Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2

The influence of dry-soft grinding and photodeposition of gold (Au) or platinum (Pt) in the improvement of the photoactivity of TiO2 synthesized by an integrated sol-gel and solvothermal method was studied. TiO2 was modified by a dry-soft grinding process in a planetary ball mill (TiO2(G)). Subseque...

Full description

Autores:
Galeano Botero, Laila
Valencia Hurtado, Sergio Humberto
Marín Sepúlveda, Juan Miguel
Restrepo Vasquez, Gloría María
Navío Santos, José Antonio
Hidalgo López, María Carmen
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/2985
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/2985
Palabra clave:
Oro
Or
Gold
Ouro
Platino
Platine
Platinum
TiO 2
Fotodeposición
Photodeposition
Oxidación de fenoles
Phenol oxidation
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id RepoTdea2_7b0dfe4cf1fce388bb3b82a61201be53
oai_identifier_str oai:dspace.tdea.edu.co:tdea/2985
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
title Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
spellingShingle Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
Oro
Or
Gold
Ouro
Platino
Platine
Platinum
TiO 2
Fotodeposición
Photodeposition
Oxidación de fenoles
Phenol oxidation
title_short Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
title_full Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
title_fullStr Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
title_full_unstemmed Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
title_sort Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
dc.creator.fl_str_mv Galeano Botero, Laila
Valencia Hurtado, Sergio Humberto
Marín Sepúlveda, Juan Miguel
Restrepo Vasquez, Gloría María
Navío Santos, José Antonio
Hidalgo López, María Carmen
dc.contributor.author.none.fl_str_mv Galeano Botero, Laila
Valencia Hurtado, Sergio Humberto
Marín Sepúlveda, Juan Miguel
Restrepo Vasquez, Gloría María
Navío Santos, José Antonio
Hidalgo López, María Carmen
dc.subject.agrovoc.none.fl_str_mv Oro
Or
Gold
Ouro
Platino
Platine
Platinum
topic Oro
Or
Gold
Ouro
Platino
Platine
Platinum
TiO 2
Fotodeposición
Photodeposition
Oxidación de fenoles
Phenol oxidation
dc.subject.proposal.none.fl_str_mv TiO 2
Fotodeposición
Photodeposition
Oxidación de fenoles
Phenol oxidation
description The influence of dry-soft grinding and photodeposition of gold (Au) or platinum (Pt) in the improvement of the photoactivity of TiO2 synthesized by an integrated sol-gel and solvothermal method was studied. TiO2 was modified by a dry-soft grinding process in a planetary ball mill (TiO2(G)). Subsequently, Au or Pt particles were photodeposited in both unmodified TiO2 and TiO2(G) obtaining Au-TiO2, Pt-TiO2, Au-TiO2(G), and Pt-TiO2(G) materials. The photoactivity of the materials was evaluated in the phenol photodegradation under simulated solar radiation. Pt-TiO2 showed the greatest degree of photoactivity improvement in comparison with TiO2 and TiO2-P25. The dry-soft grinding process led to a high photocatalytic activity of TiO2(G) that was similar to Pt-TiO2 activity as consequence of a slight increase in the crystallinity in TiO2(G) due to an additional anatase formation in comparison with TiO2. However, further photocatalytic improvement in TiO2(G) were not achieved with the addition of Au or Pt. Therefore, the dry-soft grinding treatment and noble metal deposition led to similar improvements in the photocatalytic activity of TiO2 for phenol oxidation.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2023-05-22T20:40:14Z
dc.date.available.none.fl_str_mv 2023-05-22T20:40:14Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2053-1591
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/2985
dc.identifier.eissn.spa.fl_str_mv 2053-1591
identifier_str_mv 2053-1591
url https://dspace.tdea.edu.co/handle/tdea/2985
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationissue.spa.fl_str_mv 10
dc.relation.citationvolume.spa.fl_str_mv 6
dc.relation.ispartofjournal.spa.fl_str_mv Materials Research Express
dc.relation.references.spa.fl_str_mv Abdullah H, Khan M D, Ong H and Yaakab Z 2017 Modified TiO2 photocatalyst for CO2 photocatalytic reduction: an overview Journal of CO2 Utilization 22 15–32
Ali M 2014 Transformation and powder characteristics of TiO2 during high-energy milling Journal of Ceramic Processing Research 15 290–3
Aysin B, Ozturk A and Park J 2013 Silver-loaded TiO2 powders prepared through mechanical ball milling Ceram. Int. 39 7119–26
Carneiro J O, Azevedo S, Fernandez F, Freitas E, Pereira M, Tavares C J, Lanceroz-Méndez S and Teixeira V 2014 Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties Journal of Material Science 49 7476–88
