Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst
Heterogeneous photocatalysis with titanium dioxide (TiO2) has been shown to be a sustainable treatment technology to remove natural organic matter (NOM). This is of interest to the drinking water treatment industry. However, heterogeneous photocatalysis with TiO2 continues to suffer from several lim...
- Autores:
-
Valencia Hurtado, Sergio Humberto
Restrepo Vasquez, Gloría María
Marín Sepúlveda, Juan Miguel
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2017
- Institución:
- Tecnológico de Antioquia
- Repositorio:
- Repositorio Tdea
- Idioma:
- eng
- OAI Identifier:
- oai:dspace.tdea.edu.co:tdea/3015
- Acceso en línea:
- https://dspace.tdea.edu.co/handle/tdea/3015
- Palabra clave:
- Humic acids
Acide humique
Ácido húmico
Dióxido de titanio
Titanium dioxide
Dioxyde de titane
Trihalometanos
Trihalomethanes
Trialometanos
Trihalogénométhanes
Postrecovery of TiO2
Posrecuperación de TiO2
TiO2 embedded
TiO2 incrustado
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
RepoTdea2_7d0660e386ffe43f35c3dc20fed2df85 |
---|---|
oai_identifier_str |
oai:dspace.tdea.edu.co:tdea/3015 |
network_acronym_str |
RepoTdea2 |
network_name_str |
Repositorio Tdea |
repository_id_str |
|
dc.title.none.fl_str_mv |
Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst |
title |
Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst |
spellingShingle |
Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst Humic acids Acide humique Ácido húmico Dióxido de titanio Titanium dioxide Dioxyde de titane Trihalometanos Trihalomethanes Trialometanos Trihalogénométhanes Postrecovery of TiO2 Posrecuperación de TiO2 TiO2 embedded TiO2 incrustado |
title_short |
Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst |
title_full |
Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst |
title_fullStr |
Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst |
title_full_unstemmed |
Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst |
title_sort |
Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst |
dc.creator.fl_str_mv |
Valencia Hurtado, Sergio Humberto Restrepo Vasquez, Gloría María Marín Sepúlveda, Juan Miguel |
dc.contributor.author.none.fl_str_mv |
Valencia Hurtado, Sergio Humberto Restrepo Vasquez, Gloría María Marín Sepúlveda, Juan Miguel |
dc.subject.agrovoc.none.fl_str_mv |
Humic acids Acide humique Ácido húmico Dióxido de titanio Titanium dioxide Dioxyde de titane |
topic |
Humic acids Acide humique Ácido húmico Dióxido de titanio Titanium dioxide Dioxyde de titane Trihalometanos Trihalomethanes Trialometanos Trihalogénométhanes Postrecovery of TiO2 Posrecuperación de TiO2 TiO2 embedded TiO2 incrustado |
dc.subject.decs.none.fl_str_mv |
Trihalometanos Trihalomethanes Trialometanos Trihalogénométhanes |
dc.subject.proposal.none.fl_str_mv |
Postrecovery of TiO2 Posrecuperación de TiO2 TiO2 embedded TiO2 incrustado |
description |
Heterogeneous photocatalysis with titanium dioxide (TiO2) has been shown to be a sustainable treatment technology to remove natural organic matter (NOM). This is of interest to the drinking water treatment industry. However, heterogeneous photocatalysis with TiO2 continues to suffer from several limitations such as the postrecovery of TiO2 particles, which impede its use in the drinking water treatment industry. In this study, the repeated use of the same photoactive TiO2 embedded into polyethylene pellets (PE-TiO2) made by the controlled-temperature embedding method was studied in the photocatalytic degradation of commercial humic acid (HA) to solve the postrecovery of TiO2 in slurry. Photocatalytic degradation percentage of dissolved organic carbon (DOC) removal with PE-TiO2 was stable after the second use of the same PE-TiO2 pellets, which was evaluated during five tests. PE-TiO2 removed 64.6% of the initial DOC during 270 min of photocatalytic degradation, and TiO2 in slurry removed 64.5% of the initial DOC during 180 min of photocatalytic degradation. Moreover, PE-TiO2 led to a considerable reduction in specific ultraviolet absorbances (SUVA = UV/DOC): SUVA254, SUVA280, SUVA365, and SCOA436 (specific color absorbance) and trihalomethane formation potential (THMFP). Therefore, PE-TiO2 is a promising material to remove NOM and solve the problem of postrecovery of TiO2 particles after water treatment. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2023-05-23T21:26:17Z |
