Compositional response of Amazon forests to climate change

Most of the planet's diversity is concentrated in the tropics, which includes manyregions undergoing rapid climate change. Yet, while climate‐induced biodiversitychanges are widely documented elsewhere, few studies have addressed this issuefor lowland tropical ecosystems. Here we investigate wh...

Full description

Autores:
Esquivel Muelbert, Adriane
Baker, Timothy R.
Dexter, Kyle G.
Lewis, Simon L.
Brienen, Roel Jacobus Wilhelmus
Feldpausch, Ted R.
Lloyd, Jonathan
Monteagudo Mendoza, Abel Lorenzo
Arroyo Padilla, Luzmila
Álvarez Dávila, Esteban
Higuchi, Niro
Schwantes Marimon, Beatriz
Marimon Junior, Ben Hur
Silveira, Marcos
Vilanova Torre, Emilio Javier
Gloor, Emanuel
Singh Malhi, Yadvinder
Chave, Jérôme
Barlow, Jos
Bonal, Damien
Dávila Cardozo, Nállarett Marina
Erwin, Terry
Fauset, Sophie
Hérault, Bruno
Laurance, Susan G. W.
Poorter, Lourens
Qie, Lan
Stahl, Clement
Sullivan, Martin J. P.
Ter Steege, Hans
Vos, Vincent Antoine
Zuidema, Pieter A.
Almeida, Everton Cristo
Oliveira, Edmar Almeida de
Andrade, Ana Cristina Segalin de
Aparecida Vieira, Simone
Aragão, Luiz Eduardo Oliveira e Cruz de
Araujo Murakami, Alejandro
Arets, Eric
Aymard Corredor, Gerardo Antonio
Baraloto, Christopher
Barbosa Camargo, Plínio
Gonçalves Barroso, Jorcely
Bongers, Frans
Boot, Rene
Campana Camargo, José Luís
Castro, Wendeson
Chama Moscoso, Victor
Comiskey, James A.
Cornejo Valverde, Fernando
Lolada Costa, Antonio Carlos
del Águila Pasquel, Jhon
Di Fiore, Anthony
Duque Barreiro, Luisa Fernanda
Duque, Luisa Fernanda
da Silva, Fernando Elías
Engel, Julien
Flores Llampazo, Gerardo Rafael
Galbraith, David
Herrera Fernández, Rafael
Honorio Coronado, Eurídice Nora
Hubau, Wannes
Jiménez Rojas, Eliana María
Nogueira Lima, Adriano José
Umetsu, Ricardo Keichi
Laurance, William F.
López González, Gabriela
Lovejoy, Thomas
Melo Cruz, Omar Aurelio
Morandi, Paulo Sérgio
Neill, David Alan
Nuñez Vargas, Mario Percy
Pallqui Camacho, ‪Nadir Carolina
Parada Gutiérrez, Alexander
Pardo Molina, Guido
Peacock, Julie
Peña Claros, Marielos
María Cristina, Peñuela Mora
Petronelli, Pascal
Pickavance, Georgia C.
Pitman, Nigel Charles Andrew
Prieto Cruz, Adriana
Quesada, Carlos Alberto
Ramírez Angulo, Hirma Coromoto
Réjou Méchain, Maxime
Restrepo Correa, Zorayda
Roopsind, Anand
Rudas Lleras, Agustín
Salomão, Rafael de Paiva
Macedo Silva, José Natalino
Silva Espejo, Javier Eduardo
Singh, James
Stropp, Juliana
Terborgh, John Whittle
Thomas Caesar, Raquel S.
Toledo, Marisol
Torres Lezama, Armando
Valenzuela Gamarra, Luis
van der Meer, Peter J.
van der Heijden, Geertje
van der Hout, Peter
Vásquez Martínez, Rodolfo
Vela, César IA
Guimarães Vieira, Ima Célia
Phillips, Oliver Lawrence
Tipo de recurso:
Article of investigation
Fecha de publicación:
2018
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/2837
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/2837
Palabra clave:
Biological traits
Rasgos biológicos
Frait biologique
Tropical forests
Bosques tropicales
Floresta tropical
Forêt tropicale
Climate Change
Cambio Climático
Mudança Climática
Changement climatique
Bioclimatic niches
Compositional shifts
Functional traits
Temporal trends
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id RepoTdea2_60e708d5f639e08c1d61f144e585d4f8
oai_identifier_str oai:dspace.tdea.edu.co:tdea/2837
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Compositional response of Amazon forests to climate change
title Compositional response of Amazon forests to climate change
spellingShingle Compositional response of Amazon forests to climate change
Biological traits
Rasgos biológicos
Frait biologique
Tropical forests
Bosques tropicales
Floresta tropical
Forêt tropicale
Climate Change
Cambio Climático
Mudança Climática
Changement climatique
Bioclimatic niches
Compositional shifts
Functional traits
Temporal trends
title_short Compositional response of Amazon forests to climate change
title_full Compositional response of Amazon forests to climate change
title_fullStr Compositional response of Amazon forests to climate change
title_full_unstemmed Compositional response of Amazon forests to climate change
title_sort Compositional response of Amazon forests to climate change
dc.creator.fl_str_mv Esquivel Muelbert, Adriane
Baker, Timothy R.
Dexter, Kyle G.
Lewis, Simon L.
Brienen, Roel Jacobus Wilhelmus
Feldpausch, Ted R.
Lloyd, Jonathan
Monteagudo Mendoza, Abel Lorenzo
Arroyo Padilla, Luzmila
Álvarez Dávila, Esteban
Higuchi, Niro
Schwantes Marimon, Beatriz
Marimon Junior, Ben Hur
Silveira, Marcos
Vilanova Torre, Emilio Javier
Gloor, Emanuel
Singh Malhi, Yadvinder
Chave, Jérôme
Barlow, Jos
Bonal, Damien
Dávila Cardozo, Nállarett Marina
Erwin, Terry
Fauset, Sophie
Hérault, Bruno
Laurance, Susan G. W.
Poorter, Lourens
Qie, Lan
Stahl, Clement
Sullivan, Martin J. P.
Ter Steege, Hans
Vos, Vincent Antoine
Zuidema, Pieter A.
Almeida, Everton Cristo
Oliveira, Edmar Almeida de
Andrade, Ana Cristina Segalin de
Aparecida Vieira, Simone
Aragão, Luiz Eduardo Oliveira e Cruz de
Araujo Murakami, Alejandro
Arets, Eric
Aymard Corredor, Gerardo Antonio
Baraloto, Christopher
Barbosa Camargo, Plínio
Gonçalves Barroso, Jorcely
Bongers, Frans
Boot, Rene
Campana Camargo, José Luís
Castro, Wendeson
Chama Moscoso, Victor
Comiskey, James A.
Cornejo Valverde, Fernando
Lolada Costa, Antonio Carlos
del Águila Pasquel, Jhon
Di Fiore, Anthony
Duque Barreiro, Luisa Fernanda
Duque, Luisa Fernanda
da Silva, Fernando Elías
Engel, Julien
Flores Llampazo, Gerardo Rafael
Galbraith, David
Herrera Fernández, Rafael
Honorio Coronado, Eurídice Nora
Hubau, Wannes
Jiménez Rojas, Eliana María
Nogueira Lima, Adriano José
Umetsu, Ricardo Keichi
Laurance, William F.
López González, Gabriela
Lovejoy, Thomas
Melo Cruz, Omar Aurelio
Morandi, Paulo Sérgio
Neill, David Alan
Nuñez Vargas, Mario Percy
Pallqui Camacho, ‪Nadir Carolina
Parada Gutiérrez, Alexander
Pardo Molina, Guido
Peacock, Julie
Peña Claros, Marielos
María Cristina, Peñuela Mora
Petronelli, Pascal
Pickavance, Georgia C.