Chen H W, Ku Y and Kuo Y L 2007 Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis Water Res. 41 2069–78
Coleman H M, Chiang K and Amal R 2005 Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water Chem. Eng. J. 113 65–72
Cybula A, Priebe J, Pohl M, Sobczak J, Schneider M, Zieli´nska-Jurek A, Brückner A and Zaleska A 2014 The effect of calcination temperature on structure and photocatalyticproperties of Au/Pd nanoparticles supported on TiO2 Applied Catalysis B: Environmental 152–153 202–11
Dilla M, Pougin A and Strunk J 2017 Evaluation of the plasmonic effect of Au and Ag on Ti-based photocatalysis in the reduction of CO2 to CH4 Journal of Energy Chemistry 26 277–83
Dozzi M, Saccomanni A and Selli E 2012 Cr(VI) photocatalytic reduction: effects of simultaneous organic oxidation and of gold nanoparticles photodeposition on TiO2 Journal of Hazardous Materials 211–212 188–95
Du L, Furube A, Yamamoto K, Hara K, Katoh R and Tachiya M 2009 Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size J. Phys. Chem. C 113 6454–62
Estruga M, Domingo C, Doménech X and Ayllón J 2010 Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors J. Colloid Interface Sci. 344 327–33
Fang J, Cao S, Wang Z, Shahjamali M, Loo S, Barber J and Xue C 2012 Mesoporous plasmonic Au–TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction Int. J. Hydrogen Energy 37 17853–61
Fernández-Rodríguez C, Doña-Rodríguez J, González-Díaz O, Seck I, Zerbani D and Portillo D 2012 and Perez-Peña. Synthesis of highly photoactive TiO2 and Pt/TiO2 nanocatalysts for substrate-specific photocatalytic applications Journal of Applied Catalysis B: Environmental 125 383–9
Galeano L, Valencia S, Restrepo G and Marin J M 2019 Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications Mater. Sci. Semicond. Process. 91 47–57
Gołąbiewska A, Lisowski W, Jarek M, Nowaczyk G, Zielińska-Jurek A and Zaleska A 2014 Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles Appl. Surf. Sci. 317 1131–42
Gone R and Giri P 2016 Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling J. Alloys Compd. 676 591–600
Grabowska E, Marchelek M, Klimczuk T, Trykowski G and Zaleska-Medynska A 2016 Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV–vis and visible light J. Mol. Catal. A: Chem. 423 191–206
Gupta B, Melvin A, Matthews T, Dash S and Tyagi A K 2016 TiO2 modification for photocatalytic hyderogen (H2) production. Renowable and Sustantable Energy 58 1366–75
Hernandez M J, Pulido E, Garcia D, Gonzalez O, Navio J A and Doña J M 2017 NO photooxidation with TiO2 photocatalysts modified with gold and platinum Appl. Catalysis B 205 148–57
Hidalgo M, Colón G and Navío J 2002 Modification of the physicochemical properties of commercial TiO2 samples by soft mechanical activation J. Photochem. Photobiol., A 148 341–8
Hidalgo M, Maicu M, Navío J and Colón G 2007 Photocatalytic properties of surface modified platinized TiO2: effect of particle size and structural composition Catal. Today 129 43–9
Hidalgo M, Murcia J, Navío J and Colón G 2011 Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation Appl. Catal., A 397 112–20
Hu C, Lian C, Zheng S, Duo S, Zhang R, Hu Q, Zhang S, Li X and Sun Y 2015 Grinding combined melt-diffusion synthesis of sulfur/P25 heterostructure for enhanced photocatalytic activity under visible light J. Mol. Catal. A: Chem. 407 182–8
Hu J, Wang L, Zhang P, Liang C and Shao G 2016 Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production J. Power Sources 328 28–36
Hufschmidt D, Bahnemann D, Testa J, Emilio C and Litter M 2002 Enhancement of the photocatalytic activity of various TiO2 materials by platinisation J. Photochem. Photobiol., A 148 223–31
Ismail A and Bahnemann D 2012 Pt colloidal accommodated into mesoporous TiO2 films for photooxidation of acetaldehyde in gas phase Chem. Eng. J. 203 174–81
Kang I, Zhang Q, Kano J, Yin S, Sato T and Saito F 2008 Novel method for preparing of high visible active N-doped TiO2 photocatalyst with its grinding in solvent Applied Catalysis B: Environment 84 570–6
Kang I, Zhang Q, Kano J, Yin S, Sato T and Saito F 2007 Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3 J. Photochem. Photobiol., A 189 232–8
Kernazhitsky L, Gavrilko T, Shymanovska V and Naumov V 2014 Laser-excited excitonic luminescence of nanocrystalline TiO2 powder Ukr. J. Phys. 59 246–53
Khaki M, Shafeeyah M, Raman A and Daud W 2017 Application of doped photocatalysts for organic pollutant degradation – A review Journal of Environment Management 198 78–94