dc.date.available.none.fl_str_mv |
2023-05-23T21:26:17Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1092-8758 |
dc.identifier.uri.none.fl_str_mv |
https://dspace.tdea.edu.co/handle/tdea/3015 |
dc.identifier.eissn.spa.fl_str_mv |
1557-9018 |
identifier_str_mv |
1092-8758 1557-9018 |
url |
https://dspace.tdea.edu.co/handle/tdea/3015 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
193 |
dc.relation.citationissue.spa.fl_str_mv |
3 |
dc.relation.citationstartpage.spa.fl_str_mv |
185 |
dc.relation.citationvolume.spa.fl_str_mv |
35 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Environmental engineering science |
dc.relation.references.spa.fl_str_mv |
Augugliaro V. , Loddo V. , Pagliaro M. , Palmisano G. y Palmisano L. ( 2010 ). Limpieza por irradiación de luz, aplicaciones prácticas de TiO2 soportado . Cambridge: La Sociedad Real de Química.Google Académico Bhatnagar A. y Sillanpää M. ( 2017 ). Eliminación de materia orgánica natural (NOM) y sus constituyentes de la materia por adsorción: una revisión . Chemosphere 166, 497. Referencia cruzada , Medline, Google académico Chang P. , Hsin C y Doong R. ( 2009 ). Caracterización y actividad fotocatalítica del nanocatalizador de dióxido de titanio dopado con wanadio . ciencia del agua tecnologia _ 59, 523. Referencia cruzada , Medline, Google académico Chong M. , Jin B. , Chow C. y Saint C. ( 2010 ). Desarrollo reciente en la tecnología de tratamiento de agua fotocatalítica: una revisión . Agua Res . 44, 2997. Referencia cruzada , Medline, Google académico DeMarini DM ( 2011 ). Genotoxicidad de los subproductos de la desinfección: comparación con la carcinogenicidad . En Nriagu J. , Ed., Enciclopedia de Salud Ambiental . Nueva York, Michigan: Elsevier Science & Technology, pág. 920. Referencia cruzada, Google académico Doll T. y Frimmel FH ( 2005 ). Eliminación de contaminantes orgánicos persistentes seleccionados mediante fotocatálisis heterogénea en agua . Catal. Hoy 101, 195. Crossref, Google académico Dong H. , Zeng G. , Tang L. , Fan C. , Zhang C. , He X. y He Y. ( 2015 ). Una descripción general de las limitaciones de las partículas basadas en TiO2 para la degradación fotocatalítica de contaminantes orgánicos y las contramedidas correspondientes . Agua Res . 79, 128. Referencia cruzada , Medline, Google académico Fagan R. , McCormack D. , Dionysiou D. y Pillai S. ( 2016 ). Una revisión de la fotocatálisis de TiO2 activa con luz visible y solar para el tratamiento de bacterias, cianotoxinas y contaminantes de interés emergínico . Estera. ciencia Semicon. proc. 42, 2. Referencia cruzada, Google académico Fernández-Ibánez P. , Blanco J. , Malato S. y de las Nieves FJ ( 2003 ). Aplicación de la estabilidad coloidal de partículas de TiO2 para recuperación y reutilización en fotocatálisis solar . Agua Res . 37, 3180. Referencia cruzada , Medline, Google académico Gora S. y Andrews S. ( 2017 ). Adsorción de materia orgánica natural y desinfección por precursores de productos de aguas superficiales sobre nanopartículas de TiO2: efecto del pH, modelado de isotermas e implicaciones usando TiO2 . Para tratamiento de agua potable. Quimiofosfera 174, 363.Google Académico Herrmann J.M. (1999). Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115. Crossref, Google Scholar Hoffmann M.R., Martin S.T., Choi W., and Bahnemann D.W. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69. Crossref, Google Scholar Huang X., Leal M., and Li Q. (2008). Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes. Water Res. 42, 1142. Crossref, Medline, Google Scholar Koumaki E., Mamais O., Noutsopoulos C., Nika M., Bletsou A., Thomaidis N., Eftaxias A., and Stratogiani G. (2015). Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by products. Chemosphere 138, 675. Crossref, Medline, Google Scholar Kumke M., Specht C., Brinkmann T., and Frimmel F.H. (2001). Alkaline hydrolysis of humic sustances-spectroscopic and chromatographic investigation. Chemosphere 45, 102. Crossref, Google Scholar Liu S., Lim M., Fabris R., Chow C., Drikas M., and Amal R. (2010). Comparison of photocatalytic degradation of natural organic matter in two Australian surface water using multiple analytical techniques. Org. Geochem. 41, 124. Crossref, Google Scholar Liu S., Lim M., and Amal R. (2014). TiO2-coated natural zeolites: Raped humic acid adsorption and effective photocatalytic regeneration. Chem. Eng. Sci. 105, 46. Crossref, Google Scholar Liu S., Lim M., Fabris R., Chow C., Drikas M., and Amal R. (2008). Removal of humic acid using TiO2 photocatalytic process-formation and molecular weight characterization studies. Chemosphere 72, 263. Crossref, Medline, Google Scholar Lugo-Vera C., Serrano-Rosales B., and Lasa H. (2016). Immobilized particle coating for optimum photon and TiO2 utilization in scaled air treatment photoreactor. Appl. Catal. B Environ. 198, 211. Crossref, Google Scholar Malcolm R., and MacCarthy P. (1986). Limitation in the use of commercial humic acids in water and soil research. Environ. Sci. Technol. 20, 904. Crossref, Medline, Google Scholar Pan Y., Li H., Zhang X., and Li A. (2016). Characterization of natural organic matter in drinking water: Sample preparation and analytical approaches. Trends Environ. Anal. Chem. 12, 23. Crossref, Google Scholar Peuravuori J., and Pihlaja K. (2004). Preliminary study of lake dissolved organic matter in light of nanoscale supramolecular assembly. Environ. Sci. Technol. 38, 5958. Crossref, Medline, Google Scholar Santos J., Valente J., Jorge S., Padilha P., Saeki M., Castro G., and Florentino A. (2013). Coagulation-flocculation of TiO2 in suspension used in heterogeneous photocatalysis. Orbital Electron. J. Chem. 5, 233. Google Scholar Sarathy S., and Mohseni M. (2007). The impact of UV/H2O2 advanced oxidation on molecular size distribution of chromophoric natural organic matter. Environ. Sci. Technol. 41, 8315. Crossref, Medline, Google Scholar Shan A., Ghazi T., and Rashid S. (2010). Immobilization of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Appl. Catal. A General 389, 1. Crossref, Google Scholar Shin H., Monsaller J., and Chopping G. (1999). Spectroscopy and chemical characterization of molecular size fractioned humic acid. Talanta 50, 641. Crossref, Medline, Google Scholar Sillanpää M., and Matilainen A. (2015). NOM removal by advanced oxidation processes. In Sillanpää M., Ed., Natural Organic Matter in Water: Characterization and Treatment Methods. Oxford: Elsevier, p. 159. Crossref, Google Scholar Standard Method 5310B. (2012). Total organic carbon (TOC)—High-temperature combustion method. In Rice E., Baird R., Eaton A., and Closceri L. Eds., Standard Methods for the Examination of Water and Wastewater, 21st ed. Washington DC: American Public Health Association, p. 5. Google Scholar Tercero L.A., Haseborg E.T., Weber M., and Frimmel F.H. (2009). Investigation of photocatalytic degradation of brown water natural organic matter by size exclusion chromatography. Appl. Catal. B Environ. 87, 56. Crossref, Google Scholar Thurman E.M. (1985). Organic Geochemistry of Natural Waters. Dordrecht: Martinus Nijhoff-Dr. Junk Publisher. Crossref, Google Scholar Tsai K.P., and Chow A. (2016). Growing algae alter spectroscopic characteristics and chlorine reactivity of dissolved organic matter from thermally-altered forest litters. Environ. Sci. Tech. 50, 7991. Crossref, Medline, Google Scholar Uyguner C., and Bekbolet M. (2005). Implementation of spectroscopic parameters for practical monitoring of natural organic matter. Desalination 176, 47. Crossref, Google Scholar Uyguner-Demirel C., and Bekbolet M. (2011). Significance of analytical parameters for the understanding of natural organic matter in relation to photocatalytic oxidation. Chemosphere 84, 1009. Crossref, Medline, Google Scholar Valencia S., Cataño F., Rios L., Restrepo G., and Marín J. (2011a). A new kinetic model for heterogeneous photocatalysis with titanium dioxide: Case of non-specific adsorption considering back reaction. Appl. Catal. B Environ. 104, 300. Crossref, Google Scholar Valencia S., Marín J., Restrepo G., and Frimmel F.H. (2011b). Evaluation of photocatalytic degradation of a commercial humic acid in water using a simulated solar UV irradiation and monitoring the changes by size exclusion chromatography. Water Sci. Technol. 11, 692. Google Scholar Valencia S., Marín J., and Restrepo G. (2013a). Method for trihalomethane analysis in drinking water by solid-phase microextration with gas chromatography and mass spectrometry detection. Water Sci. Technol. 13, 499. Google Scholar Valencia S., Marin J., Restrepo G., and Frimmel F.H. (2013b). Evaluation of the TiO2/simulated solar UV degradation of XAD fractions of natural organic matter from a bog lake using size-exclusion chromatography. Water Res. 47, 5130. Crossref, Medline, Google Scholar Valencia S., Marin J., Restrepo G., and Frimmel F.H. (2014). Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation/emission matrix fluorescence spectroscopy during TiO2/UV process. Water Res. 51, 124. Crossref, Medline, Google Scholar Valencia S., Marín J., Velásquez J., Restrepo G., and Frimmel F.H. (2012). Study of pH effects on the evolution of properties of Brown-water natural organic matter as revealed by size-exclusion chromatography during photocatalytic degradation. Water Res. 46, 1198. Crossref, Medline, Google Scholar Velásquez J., Valencia S., Rios L., Restrepo G., and Marín J. (2012). Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled temperature embedding method. J. Chem. Eng. 203, 398. Crossref, Google Scholar Wang J. J., Dahlgren R., Ersan M., Karanfil T. and Chow A. (2016). Temporal variations of disinfections by products precursors in wildfire detritus. Water Res. 99, 66. Crossref, Medline, Google Scholar Zhang X., Du A.J., Lee P., Sun D.D., and Leckie J.O. (2008). TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acids in water. J. Memb. Sci. 313, 44. Crossref, Google Scholar |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
image/jpeg |
dc.publisher.spa.fl_str_mv |
Mary Ann Liebert |
dc.publisher.place.spa.fl_str_mv |
Estados Unidos |
dc.source.spa.fl_str_mv |
https://www.liebertpub.com/doi/10.1089/ees.2017.0091 |
institution |
Tecnológico de Antioquia |
bitstream.url.fl_str_mv |
https://dspace.tdea.edu.co/bitstream/tdea/3015/1/Photocatalytic%20Degradation%20of%20Humic%20Acids%20with%20Titanium%20Dioxide%20Embedded%20into%20Polyethylene%20Pellets%20to%20Enhance%20the%20Postrecovery%20of%20Catalyst.jpg https://dspace.tdea.edu.co/bitstream/tdea/3015/2/license.txt https://dspace.tdea.edu.co/bitstream/tdea/3015/3/Photocatalytic%20Degradation%20of%20Humic%20Acids%20with%20Titanium%20Dioxide%20Embedded%20into%20Polyethylene%20Pellets%20to%20Enhance%20the%20Postrecovery%20of%20Catalyst.jpg.jpg |
bitstream.checksum.fl_str_mv |
a73ba376734ab99d0da9970729e56f6c 2f9959eaf5b71fae44bbf9ec84150c7a 59412fc2b9a8f54e146096af7f95c698 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Tecnologico de Antioquia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1812189215374442496 |
spelling |
Valencia Hurtado, Sergio Humbertoe41f6cfe-bada-4501-a23e-d967b935e4deRestrepo Vasquez, Gloría Maríac0daa247-318c-42c9-accd-5d9d0b69bedbMarín Sepúlveda, Juan Miguelc44fda93-5271-49ab-a931-f5916b3c6ca72023-05-23T21:26:17Z2023-05-23T21:26:17Z20171092-8758https://dspace.tdea.edu.co/handle/tdea/30151557-9018Heterogeneous photocatalysis with titanium dioxide (TiO2) has been shown to be a sustainable treatment technology to remove natural organic matter (NOM). This is of interest to the drinking water treatment industry. However, heterogeneous photocatalysis with TiO2 continues to suffer from several limitations such as the postrecovery of TiO2 particles, which impede its use in the drinking water treatment industry. In this study, the repeated use of the same photoactive TiO2 embedded into polyethylene pellets (PE-TiO2) made by the controlled-temperature embedding method was studied in the photocatalytic degradation of commercial humic acid (HA) to solve the postrecovery of TiO2 in slurry. Photocatalytic degradation percentage of dissolved organic carbon (DOC) removal with PE-TiO2 was stable after the second use of the same PE-TiO2 pellets, which was evaluated during five tests. PE-TiO2 removed 64.6% of the initial DOC during 270 min of photocatalytic degradation, and TiO2 in slurry removed 64.5% of the initial DOC during 180 min of photocatalytic degradation. Moreover, PE-TiO2 led to a considerable reduction in specific ultraviolet absorbances (SUVA = UV/DOC): SUVA254, SUVA280, SUVA365, and SCOA436 (specific color absorbance) and trihalomethane formation potential (THMFP). Therefore, PE-TiO2 is a promising material to remove NOM and solve the problem of postrecovery of TiO2 particles after water treatment.9 páginasimage/jpegengMary Ann LiebertEstados Unidoshttps://www.liebertpub.com/doi/10.1089/ees.2017.0091Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of CatalystArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85193318535Environmental engineering scienceAugugliaro V. , Loddo V. , Pagliaro M. , Palmisano G. y Palmisano L. ( 2010 ). Limpieza por irradiación de luz, aplicaciones prácticas de TiO2 soportado . Cambridge: La Sociedad Real de Química.Google AcadémicoBhatnagar A. y Sillanpää M. ( 2017 ). Eliminación de materia orgánica natural (NOM) y sus constituyentes de la materia por adsorción: una revisión . Chemosphere 166, 497. Referencia cruzada , Medline, Google académicoChang P. , Hsin C y Doong R. ( 2009 ). Caracterización y actividad fotocatalítica del nanocatalizador de dióxido de titanio dopado con wanadio . ciencia del agua tecnologia _ 59, 523. Referencia cruzada , Medline, Google académicoChong M. , Jin B. , Chow C. y Saint C. ( 2010 ). Desarrollo reciente en la tecnología de tratamiento de agua fotocatalítica: una revisión . Agua Res . 44, 2997. Referencia cruzada , Medline, Google académicoDeMarini DM ( 2011 ). Genotoxicidad de los subproductos de la desinfección: comparación con la carcinogenicidad . En Nriagu J. , Ed., Enciclopedia de Salud Ambiental . Nueva York, Michigan: Elsevier Science & Technology, pág. 920. Referencia cruzada, Google académicoDoll T. y Frimmel FH ( 2005 ). Eliminación de contaminantes orgánicos persistentes seleccionados mediante fotocatálisis heterogénea en agua . Catal. Hoy 101, 195. Crossref, Google académicoDong H. , Zeng G. , Tang L. , Fan C. , Zhang C. , He X. y He Y. ( 2015 ). Una descripción general de las limitaciones de las partículas basadas en TiO2 para la degradación fotocatalítica de contaminantes orgánicos y las contramedidas correspondientes . Agua Res . 79, 128. Referencia cruzada , Medline, Google académicoFagan R. , McCormack D. , Dionysiou D. y Pillai S. ( 2016 ). Una revisión de la fotocatálisis de TiO2 activa con luz visible y solar para el tratamiento de bacterias, cianotoxinas y contaminantes de interés emergínico . Estera. ciencia Semicon. proc. 42, 2. Referencia cruzada, Google académicoFernández-Ibánez P. , Blanco J. , Malato S. y de las Nieves FJ ( 2003 ). Aplicación de la estabilidad coloidal de partículas de TiO2 para recuperación y reutilización en fotocatálisis solar . Agua Res . 37, 3180. Referencia cruzada , Medline, Google académicoGora S. y Andrews S. ( 2017 ). Adsorción de materia orgánica natural y desinfección por precursores de productos de aguas superficiales sobre nanopartículas de TiO2: efecto del pH, modelado de isotermas e implicaciones usando TiO2 . Para tratamiento de agua potable. Quimiofosfera 174, 363.Google AcadémicoHerrmann J.M. (1999). Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115. Crossref, Google ScholarHoffmann M.R., Martin S.T., Choi W., and Bahnemann D.W. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69. Crossref, Google ScholarHuang X., Leal M., and Li Q. (2008). Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes. Water Res. 42, 1142. Crossref, Medline, Google ScholarKoumaki E., Mamais O., Noutsopoulos C., Nika M., Bletsou A., Thomaidis N., Eftaxias A., and Stratogiani G. (2015). Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by products. Chemosphere 138, 675. Crossref, Medline, Google ScholarKumke M., Specht C., Brinkmann T., and Frimmel F.H. (2001). Alkaline hydrolysis of humic sustances-spectroscopic and chromatographic investigation. Chemosphere 45, 102. Crossref, Google ScholarLiu S., Lim M., Fabris R., Chow C., Drikas M., and Amal R. (2010). Comparison of photocatalytic degradation of natural organic matter in two Australian surface water using multiple analytical techniques. Org. Geochem. 41, 124. Crossref, Google ScholarLiu S., Lim M., and Amal R. (2014). TiO2-coated natural zeolites: Raped humic acid adsorption and effective photocatalytic regeneration. Chem. Eng. Sci. 105, 46. Crossref, Google ScholarLiu S., Lim M., Fabris R., Chow C., Drikas M., and Amal R. (2008). Removal of humic acid using TiO2 photocatalytic process-formation and molecular weight characterization studies. Chemosphere 72, 263. Crossref, Medline, Google ScholarLugo-Vera C., Serrano-Rosales B., and Lasa H. (2016). Immobilized particle coating for optimum photon and TiO2 utilization in scaled air treatment photoreactor. Appl. Catal. B Environ. 198, 211. Crossref, Google ScholarMalcolm R., and MacCarthy P. (1986). Limitation in the use of commercial humic acids in water and soil research. Environ. Sci. Technol. 20, 904. Crossref, Medline, Google ScholarPan Y., Li H., Zhang X., and Li A. (2016). Characterization of natural organic matter in drinking water: Sample preparation and analytical approaches. Trends Environ. Anal. Chem. 12, 23. Crossref, Google ScholarPeuravuori J., and Pihlaja K. (2004). Preliminary study of lake dissolved organic matter in light of nanoscale supramolecular assembly. Environ. Sci. Technol. 38, 5958. Crossref, Medline, Google ScholarSantos J., Valente J., Jorge S., Padilha P., Saeki M., Castro G., and Florentino A. (2013). Coagulation-flocculation of TiO2 in suspension used in heterogeneous photocatalysis. Orbital Electron. J. Chem. 5, 233. Google ScholarSarathy S., and Mohseni M. (2007). The impact of UV/H2O2 advanced oxidation on molecular size distribution of chromophoric natural organic matter. Environ. Sci. Technol. 41, 8315. Crossref, Medline, Google ScholarShan A., Ghazi T., and Rashid S. (2010). Immobilization of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Appl. Catal. A General 389, 1. Crossref, Google ScholarShin H., Monsaller J., and Chopping G. (1999). Spectroscopy and chemical characterization of molecular size fractioned humic acid. Talanta 50, 641. Crossref, Medline, Google ScholarSillanpää M., and Matilainen A. (2015). NOM removal by advanced oxidation processes. In Sillanpää M., Ed., Natural Organic Matter in Water: Characterization and Treatment Methods. Oxford: Elsevier, p. 159. Crossref, Google ScholarStandard Method 5310B. (2012). Total organic carbon (TOC)—High-temperature combustion method. In Rice E., Baird R., Eaton A., and Closceri L. Eds., Standard Methods for the Examination of Water and Wastewater, 21st ed. Washington DC: American Public Health Association, p. 5. Google ScholarTercero L.A., Haseborg E.T., Weber M., and Frimmel F.H. (2009). Investigation of photocatalytic degradation of brown water natural organic matter by size exclusion chromatography. Appl. Catal. B Environ. 87, 56. Crossref, Google ScholarThurman E.M. (1985). Organic Geochemistry of Natural Waters. Dordrecht: Martinus Nijhoff-Dr. Junk Publisher. Crossref, Google ScholarTsai K.P., and Chow A. (2016). Growing algae alter spectroscopic characteristics and chlorine reactivity of dissolved organic matter from thermally-altered forest litters. Environ. Sci. Tech. 50, 7991. Crossref, Medline, Google ScholarUyguner C., and Bekbolet M. (2005). Implementation of spectroscopic parameters for practical monitoring of natural organic matter. Desalination 176, 47. Crossref, Google ScholarUyguner-Demirel C., and Bekbolet M. (2011). Significance of analytical parameters for the understanding of natural organic matter in relation to photocatalytic oxidation. Chemosphere 84, 1009. Crossref, Medline, Google ScholarValencia S., Cataño F., Rios L., Restrepo G., and Marín J. (2011a). A new kinetic model for heterogeneous photocatalysis with titanium dioxide: Case of non-specific adsorption considering back reaction. Appl. Catal. B Environ. 104, 300. Crossref, Google ScholarValencia S., Marín J., Restrepo G., and Frimmel F.H. (2011b). Evaluation of photocatalytic degradation of a commercial humic acid in water using a simulated solar UV irradiation and monitoring the changes by size exclusion chromatography. Water Sci. Technol. 11, 692. Google ScholarValencia S., Marín J., and Restrepo G. (2013a). Method for trihalomethane analysis in drinking water by solid-phase microextration with gas chromatography and mass spectrometry detection. Water Sci. Technol. 13, 499. Google ScholarValencia S., Marin J., Restrepo G., and Frimmel F.H. (2013b). Evaluation of the TiO2/simulated solar UV degradation of XAD fractions of natural organic matter from a bog lake using size-exclusion chromatography. Water Res. 47, 5130. Crossref, Medline, Google ScholarValencia S., Marin J., Restrepo G., and Frimmel F.H. (2014). Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation/emission matrix fluorescence spectroscopy during TiO2/UV process. Water Res. 51, 124. Crossref, Medline, Google ScholarValencia S., Marín J., Velásquez J., Restrepo G., and Frimmel F.H. (2012). Study of pH effects on the evolution of properties of Brown-water natural organic matter as revealed by size-exclusion chromatography during photocatalytic degradation. Water Res. 46, 1198. Crossref, Medline, Google ScholarVelásquez J., Valencia S., Rios L., Restrepo G., and Marín J. (2012). Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled temperature embedding method. J. Chem. Eng. 203, 398. Crossref, Google ScholarWang J. J., Dahlgren R., Ersan M., Karanfil T. and Chow A. (2016). Temporal variations of disinfections by products precursors in wildfire detritus. Water Res. 99, 66. Crossref, Medline, Google ScholarZhang X., Du A.J., Lee P., Sun D.D., and Leckie J.O. (2008). TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acids in water. J. Memb. Sci. 313, 44. Crossref, Google Scholarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbHumic acidsAcide humiqueÁcido húmicoDióxido de titanioTitanium dioxideDioxyde de titaneTrihalometanosTrihalomethanesTrialometanosTrihalogénométhanesPostrecovery of TiO2Posrecuperación de TiO2TiO2 embeddedTiO2 incrustadoORIGINALPhotocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst.jpgPhotocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst.jpgDatos del documentoimage/jpeg228113https://dspace.tdea.edu.co/bitstream/tdea/3015/1/Photocatalytic%20Degradation%20of%20Humic%20Acids%20with%20Titanium%20Dioxide%20Embedded%20into%20Polyethylene%20Pellets%20to%20Enhance%20the%20Postrecovery%20of%20Catalyst.jpga73ba376734ab99d0da9970729e56f6cMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/3015/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTHUMBNAILPhotocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst.jpg.jpgPhotocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst.jpg.jpgGenerated Thumbnailimage/jpeg8853https://dspace.tdea.edu.co/bitstream/tdea/3015/3/Photocatalytic%20Degradation%20of%20Humic%20Acids%20with%20Titanium%20Dioxide%20Embedded%20into%20Polyethylene%20Pellets%20to%20Enhance%20the%20Postrecovery%20of%20Catalyst.jpg.jpg59412fc2b9a8f54e146096af7f95c698MD53open accesstdea/3015oai:dspace.tdea.edu.co:tdea/30152023-05-24 03:01:39.347open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |