tdea/1547/4/Principios%20te%c3%b3rico-pr%c3%a1ticos%20de%20an%c3%a1lisis%20de%20biolog%c3%ada%20molecular.pdf.jpgebe4823048f337790036b817724477f3MD54open accesstdea/1547oai:dspace.tdea.edu.co:tdea/15472022-03-29 03:00:26.983open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |