Uso de radiación solar simulada y peróxido de hidrógeno en la eliminación de azitromicina de soluciones acuosas: optimización y análisis de mineralización

Azithromycin (AZT) is a broad-spectrum antibiotic from the group of macrolides that acts against several Gram-positive and Gram-negative bacteria, which has promoted its use in the treatment of different respiratory and sexually transmitted diseases. However, its presence in environmental matrices a...

Full description

Autores:
Cano Carvajal, Pablo Andrés
Jaramillo Baquero, Marcela
Zúñiga Benítez, Henry Nelson
Londoño Cañas, Yudy Andrea
Peñuela Mesa, Gustavo Antonio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/2785
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/2785
Palabra clave:
Antibiotics
Antibióticos
Azitromicina
Hydrogen peroxide
Peróxido de hidrógeno
Peróxido de hidrogénio
Azithromycin
Sunlight
Luz Solar
Wastewater Treatment
Advanced oxidation
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id RepoTdea2_792fa42bd412ff435018e91ea3a2b304
oai_identifier_str oai:dspace.tdea.edu.co:tdea/2785
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Uso de radiación solar simulada y peróxido de hidrógeno en la eliminación de azitromicina de soluciones acuosas: optimización y análisis de mineralización
title Uso de radiación solar simulada y peróxido de hidrógeno en la eliminación de azitromicina de soluciones acuosas: optimización y análisis de mineralización
spellingShingle Uso de radiación solar simulada y peróxido de hidrógeno en la eliminación de azitromicina de soluciones acuosas: optimización y análisis de mineralización
Antibiotics
Antibióticos
Azitromicina
Hydrogen peroxide
Peróxido de hidrógeno
Peróxido de hidrogénio
Azithromycin
Sunlight
Luz Solar
Wastewater Treatment
Advanced oxidation
title_short Uso de radiación solar simulada y peróxido de hidrógeno en la eliminación de azitromicina de soluciones acuosas: optimización y análisis de mineralización
title_full Uso de radiación solar simulada y peróxido de hidrógeno en la eliminación de azitromicina de soluciones acuosas: optimización y análisis de mineralización
title_fullStr Uso de radiación solar simulada y peróxido de hidrógeno en la eliminación de azitromicina de soluciones acuosas: optimización y análisis de mineralización
title_full_unstemmed Uso de radiación solar simulada y peróxido de hidrógeno en la eliminación de azitromicina de soluciones acuosas: optimización y análisis de mineralización
title_sort Uso de radiación solar simulada y peróxido de hidrógeno en la eliminación de azitromicina de soluciones acuosas: optimización y análisis de mineralización
dc.creator.fl_str_mv Cano Carvajal, Pablo Andrés
Jaramillo Baquero, Marcela
Zúñiga Benítez, Henry Nelson
Londoño Cañas, Yudy Andrea
Peñuela Mesa, Gustavo Antonio
dc.contributor.author.none.fl_str_mv Cano Carvajal, Pablo Andrés
Jaramillo Baquero, Marcela
Zúñiga Benítez, Henry Nelson
Londoño Cañas, Yudy Andrea
Peñuela Mesa, Gustavo Antonio
dc.subject.agrovoc.none.fl_str_mv Antibiotics
Antibióticos
Azitromicina
Hydrogen peroxide
Peróxido de hidrógeno
Peróxido de hidrogénio
topic Antibiotics
Antibióticos
Azitromicina
Hydrogen peroxide
Peróxido de hidrógeno
Peróxido de hidrogénio
Azithromycin
Sunlight
Luz Solar
Wastewater Treatment
Advanced oxidation
dc.subject.decs.none.fl_str_mv Azithromycin
Sunlight
Luz Solar
Wastewater Treatment
dc.subject.proposal.none.fl_str_mv Advanced oxidation
description Azithromycin (AZT) is a broad-spectrum antibiotic from the group of macrolides that acts against several Gram-positive and Gram-negative bacteria, which has promoted its use in the treatment of different respiratory and sexually transmitted diseases. However, its presence in environmental matrices and in the effluents of conventional wastewater treatment plants has been evidenced in recent years, which reflects the need to develop new treatment alternatives that allow its total removal and minimize the eventual adverse effects, selection of resistant bacterial strains, associated with its presence in water bodies. Simulated sunlight radiation and H2O2 were used to remove AZT from water assessing the effects of operational parameters like the solution initial pH and the peroxide concentration. Results indicate that hydroxyl free radical is the main responsible for pollutant removal but acidic solution conditions and larger H2O2 doses negatively affect OH generation under the evaluated experimental conditions. Pollutant removal was almost complete after 120 min of photo-treatment. In addition, reduction of the organic carbon content in the treated samples was ~50.0%; and a significant increase of nitrates con- centration in solution was evidenced
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2023-04-13T22:12:43Z
dc.date.available.none.fl_str_mv 2023-04-13T22:12:43Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2405-6650
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/2785
dc.identifier.eissn.spa.fl_str_mv 2405-6642
identifier_str_mv 2405-6650
2405-6642
url https://dspace.tdea.edu.co/handle/tdea/2785
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 61
dc.relation.citationstartpage.spa.fl_str_mv 53
dc.relation.citationvolume.spa.fl_str_mv 6
dc.relation.ispartofjournal.spa.fl_str_mv Emerging contaminants
dc.relation.references.spa.fl_str_mv C. Pe~na-Guzm an, S. Ulloa-S anchez, K. Mora, R. Helena-Bustos, E. Lopez-Bar- rera, J. Alvarez, M. Rodriguez-Pinz on, Emerging pollutants in the urban water cycle in Latin America: a review of the current literature, J. Environ. Manag. 237 (2019) 408e423, https://doi.org/10.1016/j.jenvman.2019.02.100.
J.-Q. Jiang, Z. Zhou, V.K. Sharma, Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water d a review from global views, Microchem. J. 110 (2013) 292e300, https://doi.org/10.1016/ j.microc.2013.04.014.
V. Geissen, H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. van der Ploeg, S.E.A.T.M. van de Zee, C.J. Ritsema, Emerging pollutants in the environment: a challenge for water resource management, Int. Soil Water Conserv. Res. 3 (2015) 57e65, https://doi.org/10.1016/j.iswcr.2015.03.002
B. Li, T. Zhang, Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination, Water Res. 47 (2013) 2970e2982, https:// doi.org/10.1016/j.watres.2013.03.001.
M. Voigt, M. Jaeger, On the photodegradation of azithromycin, erythromycin and tylosin and their transformation products e a kinetic study, Sustain. Chem. Pharm. 5 (2017) 131e140, https://doi.org/10.1016/j.scp.2016.12.001
J. Du, H. Zhao, S. Liu, H. Xie, Y. Wang, J. Chen, Antibiotics in the coastal water of the South Yellow Sea in China: occurrence, distribution and ecological risks, Sci. Total Environ. 595 (2017) 521e527, https://doi.org/10.1016/ j.scitotenv.2017.03.281
S. Babi c, L. Curkovi c, D. Ljubas, M. Cizmi c, TiO2 assisted photocatalytic degradation of macrolide antibiotics, Curr. Opin. Green Sustain. Chem. 6 (2017) 34e41, https://doi.org/10.1016/j.cogsc.2017.05.004
K. Vignesh, M. Rajarajan, A. Suganthi, Photocatalytic degradation of erythro- mycin under visible light by zinc phthalocyanine-modified titania nano- particles, Mater. Sci. Semicond. Process. 23 (2014) 98e103, https://doi.org/ 10.1016/j.mssp.2014.02.050.
L. Tong, P. Eichhorn, S. P erez, Y. Wang, D. Barcel o, Photodegradation of azi- thromycin in various aqueous systems under simulated and natural solar radiation: kinetics and identification of photoproducts, Chemosphere 83 (2011) 340e348, https://doi.org/10.1016/j.chemosphere.2010.12.025.
] J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol. 36 (2006) 1e84.
M. Sievers, Treatise on Water Science, Elsevier, 2011, https://doi.org/10.1016/ B978-0-444-53199-5.00093-2
S. Malato, J. Blanco, D.C. Alarc on, M.I. Maldonado, P. Fern andez-Ib a~nez, W. Gernjak, Photocatalytic decontamination and disinfection of water with solar collectors, Catal. Today 122 (2007) 137e149, https://doi.org/10.1016/ j.cattod.2007.01.034
L. Demarchis, M. Minella, R. Nistic o, V. Maurino, C. Minero, D. Vione, Photo- eFenton reaction in the presence of morphologically controlled hematite as iron source, J. Photochem. Photobiol. A Chem https://doi.org/10.1016/j.jphotochem.2015.04.009
M. Gmurek, A.F. Rossi, R.C. Martins, R.M. Quinta-Ferreira, S. Ledakowicz, Photodegradation of single and mixture of parabens e kinetic, by-products identification and cost-efficiency analysis, Chem. Eng. J. 276 (2015) 303e314, https://doi.org/10.1016/j.cej.2015.04.093.
P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination 299 (2012) 1e15, https:// doi.org/10.1016/j.desal.2012.05.011.
S. Rodriguez, A. Santos, A. Romero, Effectiveness of AOP’s on abatement of emerging pollutants and their oxidation intermediates: nicotine removal with Fenton’s Reagent, Desalination 280 (2011) 108e113, https://doi.org/10.1016/ j.desal.2011.06.055.
A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng. 2 (2014) 557e572, https://doi.org/10.1016/j.jece.2013.10.011
Y. Lin, C. Ferronato, N. Deng, J.-M. Chovelon, Study of benzylparaben photo- catalytic degradation by TiO2, Appl. Catal. B Environ. 104 (2011) 353e360, https://doi.org/10.1016/j.apcatb.2011.03.006.
A.L. Giraldo, G.A. Pe~nuela, R.A. Torres-Palma, N.J. Pino, R.A. Palominos, H.D. Mansilla, Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension, Water Res. 44 (2010) 5158e5167, https://doi.org/ 10.1016/j.watres.2010.05.011
J. Feng, X. Hu, P. Yue, Degradation of salicylic acid by photo-assisted Fenton reaction using Fe ions on strongly acidic ion exchange resin as catalyst, Chem. Eng. J. 100 (2004) 159e165, https://doi.org/10.1016/j.cej.2004.01.031.
P. Gong, H. Yuan, P. Zhai, Y. Xue, H. Li, W. Dong, G. Mailhot, Investigation on the degradation of benzophenone-3 by UV/H2O2 in aqueous solution, Chem. Eng. J. 277 (2015) 97e103, https://doi.org/10.1016/j.cej.2015.04.078.
J. Deng, Y. Shao, N. Gao, S. Xia, C. Tan, S. Zhou, X. Hu, Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxida- tion processes in water, Chem. Eng. J. 222 (2013) 150e158, https://doi.org/ 10.1016/j.cej.2013.02.045
K. Li, D.R. Hokanson, J.C. Crittenden, R.R. Trussell, D. Minakata, Evaluating UV/ H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: effect of pretreatment options and light sources, Water Res. 42 (2008) 5045e5053, https://doi.org/10.1016/j.watres.2008.09.017.
C.A. Chac on Cardona, O.E. Cely, F. Guerrero, Dise~no y construcci on de un medidor de radiaci on solar, Tecnura 12 (2008) 13e23, https://doi.org/ 10.14483/22487638.6263
M.V. Chamorro, E. Villica~na Ortíz, L.A. Viana, Quantification and character- ization of solar radiation at the department of La Guajira-Colombia by calculating atmospheric transmissivity, Prospect 13 (2015) 54e63, https:// doi.org/10.15665/rp.v13i2.487
H. Agudelo, L. Delgado, A. Aristizabal, Evaluation of the feasibility of imple- menting photovoltaic electric power in Quibd o, Choc o (Evaluaci on del po- tential de generaci on fotovoltaica en la ciudad de Quibd o, Choc o), Elementos 6 (2016) 109e123.
A. Rubio-Clemente, E. Chica, G.A. Pe~nuela, Photovoltaic array for powering advanced oxidation processes: sizing, application and investment costs for the degradation of a mixture of anthracene and benzo[a]pyrene in natural water by the UV/H2O2 system, J. Environ. Chem. Eng. 6 (2018) 2751e2761, https:// doi.org/10.1016/j.jece.2018.03.046
M.I. Stefan, Advanced Oxidation Processes for Water Treatment - Funda- mentals and Applications, IWA Publishing, 2017, https://doi.org/10.2166/ 9781780407197
E. Serrano, M. Munoz, Z.M. de Pedro, J.A. Casas, Efficient removal of the pharmaceutical pollutants included in the EU Watch List (Decision 2015/495) by modified magnetite/H2O2, Chem. Eng. J. 376 (2018), https://doi.org/ 10.1016/j.cej.2018.10.202
R. Su, R. Spinney, R. Xiao, Z. Yang, Z. Wei, S. Luo, M. Cai, Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study, Sci. Total Environ. 590e591 (2017) 751e760, https:// doi.org/10.1016/j.scitotenv.2017.03.039.
Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association, Washington, DC., 2017.
A. Rubio Clemente, C. Cardona, G. Pe~nuela, Sensitive spectrophotometric determination of hydrogen peroxide in aqueous samples from advanced oxidation processes: evaluation of possible interferences, Afinidad Rev. Quí- mica Te orica y Apl. 74 (2017) 161e168.
R.P. Qiao, N. Li, X.H. Qi, Q.S. Wang, Y.Y. Zhuang, Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide, Toxicon 45 (2005) 745e752, https://doi.org/10.1016/j.toxicon.2005.01.012.