Pitman, Nigel Charles Andrew
Prieto Cruz, Adriana
Quesada, Carlos Alberto
Ramírez Angulo, Hirma Coromoto
Réjou Méchain, Maxime
Restrepo Correa, Zorayda
Roopsind, Anand
Rudas Lleras, Agustín
Salomão, Rafael de Paiva
Macedo Silva, José Natalino
Silva Espejo, Javier Eduardo
Singh, James
Stropp, Juliana
Terborgh, John Whittle
Thomas Caesar, Raquel S.
Toledo, Marisol
Torres Lezama, Armando
Valenzuela Gamarra, Luis
van der Meer, Peter J.
van der Heijden, Geertje
van der Hout, Peter
Vásquez Martínez, Rodolfo
Vela, César IA
Guimarães Vieira, Ima Célia
Phillips, Oliver Lawrence
dc.contributor.author.none.fl_str_mv Esquivel Muelbert, Adriane
Baker, Timothy R.
Dexter, Kyle G.
Lewis, Simon L.
Brienen, Roel Jacobus Wilhelmus
Feldpausch, Ted R.
Lloyd, Jonathan
Monteagudo Mendoza, Abel Lorenzo
Arroyo Padilla, Luzmila
Álvarez Dávila, Esteban
Higuchi, Niro
Schwantes Marimon, Beatriz
Marimon Junior, Ben Hur
Silveira, Marcos
Vilanova Torre, Emilio Javier
Gloor, Emanuel
Singh Malhi, Yadvinder
Chave, Jérôme
Barlow, Jos
Bonal, Damien
Dávila Cardozo, Nállarett Marina
Erwin, Terry
Fauset, Sophie
Hérault, Bruno
Laurance, Susan G. W.
Poorter, Lourens
Qie, Lan
Stahl, Clement
Sullivan, Martin J. P.
Ter Steege, Hans
Vos, Vincent Antoine
Zuidema, Pieter A.
Almeida, Everton Cristo
Oliveira, Edmar Almeida de
Andrade, Ana Cristina Segalin de
Aparecida Vieira, Simone
Aragão, Luiz Eduardo Oliveira e Cruz de
Araujo Murakami, Alejandro
Arets, Eric
Aymard Corredor, Gerardo Antonio
Baraloto, Christopher
Barbosa Camargo, Plínio
Gonçalves Barroso, Jorcely
Bongers, Frans
Boot, Rene
Campana Camargo, José Luís
Castro, Wendeson
Chama Moscoso, Victor
Comiskey, James A.
Cornejo Valverde, Fernando
Lolada Costa, Antonio Carlos
del Águila Pasquel, Jhon
Di Fiore, Anthony
Duque Barreiro, Luisa Fernanda
Duque, Luisa Fernanda
da Silva, Fernando Elías
Engel, Julien
Flores Llampazo, Gerardo Rafael
Galbraith, David
Herrera Fernández, Rafael
Honorio Coronado, Eurídice Nora
Hubau, Wannes
Jiménez Rojas, Eliana María
Nogueira Lima, Adriano José
Umetsu, Ricardo Keichi
Laurance, William F.
López González, Gabriela
Lovejoy, Thomas
Melo Cruz, Omar Aurelio
Morandi, Paulo Sérgio
Neill, David Alan
Nuñez Vargas, Mario Percy
Pallqui Camacho, ‪Nadir Carolina
Parada Gutiérrez, Alexander
Pardo Molina, Guido
Peacock, Julie
Peña Claros, Marielos
María Cristina, Peñuela Mora
Petronelli, Pascal
Pickavance, Georgia C.
Pitman, Nigel Charles Andrew
Prieto Cruz, Adriana
Quesada, Carlos Alberto
Ramírez Angulo, Hirma Coromoto
Réjou Méchain, Maxime
Restrepo Correa, Zorayda
Roopsind, Anand
Rudas Lleras, Agustín
Salomão, Rafael de Paiva
Macedo Silva, José Natalino
Silva Espejo, Javier Eduardo
Singh, James
Stropp, Juliana
Terborgh, John Whittle
Thomas Caesar, Raquel S.
Toledo, Marisol
Torres Lezama, Armando
Valenzuela Gamarra, Luis
van der Meer, Peter J.
van der Heijden, Geertje
van der Hout, Peter
Vásquez Martínez, Rodolfo
Vela, César IA
Guimarães Vieira, Ima Célia
Phillips, Oliver Lawrence
dc.subject.agrovoc.none.fl_str_mv Biological traits
Rasgos biológicos
Frait biologique
Tropical forests
Bosques tropicales
Floresta tropical
Forêt tropicale
topic Biological traits
Rasgos biológicos
Frait biologique
Tropical forests
Bosques tropicales
Floresta tropical
Forêt tropicale
Climate Change
Cambio Climático
Mudança Climática
Changement climatique
Bioclimatic niches
Compositional shifts
Functional traits
Temporal trends
dc.subject.decs.none.fl_str_mv Climate Change
Cambio Climático
Mudança Climática
Changement climatique
dc.subject.proposal.none.fl_str_mv Bioclimatic niches
Compositional shifts
Functional traits
Temporal trends
description Most of the planet's diversity is concentrated in the tropics, which includes manyregions undergoing rapid climate change. Yet, while climate‐induced biodiversitychanges are widely documented elsewhere, few studies have addressed this issuefor lowland tropical ecosystems. Here we investigate whether the floristic and func-tional composition of intact lowland Amazonian forests have been changing by eval-uating records from 106 long‐term inventory plots spanning 30 years. We analysethree traits that have been hypothesized to respond to different environmental dri-vers (increase in moisture stress and atmospheric CO2concentrations): maximumtree size, biogeographic water‐deficit affiliation and wood density. Tree communitieshave become increasingly dominated by large‐statured taxa, but to date there hasbeen no detectable change in mean wood density or water deficit affiliation at thecommunity level, despite most forest plots having experienced an intensification ofthe dry season. However, among newly recruited trees, dry‐affiliated genera havebecome more abundant, while the mortality of wet‐affiliated genera has increasedin those plots where the dry season has intensified most. Thus, a slow shift to amore dry‐affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate‐change drivers, but yet to signifi-cantly impact whole‐community composition. The Amazon observational record sug-gests that the increase in atmospheric CO2is driving a shift within treecommunities to large‐statured species and that climate changes to date will impactforest composition, but long generation times of tropical trees mean that biodiver-sity change is lagging behind climate change.KEYWORDSbioclimatic niches, climate change, compositional shifts, functional traits, temporal trends,tropical forests
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2023-04-30T04:59:47Z
dc.date.available.none.fl_str_mv 2023-04-30T04:59:47Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1354-1013
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/2837
dc.identifier.eissn.spa.fl_str_mv 1365-2486
identifier_str_mv 1354-1013
1365-2486
url https://dspace.tdea.edu.co/handle/tdea/2837
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 56
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 39
dc.relation.citationvolume.spa.fl_str_mv 25
dc.relation.ispartofjournal.spa.fl_str_mv Global change biology
dc.relation.references.spa.fl_str_mv Allen, R. G., Smith, M., Pereira, L. S., & Perrier, A. (1994). An update forthe calculation of reference evapotranspiration.ICID Bulletin,43,35–92.