Khan H and Berk D 2015 Selenium modified oxalate chelated titania: characterization, mechanistic and photocatalytic studies Appl. Catal., A 505 285–301
Kitsiou V, Zachariadis G, Lambropolou D and Tsiplakides D 2018 Mineralization of the antineoplastic drug carboplatin by heterogeneous photocatalysis with simultaneous synthesis of platinum-modified TiO2 catalyst Journal of Environmental Chemical Engineering 6 2409–16
Kozlova E, Lyubina T, Nasalevich M, Vorontsov A, Miller A, Kaichev V and Parmon V 2011 Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Applied Catalysis Communications 12 597–601
Lu Z, Jiang X, Zhou B, Wu X and Lu L 2011 Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation Appl. Surf. Sci. 257 10715–20
Maicu M, Hidalgo M C, Colón G and Navío J A 2011 Comparative study of the photodeposition of Pt, Au, Pd on pre-sulphate TiO2 for the photocatalytic decomposition of phenol J. Photochem. Photobiol., A 217 275–83
Marchal C, Piquet A, Behr M, Cottineau T, Papaefthimiou V, Keller V and Caps V 2017 Activation of solid grinding-derived Au/TiO2 photocatalysts for solar H2 production from water-methanol mixtures with low alcohol content J. Catal. 352 22–34
Melvin A, Illath K, Das T, Raja T and Bhattacharyya S 2015 Gopinath C. M–Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: role of interfaces The Royal Society of Chemistry
Miao J, Zhang R and Zhang L 2018 Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2 Mater. Res. Bull. 97 109–14
Mills A, O´Rourke C and Moore K 2015 Powder semiconductor photocatalysis in aquous solution: an overview of kinetics-based reaction mechanisms J. Photochem. Photobiol., A 310 66–105
Murcia J, Ávila-Martinez E, Rojas H, Navio J and Hidalgo M 2017 Study of the E. Coli elimination from urban wastewater over photocatalysis based on metallized TiO2 Appl. Catalysis B 200 469–76
Murcia J, Navío J and Hidalgo M 2012 Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO2 by platinisation Appl. Catalysis B 126 76–85
Murcia J, Hidalgo M, Navio J, Araña J and Doña-Rodriguez J 2014 Correlation study between photo-degradation and Surface adsorption properties of phenol and methyl orange on TiO2 vs platinum supported TiO2. Applied Catalysis B: Environmental, 150- 151 107–15
Murcia J, Hidalgo M, Navio J, Araña J and Doña-Rodriguez J 2015 Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition Appl. Catalysis B 179 305–12
Murcia J, Hidalgo M, Navio J, Vaiano V, Sannino D and Ciabelli P 2013 Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts Catal. Today 209 164–9
Na-Phattalung S, Smith M F, Kim K, Du M-H, Wei S-H, Zhang S B and Limpijumnong S 2006 First-principles study of native defects in anatase TiO2 Physical Rewiew B 73 125205
Okazaki K, Morikawa Y, Tanaka S, Tanaka K and Kohyama M 2005 Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110) J. Mater. Sci. 40 3075–80
Okuno T, Kawamura G, Muto H and Matuda A 2016 Photocatalytic properties of Au-deposited mesoporous SiO2-TiO2 photocatalyst under simultaneous irradiation of UV and visible light J. Solid State Chem. 235 132–8
Orlov A, Jefferson D, Macleod N and Lambert R 2004 Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-Chlorophenol in aqueous solution Catal. Lett. 92 41–7
Palmas S, Polcaro A M, Rodriguez Ruiz J, Da Pozzo A, Vacca A, Mascia M, Delogu F and Ricci P C 2009 Effect of the mechanical activation on the photoelectrochemical properties of anatase powders Int. J. Hydrogen Energy 34 9662–70
Parker J C and Siegel R W 1990 Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 Appl. Phys. Lett. 57 943–5
Phattalung S, Limpijumnong S and Yu J 2017 Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity Appl. Catalysis B 200 1–9
Ren H, Koshy P, Chen W F, Qi S and Sorrell C 2017 Photocatalytic materials and technologies for air purification J. Hazard. Mater. 325 340–66
Saito F, Baron M and Dodds J 2004 Morphology control in size reduction processes Morphology Control of Materials and Nanoparticles ed Y Waseda and A Muramatsu (Berlin, Heidelberg: Springer Series in Materials Science) pp 1–24 ( www.springer.com/gp/book/9783540009580)
Shahini P and Ashkarran A 2018 Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst Colloids and Surfaces A 537 155–62
Shayegan Z, Lee C and Haghighat F 2018 TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review Chem. Eng. J. 334 2408–39
Thommes M, Kaneko H, Neimark A, Olivier J, Rodríguez-Reinoso F, Rouquero J and Sing K 2015 Physisorption of gases with special reference to the evaluation of Surface area and pore size distribution (IUPAC Technical report) Pure Appl. Chem.
Tian B, Zhang J, Tong T and Chen F 2008 Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange Appl. Catalysis B 79 394–401
Vaiano V, Iervolino G, Sannino D, Murcia J, Hidalgo M C, Ciambelli P and Navio J 2016 Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts Applied Catalysis B: Environmental Catalysis B: Environmental 188 134–46
Vaiano V, Sacco O, Iervolino G, Sannino D, Ciambelli P and Liguori R 2015 Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2. Applied Catalysis B: Environmental, 176- 177 594–600
Valencia S, Marín J and Restrepo G 2010 Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and hydrothermal treatment The open materials science Journal 4 9–14
Valencia S, Marín J, Restrepo G and Frimmel F H 2013 Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid Science of Total Environment 442 207–14
Vittadini A and Selloni A 2002 Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study The Journal of Chemistry Physics 117 353- 361
Wang F, Wong R, Ho J, Jiang J and Amal R 2017 Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light Irradiation Applied Materials & Interfaces 9 30575–82
Wang L, Fan J, Cao Z, Zheng Y, Yao Z, Shao G and Hu J 2014 Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts Chemistry an Asian Journal 9 1904–12
Wang L, Zhang X, Gao H, Hu J, Mao J and Liang C 2016 3D CuO network supported TiO2 nanosheets with applications for energy storage and water splitting Science of Advanced Materials 8 1256–62
Wang L, Zhang X, Zhang P, Cao Z and Hu J 2015 Photoelectric conversion performances of Mn doped TiO2 under > 420 nm visible light irradiation Journal of Saudi Chemical Society 19 595–601
Wang S, Zeng B and Li C 2018 Effects of Au nanoparticle size and metal-support interaction on plasmon-induced photocatalytic water oxidation Chin. J. Catal. 39 1219–27
Wang W, Tadé M and Shao Z 2018a Nitrogen-doped simple and complex oxides for photocatalysis: a review Progressing Materials Science 92 33–63
Wei Z, Endo M, Wang K, Charbit E, Markowska-Szczupak A, Ahtani B and Kowalska E 2017 Noble metal-modified octahedral anatase titania particles with enhanced activity for decomposition of chemical and microbiological pollutants Chem. Eng. J. 318 121–34
Xiao J, Pan Z, Zhang B, Liu G, Zhang H, Song X, Hu G, Xiao C, Wei Z and Zheng Y 2017 The research of photocatalytic activity on Si doped TiO2 nanotubes. Materials Letter Journal 188 66–8
Yin S, Zhang Q, Saito F and Saito T 2010 Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping High-Energy Ball Milling Mechanochemical Processing of Nanopowders ed M Sopicka-Lizer () pp 304–30 ( www.sciencedirect.com/book/9781845695316/high-energy-ball-milling#book-description)
Zangeneh H, Zinatizadeh A, Habibi M, Akia M and Isa M 2015 Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review J. Ind. Eng. Chem. 25 1–36
Zhang W F, He Y L, Zhang M S, Yin Z and Chen Q 2000 Raman scattering study on anatase TiO2 nanocrystals J ournal of Physics D: Applied Physics 33 912–6
Zhao Q, Li M, Chu J, Jiang T and Yin H 2009 Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange Appl. Surf. Sci. 255 3773–8
Zhihuan Z, Jimin F, Honghong C, Yusuke A and Shu Y 2017 Recent progress on mixed-anion type visible-light induced photocatalysts Science China Technological Sciences 60 1447–57
Zielińska-Jurek A and Zaleska A 2014 Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase Catal. Today 230 104–11
Zielińska-Jurek A, Kowalska E, Sobczak J, Lisowski W, Ohtani B and Zaleska A 2011 Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light Appl. Catalysis B 101 504–14
Zunic V, Vukomanovic M, Skapin S, Suvorov D and Kovac J 2014 Photocatalytic properties of TiO2 and TiO2/Pt: A sol-precipitation, sonochemical and hydrothermal approach Ultrason. Sonochem. 21 367–75
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv image/jpeg
dc.publisher.spa.fl_str_mv IOP Publishing
dc.publisher.place.spa.fl_str_mv Reino Unido
dc.source.spa.fl_str_mv https://iopscience.iop.org/article/10.1088/2053-1591/ab4316/meta
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/2985/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/2985/1/Comparison%20of%20the%20effects%20generated%20by%20the%20dry-soft%20grinding%20and%20the%20photodeposition%20of%20Au%20and%20Pt%20processes%20on%20the%20visible%20light%20absorption%20and%20photoactivity%20of%20TiO2.jpg
https://dspace.tdea.edu.co/bitstream/tdea/2985/3/Comparison%20of%20the%20effects%20generated%20by%20the%20dry-soft%20grinding%20and%20the%20photodeposition%20of%20Au%20and%20Pt%20processes%20on%20the%20visible%20light%20absorption%20and%20photoactivity%20of%20TiO2.jpg.jpg
bitstream.checksum.fl_str_mv 2f9959eaf5b71fae44bbf9ec84150c7a
47808157ecf8516aabb41b89dc75197e
940c18a535c9f5f95e02cdf07930ee2a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808408460018057216
spelling Galeano Botero, Laila1b599b37-24ea-4ef9-963a-3def6ccd8820Valencia Hurtado, Sergio Humbertoe41f6cfe-bada-4501-a23e-d967b935e4deMarín Sepúlveda, Juan Miguelc44fda93-5271-49ab-a931-f5916b3c6ca7Restrepo Vasquez, Gloría Maríac0daa247-318c-42c9-accd-5d9d0b69bedbNavío Santos, José Antonioa3c799f9-953a-4425-a458-1676cdbd84ecHidalgo López, María Carmend6df806e-c2b9-4538-b9a9-4470aa392a992023-05-22T20:40:14Z2023-05-22T20:40:14Z20192053-1591https://dspace.tdea.edu.co/handle/tdea/29852053-1591The influence of dry-soft grinding and photodeposition of gold (Au) or platinum (Pt) in the improvement of the photoactivity of TiO2 synthesized by an integrated sol-gel and solvothermal method was studied. TiO2 was modified by a dry-soft grinding process in a planetary ball mill (TiO2(G)). Subsequently, Au or Pt particles were photodeposited in both unmodified TiO2 and TiO2(G) obtaining Au-TiO2, Pt-TiO2, Au-TiO2(G), and Pt-TiO2(G) materials. The photoactivity of the materials was evaluated in the phenol photodegradation under simulated solar radiation. Pt-TiO2 showed the greatest degree of photoactivity improvement in comparison with TiO2 and TiO2-P25. The dry-soft grinding process led to a high photocatalytic activity of TiO2(G) that was similar to Pt-TiO2 activity as consequence of a slight increase in the crystallinity in TiO2(G) due to an additional anatase formation in comparison with TiO2. However, further photocatalytic improvement in TiO2(G) were not achieved with the addition of Au or Pt. Therefore, the dry-soft grinding treatment and noble metal deposition led to similar improvements in the photocatalytic activity of TiO2 for phenol oxidation.image/jpegengIOP PublishingReino Unidohttps://iopscience.iop.org/article/10.1088/2053-1591/ab4316/metaComparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85106Materials Research ExpressAbdullah H, Khan M D, Ong H and Yaakab Z 2017 Modified TiO2 photocatalyst for CO2 photocatalytic reduction: an overview Journal of CO2 Utilization 22 15–32Ali M 2014 Transformation and powder characteristics of TiO2 during high-energy milling Journal of Ceramic Processing Research 15 290–3Aysin B, Ozturk A and Park J 2013 Silver-loaded TiO2 powders prepared through mechanical ball milling Ceram. Int. 39 7119–26Carneiro J O, Azevedo S, Fernandez F, Freitas E, Pereira M, Tavares C J, Lanceroz-Méndez S and Teixeira V 2014 Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties Journal of Material Science 49 7476–88Chen H W, Ku Y and Kuo Y L 2007 Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis Water Res. 41 2069–78Coleman H M, Chiang K and Amal R 2005 Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water Chem. Eng. J. 113 65–72Cybula A, Priebe J, Pohl M, Sobczak J, Schneider M, Zieli´nska-Jurek A, Brückner A and Zaleska A 2014 The effect of calcination temperature on structure and photocatalyticproperties of Au/Pd nanoparticles supported on TiO2 Applied Catalysis B: Environmental 152–153 202–11Dilla M, Pougin A and Strunk J 2017 Evaluation of the plasmonic effect of Au and Ag on Ti-based photocatalysis in the reduction of CO2 to CH4 Journal of Energy Chemistry 26 277–83Dozzi M, Saccomanni A and Selli E 2012 Cr(VI) photocatalytic reduction: effects of simultaneous organic oxidation and of gold nanoparticles photodeposition on TiO2 Journal of Hazardous Materials 211–212 188–95Du L, Furube A, Yamamoto K, Hara K, Katoh R and Tachiya M 2009 Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size J. Phys. Chem. C 113 6454–62Estruga M, Domingo C, Doménech X and Ayllón J 2010 Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors J. Colloid Interface Sci. 344 327–33Fang J, Cao S, Wang Z, Shahjamali M, Loo S, Barber J and Xue C 2012 Mesoporous plasmonic Au–TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction Int. J. Hydrogen Energy 37 17853–61Fernández-Rodríguez C, Doña-Rodríguez J, González-Díaz O, Seck I, Zerbani D and Portillo D 2012 and Perez-Peña. Synthesis of highly photoactive TiO2 and Pt/TiO2 nanocatalysts for substrate-specific photocatalytic applications Journal of Applied Catalysis B: Environmental 125 383–9Galeano L, Valencia S, Restrepo G and Marin J M 2019 Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications Mater. Sci. Semicond. Process. 91 47–57Gołąbiewska A, Lisowski W, Jarek M, Nowaczyk G, Zielińska-Jurek A and Zaleska A 2014 Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles Appl. Surf. Sci. 317 1131–42Gone R and Giri P 2016 Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling J. Alloys Compd. 676 591–600Grabowska E, Marchelek M, Klimczuk T, Trykowski G and Zaleska-Medynska A 2016 Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV–vis and visible light J. Mol. Catal. A: Chem. 423 191–206Gupta B, Melvin A, Matthews T, Dash S and Tyagi A K 2016 TiO2 modification for photocatalytic hyderogen (H2) production. Renowable and Sustantable Energy 58 1366–75Hernandez M J, Pulido E, Garcia D, Gonzalez O, Navio J A and Doña J M 2017 NO photooxidation with TiO2 photocatalysts modified with gold and platinum Appl. Catalysis B 205 148–57Hidalgo M, Colón G and Navío J 2002 Modification of the physicochemical properties of commercial TiO2 samples by soft mechanical activation J. Photochem. Photobiol., A 148 341–8Hidalgo M, Maicu M, Navío J and Colón G 2007 Photocatalytic properties of surface modified platinized TiO2: effect of particle size and structural composition Catal. Today 129 43–9Hidalgo M, Murcia J, Navío J and Colón G 2011 Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation Appl. Catal., A 397 112–20Hu C, Lian C, Zheng S, Duo S, Zhang R, Hu Q, Zhang S, Li X and Sun Y 2015 Grinding combined melt-diffusion synthesis of sulfur/P25 heterostructure for enhanced photocatalytic activity under visible light J. Mol. Catal. A: Chem. 407 182–8Hu J, Wang L, Zhang P, Liang C and Shao G 2016 Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production J. Power Sources 328 28–36Hufschmidt D, Bahnemann D, Testa J, Emilio C and Litter M 2002 Enhancement of the photocatalytic activity of various TiO2 materials by platinisation J. Photochem. Photobiol., A 148 223–31Ismail A and Bahnemann D 2012 Pt colloidal accommodated into mesoporous TiO2 films for photooxidation of acetaldehyde in gas phase Chem. Eng. J. 203 174–81Kang I, Zhang Q, Kano J, Yin S, Sato T and Saito F 2008 Novel method for preparing of high visible active N-doped TiO2 photocatalyst with its grinding in solvent Applied Catalysis B: Environment 84 570–6Kang I, Zhang Q, Kano J, Yin S, Sato T and Saito F 2007 Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3 J. Photochem. Photobiol., A 189 232–8Kernazhitsky L, Gavrilko T, Shymanovska V and Naumov V 2014 Laser-excited excitonic luminescence of nanocrystalline TiO2 powder Ukr. J. Phys. 59 246–53Khaki M, Shafeeyah M, Raman A and Daud W 2017 Application of doped photocatalysts for organic pollutant degradation – A review Journal of Environment Management 198 78–94Khan H and Berk D 2015 Selenium modified oxalate chelated titania: characterization, mechanistic and photocatalytic studies Appl. Catal., A 505 285–301Kitsiou V, Zachariadis G, Lambropolou D and Tsiplakides D 2018 Mineralization of the antineoplastic drug carboplatin by heterogeneous photocatalysis with simultaneous synthesis of platinum-modified TiO2 catalyst Journal of Environmental Chemical Engineering 6 2409–16Kozlova E, Lyubina T, Nasalevich M, Vorontsov A, Miller A, Kaichev V and Parmon V 2011 Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Applied Catalysis Communications 12 597–601Lu Z, Jiang X, Zhou B, Wu X and Lu L 2011 Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation Appl. Surf. Sci. 257 10715–20Maicu M, Hidalgo M C, Colón G and Navío J A 2011 Comparative study of the photodeposition of Pt, Au, Pd on pre-sulphate TiO2 for the photocatalytic decomposition of phenol J. Photochem. Photobiol., A 217 275–83Marchal C, Piquet A, Behr M, Cottineau T, Papaefthimiou V, Keller V and Caps V 2017 Activation of solid grinding-derived Au/TiO2 photocatalysts for solar H2 production from water-methanol mixtures with low alcohol content J. Catal. 352 22–34Melvin A, Illath K, Das T, Raja T and Bhattacharyya S 2015 Gopinath C. M–Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: role of interfaces The Royal Society of ChemistryMiao J, Zhang R and Zhang L 2018 Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2 Mater. Res. Bull. 97 109–14Mills A, O´Rourke C and Moore K 2015 Powder semiconductor photocatalysis in aquous solution: an overview of kinetics-based reaction mechanisms J. Photochem. Photobiol., A 310 66–105Murcia J, Ávila-Martinez E, Rojas H, Navio J and Hidalgo M 2017 Study of the E. Coli elimination from urban wastewater over photocatalysis based on metallized TiO2 Appl. Catalysis B 200 469–76Murcia J, Navío J and Hidalgo M 2012 Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO2 by platinisation Appl. Catalysis B 126 76–85Murcia J, Hidalgo M, Navio J, Araña J and Doña-Rodriguez J 2014 Correlation study between photo-degradation and Surface adsorption properties of phenol and methyl orange on TiO2 vs platinum supported TiO2. Applied Catalysis B: Environmental, 150- 151 107–15Murcia J, Hidalgo M, Navio J, Araña J and Doña-Rodriguez J 2015 Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition Appl. Catalysis B 179 305–12Murcia J, Hidalgo M, Navio J, Vaiano V, Sannino D and Ciabelli P 2013 Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts Catal. Today 209 164–9Na-Phattalung S, Smith M F, Kim K, Du M-H, Wei S-H, Zhang S B and Limpijumnong S 2006 First-principles study of native defects in anatase TiO2 Physical Rewiew B 73 125205Okazaki K, Morikawa Y, Tanaka S, Tanaka K and Kohyama M 2005 Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110) J. Mater. Sci. 40 3075–80Okuno T, Kawamura G, Muto H and Matuda A 2016 Photocatalytic properties of Au-deposited mesoporous SiO2-TiO2 photocatalyst under simultaneous irradiation of UV and visible light J. Solid State Chem. 235 132–8Orlov A, Jefferson D, Macleod N and Lambert R 2004 Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-Chlorophenol in aqueous solution Catal. Lett. 92 41–7Palmas S, Polcaro A M, Rodriguez Ruiz J, Da Pozzo A, Vacca A, Mascia M, Delogu F and Ricci P C 2009 Effect of the mechanical activation on the photoelectrochemical properties of anatase powders Int. J. Hydrogen Energy 34 9662–70Parker J C and Siegel R W 1990 Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 Appl. Phys. Lett. 57 943–5Phattalung S, Limpijumnong S and Yu J 2017 Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity Appl. Catalysis B 200 1–9Ren H, Koshy P, Chen W F, Qi S and Sorrell C 2017 Photocatalytic materials and technologies for air purification J. Hazard. Mater. 325 340–66Saito F, Baron M and Dodds J 2004 Morphology control in size reduction processes Morphology Control of Materials and Nanoparticles ed Y Waseda and A Muramatsu (Berlin, Heidelberg: Springer Series in Materials Science) pp 1–24 ( www.springer.com/gp/book/9783540009580)Shahini P and Ashkarran A 2018 Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst Colloids and Surfaces A 537 155–62Shayegan Z, Lee C and Haghighat F 2018 TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review Chem. Eng. J. 334 2408–39Thommes M, Kaneko H, Neimark A, Olivier J, Rodríguez-Reinoso F, Rouquero J and Sing K 2015 Physisorption of gases with special reference to the evaluation of Surface area and pore size distribution (IUPAC Technical report) Pure Appl. Chem.Tian B, Zhang J, Tong T and Chen F 2008 Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange Appl. Catalysis B 79 394–401Vaiano V, Iervolino G, Sannino D, Murcia J, Hidalgo M C, Ciambelli P and Navio J 2016 Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts Applied Catalysis B: Environmental Catalysis B: Environmental 188 134–46Vaiano V, Sacco O, Iervolino G, Sannino D, Ciambelli P and Liguori R 2015 Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2. Applied Catalysis B: Environmental, 176- 177 594–600Valencia S, Marín J and Restrepo G 2010 Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and hydrothermal treatment The open materials science Journal 4 9–14Valencia S, Marín J, Restrepo G and Frimmel F H 2013 Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid Science of Total Environment 442 207–14Vittadini A and Selloni A 2002 Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study The Journal of Chemistry Physics 117 353- 361Wang F, Wong R, Ho J, Jiang J and Amal R 2017 Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light Irradiation Applied Materials & Interfaces 9 30575–82Wang L, Fan J, Cao Z, Zheng Y, Yao Z, Shao G and Hu J 2014 Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts Chemistry an Asian Journal 9 1904–12Wang L, Zhang X, Gao H, Hu J, Mao J and Liang C 2016 3D CuO network supported TiO2 nanosheets with applications for energy storage and water splitting Science of Advanced Materials 8 1256–62Wang L, Zhang X, Zhang P, Cao Z and Hu J 2015 Photoelectric conversion performances of Mn doped TiO2 under > 420 nm visible light irradiation Journal of Saudi Chemical Society 19 595–601Wang S, Zeng B and Li C 2018 Effects of Au nanoparticle size and metal-support interaction on plasmon-induced photocatalytic water oxidation Chin. J. Catal. 39 1219–27Wang W, Tadé M and Shao Z 2018a Nitrogen-doped simple and complex oxides for photocatalysis: a review Progressing Materials Science 92 33–63Wei Z, Endo M, Wang K, Charbit E, Markowska-Szczupak A, Ahtani B and Kowalska E 2017 Noble metal-modified octahedral anatase titania particles with enhanced activity for decomposition of chemical and microbiological pollutants Chem. Eng. J. 318 121–34Xiao J, Pan Z, Zhang B, Liu G, Zhang H, Song X, Hu G, Xiao C, Wei Z and Zheng Y 2017 The research of photocatalytic activity on Si doped TiO2 nanotubes. Materials Letter Journal 188 66–8Yin S, Zhang Q, Saito F and Saito T 2010 Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping High-Energy Ball Milling Mechanochemical Processing of Nanopowders ed M Sopicka-Lizer () pp 304–30 ( www.sciencedirect.com/book/9781845695316/high-energy-ball-milling#book-description)Zangeneh H, Zinatizadeh A, Habibi M, Akia M and Isa M 2015 Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review J. Ind. Eng. Chem. 25 1–36Zhang W F, He Y L, Zhang M S, Yin Z and Chen Q 2000 Raman scattering study on anatase TiO2 nanocrystals J ournal of Physics D: Applied Physics 33 912–6Zhao Q, Li M, Chu J, Jiang T and Yin H 2009 Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange Appl. Surf. Sci. 255 3773–8Zhihuan Z, Jimin F, Honghong C, Yusuke A and Shu Y 2017 Recent progress on mixed-anion type visible-light induced photocatalysts Science China Technological Sciences 60 1447–57Zielińska-Jurek A and Zaleska A 2014 Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase Catal. Today 230 104–11Zielińska-Jurek A, Kowalska E, Sobczak J, Lisowski W, Ohtani B and Zaleska A 2011 Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light Appl. Catalysis B 101 504–14Zunic V, Vukomanovic M, Skapin S, Suvorov D and Kovac J 2014 Photocatalytic properties of TiO2 and TiO2/Pt: A sol-precipitation, sonochemical and hydrothermal approach Ultrason. Sonochem. 21 367–75info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbOroOrGoldOuroPlatinoPlatinePlatinumTiO 2FotodeposiciónPhotodepositionOxidación de fenolesPhenol oxidationLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/2985/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessORIGINALComparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2.jpgComparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2.jpgDatos del documentoimage/jpeg228163https://dspace.tdea.edu.co/bitstream/tdea/2985/1/Comparison%20of%20the%20effects%20generated%20by%20the%20dry-soft%20grinding%20and%20the%20photodeposition%20of%20Au%20and%20Pt%20processes%20on%20the%20visible%20light%20absorption%20and%20photoactivity%20of%20TiO2.jpg47808157ecf8516aabb41b89dc75197eMD51open accessTHUMBNAILComparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2.jpg.jpgComparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2.jpg.jpgGenerated Thumbnailimage/jpeg10185https://dspace.tdea.edu.co/bitstream/tdea/2985/3/Comparison%20of%20the%20effects%20generated%20by%20the%20dry-soft%20grinding%20and%20the%20photodeposition%20of%20Au%20and%20Pt%20processes%20on%20the%20visible%20light%20absorption%20and%20photoactivity%20of%20TiO2.jpg.jpg940c18a535c9f5f95e02cdf07930ee2aMD53open accesstdea/2985oai:dspace.tdea.edu.co:tdea/29852023-05-23 03:02:11.383open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=