N. Bensalah, K. Chair, A. Bedoui, Efficient degradation of tannic acid in water by UV/H2O2 process, Sustain. Environ. Res. 28 (2018) 1e11, https://doi.org/ 10.1016/j.serj.2017.04.004
R.R. Giri, H. Ozaki, Y. Takayanagi, S. Taniguchi, R. Takanami, Efficacy of ul- traviolet radiation and hydrogen peroxide oxidation to eliminate large number of pharmaceutical compounds in mixed solution, Int. J. Environ. Sci. Technol. 8 (2011) 19e30, https://doi.org/10.1007/BF03326192.
F.J. Beltr an, G. Ovejero, J. Rivas, Oxidation of polynuclear aromatic hydrocar- bons in water. 3. UV radiation combined with hydrogen peroxide, Ind. Eng. Chem. Res. 35 (1996) 883e890, https://doi.org/10.1021/ie950363l
Z.Z. Tasi c, M.B. Petrovi c Mihajlovi c, M.B. Radovanovi c, M.M. Antonijevi c, Electrochemical investigations of copper corrosion inhibition by azithromycin in 0.9% NaCl, J. Mol. Liq. 265 (2018) 687e692, https://doi.org/10.1016/ j.molliq.2018.03.116
R. Shokri, R. Jalilzadeh Yengejeh, A.A. Babaei, E. Derikvand, A. Almasi, UV activation of hydrogen peroxide for removal of azithromycin antibiotic from aqueous solution: determination of optimum conditions by response surface methodology, Toxin Rev. (2019), https://doi.org/10.1080/ 15569543.2018.1517803
A.C. Affam, M. Chaudhuri, Degradation of pesticides chlorpyrifos, cyper- methrin and chlorothalonil in aqueous solution by TiO2 photocatalysis, J. Environ. Manag. 130 (2013) 160e165, https://doi.org/10.1016/ j.jenvman.2013.08.058
A.P.S. Batista, R.F.P. Nogueira, Parameters affecting sulfonamide photo-Fenton degradation e iron complexation and substituent group, J. Photochem. Pho- tobiol. A Chem. 232 (2012) 8e13, https://doi.org/10.1016/ j.jphotochem.2012.01.016.
W. Chu, W.K. Choy, T.Y. So, The effect of solution pH and peroxide in the TiO2- induced photocatalysis of chlorinated aniline, J. Hazard Mater. 141 (2007) 86e91, https://doi.org/10.1016/j.jhazmat.2006.06.093
M. Cizmi c, D. Ljubas, M. Ro zman, D. A sperger, L. Curkovi c, S. Babíc, Photo- catalytic degradation of azithromycin by nanostructured TiO2 film: kinetics, degradation products, and toxicity, Materials 6 (2019) 873, https://doi.org/ 10.3390/ma12060873
Y. Chen, S. Yang, K. Wang, L. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol. A Chem. 172 (2005) 47e54, https://doi.org/10.1016/ j.jphotochem.2004.11.006.
D.E. Santiago, J.M. Do~na-Rodríguez, J. Ara~na, C. Fern andez-Rodríguez, O. Gonz alez-Díaz, J. P erez-Pe~na, A.M.T. Silva, Optimization of the degradation of imazalil by photocatalysis: comparison between commercial and lab-made photocatalysts, Appl. Catal. B Environ. 138e139 (2013) 391e400, https:// doi.org/10.1016/j.apcatb.2013.03.024
M. Tamimi, S. Qourzal, N. Barka, A. Assabbane, Y. Aitichou, Methomyl degra- dation in aqueous solutions by Fenton’s reagent and the photo-Fenton system, Separ. Purif. Technol. 61 (2008) 103e108, https://doi.org/10.1016/ j.seppur.2007.09.017
M.G. Alalm, A. Tawfik, S. Ookawara, Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation, J. Environ. Chem. Eng. 3 (2015) 46e51, https://doi.org/10.1016/j.jece.2014.12.009. P.A. Cano et al. / Emerging Contaminants 6 (2020) 53e6160
H.B. Ammar, M. Ben Brahim, R. Abdelh edi, Y. Samet, Enhanced degradation of metronidazole by sunlight via photo-Fenton process under gradual addition of hydrogen peroxide, J. Mol. Catal. A Chem. 420 (2016) 222e227, https://doi.org/10.1016/j.molcata.2016.04.029
C. Tan, N. Gao, Y. Deng, Y. Zhang, M. Sui, J. Deng, S. Zhou, Degradation of antipyrine by UV, UV/H2O2 and UV/PS, J. Hazard Mater. 260 (2013) 1008e1016, https://doi.org/10.1016/j.jhazmat.2013.06.060.
H. Zú~niga-Benítez, G.A. Pe~nuela, Application of solar photo-Fenton for benzophenone-type UV filters removal, J. Environ. Manag. 217 (2018) 929e938 https://doi.org/10.1016/j.jenvman.2018.03.075
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Production and hosting by Elsevier B.V. on behalf of KeAi
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2405665019300332#:~:text=According%20to%20results%2C%20it%20can,responsible%20agent%20of%20pollutant%20removal.
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/2785/3/Use%20of%20simulated%20sunlight%20radiation%20and%20hydrogen%20peroxide%20in%20azithromycin.pdf.txt
https://dspace.tdea.edu.co/bitstream/tdea/2785/4/Use%20of%20simulated%20sunlight%20radiation%20and%20hydrogen%20peroxide%20in%20azithromycin.pdf.jpg
https://dspace.tdea.edu.co/bitstream/tdea/2785/1/Use%20of%20simulated%20sunlight%20radiation%20and%20hydrogen%20peroxide%20in%20azithromycin.pdf
https://dspace.tdea.edu.co/bitstream/tdea/2785/2/license.txt
bitstream.checksum.fl_str_mv 33f4f15a16a9843faf6a25d4f387b6fd
68debe1aa893772fe2219749c6cbe1e7
87d78736bea7684284a81c5462e2810f
2f9959eaf5b71fae44bbf9ec84150c7a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189304266424320
spelling Cano Carvajal, Pablo Andrés79b60d91-1701-4ae8-b615-feb9774b2c08Jaramillo Baquero, Marcelaf2f52950-f159-471f-9842-8e9b08216f0fZúñiga Benítez, Henry Nelson511ee8f4-d255-4ccf-b334-5a738b413276Londoño Cañas, Yudy Andrea15921aae-ac4a-47ac-8ddf-98d849b20c29Peñuela Mesa, Gustavo Antoniof172ce30-27a0-413a-8aa5-27c19a7e29802023-04-13T22:12:43Z2023-04-13T22:12:43Z20202405-6650https://dspace.tdea.edu.co/handle/tdea/27852405-6642Azithromycin (AZT) is a broad-spectrum antibiotic from the group of macrolides that acts against several Gram-positive and Gram-negative bacteria, which has promoted its use in the treatment of different respiratory and sexually transmitted diseases. However, its presence in environmental matrices and in the effluents of conventional wastewater treatment plants has been evidenced in recent years, which reflects the need to develop new treatment alternatives that allow its total removal and minimize the eventual adverse effects, selection of resistant bacterial strains, associated with its presence in water bodies. Simulated sunlight radiation and H2O2 were used to remove AZT from water assessing the effects of operational parameters like the solution initial pH and the peroxide concentration. Results indicate that hydroxyl free radical is the main responsible for pollutant removal but acidic solution conditions and larger H2O2 doses negatively affect OH generation under the evaluated experimental conditions. Pollutant removal was almost complete after 120 min of photo-treatment. In addition, reduction of the organic carbon content in the treated samples was ~50.0%; and a significant increase of nitrates con- centration in solution was evidenced9 páginasapplication/pdfengProduction and hosting by Elsevier B.V. on behalf of KeAiNetherlandshttps://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S2405665019300332#:~:text=According%20to%20results%2C%20it%20can,responsible%20agent%20of%20pollutant%20removal.Uso de radiación solar simulada y peróxido de hidrógeno en la eliminación de azitromicina de soluciones acuosas: optimización y análisis de mineralizaciónArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8561536Emerging contaminantsC. Pe~na-Guzm an, S. Ulloa-S anchez, K. Mora, R. Helena-Bustos, E. Lopez-Bar- rera, J. Alvarez, M. Rodriguez-Pinz on, Emerging pollutants in the urban water cycle in Latin America: a review of the current literature, J. Environ. Manag. 237 (2019) 408e423, https://doi.org/10.1016/j.jenvman.2019.02.100.J.-Q. Jiang, Z. Zhou, V.K. Sharma, Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water d a review from global views, Microchem. J. 110 (2013) 292e300, https://doi.org/10.1016/ j.microc.2013.04.014.V. Geissen, H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. van der Ploeg, S.E.A.T.M. van de Zee, C.J. Ritsema, Emerging pollutants in the environment: a challenge for water resource management, Int. Soil Water Conserv. Res. 3 (2015) 57e65, https://doi.org/10.1016/j.iswcr.2015.03.002B. Li, T. Zhang, Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination, Water Res. 47 (2013) 2970e2982, https:// doi.org/10.1016/j.watres.2013.03.001.M. Voigt, M. Jaeger, On the photodegradation of azithromycin, erythromycin and tylosin and their transformation products e a kinetic study, Sustain. Chem. Pharm. 5 (2017) 131e140, https://doi.org/10.1016/j.scp.2016.12.001J. Du, H. Zhao, S. Liu, H. Xie, Y. Wang, J. Chen, Antibiotics in the coastal water of the South Yellow Sea in China: occurrence, distribution and ecological risks, Sci. Total Environ. 595 (2017) 521e527, https://doi.org/10.1016/ j.scitotenv.2017.03.281S. Babi c, L. Curkovi c, D. Ljubas, M. Cizmi c, TiO2 assisted photocatalytic degradation of macrolide antibiotics, Curr. Opin. Green Sustain. Chem. 6 (2017) 34e41, https://doi.org/10.1016/j.cogsc.2017.05.004K. Vignesh, M. Rajarajan, A. Suganthi, Photocatalytic degradation of erythro- mycin under visible light by zinc phthalocyanine-modified titania nano- particles, Mater. Sci. Semicond. Process. 23 (2014) 98e103, https://doi.org/ 10.1016/j.mssp.2014.02.050.L. Tong, P. Eichhorn, S. P erez, Y. Wang, D. Barcel o, Photodegradation of azi- thromycin in various aqueous systems under simulated and natural solar radiation: kinetics and identification of photoproducts, Chemosphere 83 (2011) 340e348, https://doi.org/10.1016/j.chemosphere.2010.12.025.] J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol. 36 (2006) 1e84.M. Sievers, Treatise on Water Science, Elsevier, 2011, https://doi.org/10.1016/ B978-0-444-53199-5.00093-2S. Malato, J. Blanco, D.C. Alarc on, M.I. Maldonado, P. Fern andez-Ib a~nez, W. Gernjak, Photocatalytic decontamination and disinfection of water with solar collectors, Catal. Today 122 (2007) 137e149, https://doi.org/10.1016/ j.cattod.2007.01.034L. Demarchis, M. Minella, R. Nistic o, V. Maurino, C. Minero, D. Vione, Photo- eFenton reaction in the presence of morphologically controlled hematite as iron source, J. Photochem. Photobiol. A Chem https://doi.org/10.1016/j.jphotochem.2015.04.009M. Gmurek, A.F. Rossi, R.C. Martins, R.M. Quinta-Ferreira, S. Ledakowicz, Photodegradation of single and mixture of parabens e kinetic, by-products identification and cost-efficiency analysis, Chem. Eng. J. 276 (2015) 303e314, https://doi.org/10.1016/j.cej.2015.04.093.P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination 299 (2012) 1e15, https:// doi.org/10.1016/j.desal.2012.05.011.S. Rodriguez, A. Santos, A. Romero, Effectiveness of AOP’s on abatement of emerging pollutants and their oxidation intermediates: nicotine removal with Fenton’s Reagent, Desalination 280 (2011) 108e113, https://doi.org/10.1016/ j.desal.2011.06.055.A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng. 2 (2014) 557e572, https://doi.org/10.1016/j.jece.2013.10.011Y. Lin, C. Ferronato, N. Deng, J.-M. Chovelon, Study of benzylparaben photo- catalytic degradation by TiO2, Appl. Catal. B Environ. 104 (2011) 353e360, https://doi.org/10.1016/j.apcatb.2011.03.006.A.L. Giraldo, G.A. Pe~nuela, R.A. Torres-Palma, N.J. Pino, R.A. Palominos, H.D. Mansilla, Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension, Water Res. 44 (2010) 5158e5167, https://doi.org/ 10.1016/j.watres.2010.05.011J. Feng, X. Hu, P. Yue, Degradation of salicylic acid by photo-assisted Fenton reaction using Fe ions on strongly acidic ion exchange resin as catalyst, Chem. Eng. J. 100 (2004) 159e165, https://doi.org/10.1016/j.cej.2004.01.031.P. Gong, H. Yuan, P. Zhai, Y. Xue, H. Li, W. Dong, G. Mailhot, Investigation on the degradation of benzophenone-3 by UV/H2O2 in aqueous solution, Chem. Eng. J. 277 (2015) 97e103, https://doi.org/10.1016/j.cej.2015.04.078.J. Deng, Y. Shao, N. Gao, S. Xia, C. Tan, S. Zhou, X. Hu, Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxida- tion processes in water, Chem. Eng. J. 222 (2013) 150e158, https://doi.org/ 10.1016/j.cej.2013.02.045K. Li, D.R. Hokanson, J.C. Crittenden, R.R. Trussell, D. Minakata, Evaluating UV/ H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: effect of pretreatment options and light sources, Water Res. 42 (2008) 5045e5053, https://doi.org/10.1016/j.watres.2008.09.017.C.A. Chac on Cardona, O.E. Cely, F. Guerrero, Dise~no y construcci on de un medidor de radiaci on solar, Tecnura 12 (2008) 13e23, https://doi.org/ 10.14483/22487638.6263M.V. Chamorro, E. Villica~na Ortíz, L.A. Viana, Quantification and character- ization of solar radiation at the department of La Guajira-Colombia by calculating atmospheric transmissivity, Prospect 13 (2015) 54e63, https:// doi.org/10.15665/rp.v13i2.487H. Agudelo, L. Delgado, A. Aristizabal, Evaluation of the feasibility of imple- menting photovoltaic electric power in Quibd o, Choc o (Evaluaci on del po- tential de generaci on fotovoltaica en la ciudad de Quibd o, Choc o), Elementos 6 (2016) 109e123.A. Rubio-Clemente, E. Chica, G.A. Pe~nuela, Photovoltaic array for powering advanced oxidation processes: sizing, application and investment costs for the degradation of a mixture of anthracene and benzo[a]pyrene in natural water by the UV/H2O2 system, J. Environ. Chem. Eng. 6 (2018) 2751e2761, https:// doi.org/10.1016/j.jece.2018.03.046M.I. Stefan, Advanced Oxidation Processes for Water Treatment - Funda- mentals and Applications, IWA Publishing, 2017, https://doi.org/10.2166/ 9781780407197E. Serrano, M. Munoz, Z.M. de Pedro, J.A. Casas, Efficient removal of the pharmaceutical pollutants included in the EU Watch List (Decision 2015/495) by modified magnetite/H2O2, Chem. Eng. J. 376 (2018), https://doi.org/ 10.1016/j.cej.2018.10.202R. Su, R. Spinney, R. Xiao, Z. Yang, Z. Wei, S. Luo, M. Cai, Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study, Sci. Total Environ. 590e591 (2017) 751e760, https:// doi.org/10.1016/j.scitotenv.2017.03.039.Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association, Washington, DC., 2017.A. Rubio Clemente, C. Cardona, G. Pe~nuela, Sensitive spectrophotometric determination of hydrogen peroxide in aqueous samples from advanced oxidation processes: evaluation of possible interferences, Afinidad Rev. Quí- mica Te orica y Apl. 74 (2017) 161e168.R.P. Qiao, N. Li, X.H. Qi, Q.S. Wang, Y.Y. Zhuang, Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide, Toxicon 45 (2005) 745e752, https://doi.org/10.1016/j.toxicon.2005.01.012.N. Bensalah, K. Chair, A. Bedoui, Efficient degradation of tannic acid in water by UV/H2O2 process, Sustain. Environ. Res. 28 (2018) 1e11, https://doi.org/ 10.1016/j.serj.2017.04.004R.R. Giri, H. Ozaki, Y. Takayanagi, S. Taniguchi, R. Takanami, Efficacy of ul- traviolet radiation and hydrogen peroxide oxidation to eliminate large number of pharmaceutical compounds in mixed solution, Int. J. Environ. Sci. Technol. 8 (2011) 19e30, https://doi.org/10.1007/BF03326192.F.J. Beltr an, G. Ovejero, J. Rivas, Oxidation of polynuclear aromatic hydrocar- bons in water. 3. UV radiation combined with hydrogen peroxide, Ind. Eng. Chem. Res. 35 (1996) 883e890, https://doi.org/10.1021/ie950363lZ.Z. Tasi c, M.B. Petrovi c Mihajlovi c, M.B. Radovanovi c, M.M. Antonijevi c, Electrochemical investigations of copper corrosion inhibition by azithromycin in 0.9% NaCl, J. Mol. Liq. 265 (2018) 687e692, https://doi.org/10.1016/ j.molliq.2018.03.116R. Shokri, R. Jalilzadeh Yengejeh, A.A. Babaei, E. Derikvand, A. Almasi, UV activation of hydrogen peroxide for removal of azithromycin antibiotic from aqueous solution: determination of optimum conditions by response surface methodology, Toxin Rev. (2019), https://doi.org/10.1080/ 15569543.2018.1517803A.C. Affam, M. Chaudhuri, Degradation of pesticides chlorpyrifos, cyper- methrin and chlorothalonil in aqueous solution by TiO2 photocatalysis, J. Environ. Manag. 130 (2013) 160e165, https://doi.org/10.1016/ j.jenvman.2013.08.058A.P.S. Batista, R.F.P. Nogueira, Parameters affecting sulfonamide photo-Fenton degradation e iron complexation and substituent group, J. Photochem. Pho- tobiol. A Chem. 232 (2012) 8e13, https://doi.org/10.1016/ j.jphotochem.2012.01.016.W. Chu, W.K. Choy, T.Y. So, The effect of solution pH and peroxide in the TiO2- induced photocatalysis of chlorinated aniline, J. Hazard Mater. 141 (2007) 86e91, https://doi.org/10.1016/j.jhazmat.2006.06.093M. Cizmi c, D. Ljubas, M. Ro zman, D. A sperger, L. Curkovi c, S. Babíc, Photo- catalytic degradation of azithromycin by nanostructured TiO2 film: kinetics, degradation products, and toxicity, Materials 6 (2019) 873, https://doi.org/ 10.3390/ma12060873Y. Chen, S. Yang, K. Wang, L. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol. A Chem. 172 (2005) 47e54, https://doi.org/10.1016/ j.jphotochem.2004.11.006.D.E. Santiago, J.M. Do~na-Rodríguez, J. Ara~na, C. Fern andez-Rodríguez, O. Gonz alez-Díaz, J. P erez-Pe~na, A.M.T. Silva, Optimization of the degradation of imazalil by photocatalysis: comparison between commercial and lab-made photocatalysts, Appl. Catal. B Environ. 138e139 (2013) 391e400, https:// doi.org/10.1016/j.apcatb.2013.03.024M. Tamimi, S. Qourzal, N. Barka, A. Assabbane, Y. Aitichou, Methomyl degra- dation in aqueous solutions by Fenton’s reagent and the photo-Fenton system, Separ. Purif. Technol. 61 (2008) 103e108, https://doi.org/10.1016/ j.seppur.2007.09.017M.G. Alalm, A. Tawfik, S. Ookawara, Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation, J. Environ. Chem. Eng. 3 (2015) 46e51, https://doi.org/10.1016/j.jece.2014.12.009. P.A. Cano et al. / Emerging Contaminants 6 (2020) 53e6160H.B. Ammar, M. Ben Brahim, R. Abdelh edi, Y. Samet, Enhanced degradation of metronidazole by sunlight via photo-Fenton process under gradual addition of hydrogen peroxide, J. Mol. Catal. A Chem. 420 (2016) 222e227, https://doi.org/10.1016/j.molcata.2016.04.029C. Tan, N. Gao, Y. Deng, Y. Zhang, M. Sui, J. Deng, S. Zhou, Degradation of antipyrine by UV, UV/H2O2 and UV/PS, J. Hazard Mater. 260 (2013) 1008e1016, https://doi.org/10.1016/j.jhazmat.2013.06.060.H. Zú~niga-Benítez, G.A. Pe~nuela, Application of solar photo-Fenton for benzophenone-type UV filters removal, J. Environ. Manag. 217 (2018) 929e938 https://doi.org/10.1016/j.jenvman.2018.03.075AntibioticsAntibióticosAzitromicinaHydrogen peroxidePeróxido de hidrógenoPeróxido de hidrogénioAzithromycinSunlightLuz SolarWastewater TreatmentAdvanced oxidationTEXTUse of simulated sunlight radiation and hydrogen peroxide in azithromycin.pdf.txtUse of simulated sunlight radiation and hydrogen peroxide in azithromycin.pdf.txtExtracted texttext/plain9https://dspace.tdea.edu.co/bitstream/tdea/2785/3/Use%20of%20simulated%20sunlight%20radiation%20and%20hydrogen%20peroxide%20in%20azithromycin.pdf.txt33f4f15a16a9843faf6a25d4f387b6fdMD53open accessTHUMBNAILUse of simulated sunlight radiation and hydrogen peroxide in azithromycin.pdf.jpgUse of simulated sunlight radiation and hydrogen peroxide in azithromycin.pdf.jpgGenerated Thumbnailimage/jpeg16463https://dspace.tdea.edu.co/bitstream/tdea/2785/4/Use%20of%20simulated%20sunlight%20radiation%20and%20hydrogen%20peroxide%20in%20azithromycin.pdf.jpg68debe1aa893772fe2219749c6cbe1e7MD54open accessORIGINALUse of simulated sunlight radiation and hydrogen peroxide in azithromycin.pdfUse of simulated sunlight radiation and hydrogen peroxide in azithromycin.pdfapplication/pdf4460318https://dspace.tdea.edu.co/bitstream/tdea/2785/1/Use%20of%20simulated%20sunlight%20radiation%20and%20hydrogen%20peroxide%20in%20azithromycin.pdf87d78736bea7684284a81c5462e2810fMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/2785/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accesstdea/2785oai:dspace.tdea.edu.co:tdea/27852023-04-14 03:02:41.476An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=