Aragão, L., Malhi, Y., Roman‐Cuesta, R. M., Saatchi, S., Anderson, L. O.,& Shimabukuro, Y. E. (2007). Spatial patterns and fire response ofrecent Ammazonian droughts.Geophysical Research Letters,34,L07701
Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A.,...Vásquez Martínez, R. (2004). Variation in wood density determinesspatial patterns in Amazonian forest biomass.Global Change Biology,10, 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.x
Baraloto, C., Paine, C. E. T., Patino, S., Bonal, D., Herault, B., & Chave, J.(2010). Functional trait variation and sampling strategies in species‐rich plant communities.Functional Ecology,24, 208–216. https://doi.org/10.1111/j.1365-2435.2009.01600.x
Baker, T. R., Vela Díaz, D. M., Chama Moscoso, V., Navarro, H. G., Mon-teagudo, A., Pinto, R.,...Phillips, O. L. (2016). Consistent, smalleffects of treefall disturbances on the composition and diversity offour Amazonian forests.Journal of Ecology,104, 497–506 https://doi.org/10.1111/1365-2745.12529
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed‐effects models using lme4.Journal of Statistical Software,67, 48
Bello, C., Galetti, M., Pizo, M. A., Magnago, L. F., Rocha, M. F., Lima, R.A.,...Jordano, P. (2015). Defaunation affects carbon storage in tropi-cal forests.Science Advances,11, e1501105. https://doi.org/10.1126/sciadv.1501105
Bennett, A. C., Mcdowell, N. G., Allen, C. D., & Anderson‐Teixeira, K. J.(2015). Larger trees suffer most during drought in forests worldwide.Nature Plants,1, 15139. https://doi.org/10.1038/nplants.2015.139
Blonder, B., Moulton, D. E., Blois, J., Enquist, B. J., Graae, B. J., Macias‐Fauria, M.,...Svenning, J. C. (2017). Predictability in communitydynamics.Ecology Letters,20, 293–306. https://doi.org/10.1111/ele.12736
Boisier, J. P., Ciais, P., Ducharne, A., & Guimberteau, M. (2015). Projectedstrengthening of Amazonian dry season by constrained climate modelsimulations.Nature Climate Change,5, 656–660. https://doi.org/10.1038/nclimate2658
Bowler, D. E., Hof, C., Haase, P., Kröncke, I., Schweiger, O., Adrian, R.,...Böhning‐Gaese, K. (2017). Cross‐realm assessment of climate changeimpacts on species’abundance trends.Nature Ecology and Evolution,1, 67. https://doi.org/10.1038/s41559-016-0067
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R.,Lloyd, J., & Zagt, R. J. (2015). Long‐term decline of the Amazon carbonsink.Nature,519, 344–348 https://doi.org/10.1038/nature14283
Butt, N., Malhi, Y., New, M., Macía, M. J., Lewis, S. L., Lopez‐Gonzalez,G.,...Phillips, O. L. (2014). Shifting dynamics of climate‐functionalgroups in old‐growth Amazonian forests.Plant Ecology and Diversity,7, 267–279 https://doi.org/10.1080/17550874.2012.715210
Cardoso, D., Särkinen, T., Alexander, S., Amorim, A. M., Bittrich, V., Celis,M.,...Forzza, R. C. (2017). Amazon plant diversity revealed by a tax-onomically verified species list.Proceedings of the National Academyof Sciences,114, 10695–10700. https://doi.org/10.1073/pnas.1706756114
Chambers, J. Q., Negron‐Juarez, R. I., Marra, D. M., Di Vittorio, A., Tews,J., Roberts, D.,...Higuchi, N. (2013). The steady‐state mosaic of dis-turbance and succession across an old‐growth Central Amazon forestlandscape.Proceedings of the National Academy of Sciences,110,3949–3954. https://doi.org/10.1073/pnas.120289411052
Chapman, C. A., & Chapman, L. J. (1995). Survival without dispersers:seedling recruitment under parents.Conservation Biology,9, 675–678.https://doi.org/10.1046/j.1523-1739.1995.09030675.x
Chave, J., Condit, R., Muller‐Landau, H. C., Thomas, S. C., Ashton, P. S.,Bunyavejchewin, S.,...Losos, E. C. (2008). Assessing evidence for apervasive alteration in tropical tree communities.Plos Biology,6, 455–462.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne,A. E. (2009). Towards a worldwide wood economics spectrum.Ecol-ogy Letters,12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Chen, I.‐C., Shiu, H.‐J., Benedick, S., Holloway, J. D., Chey, V. K., Barlow,H. S.,...Thomas, C. D. (2009). Elevation increases in moth assem-blages over 42 years on a tropical mountain.Proceedings of theNational Academy of Sciences of the United States of America,106,1479–1483. https://doi.org/10.1073/pnas.0809320106
Coelho de Souza, F., Dexter, K. G., Phillips, O. L., Brienen, R. J., Chave, J.,Galbraith, D. R.,...Baker, T. R. (2016). Evolutionary heritage influ-ences Amazon tree ecology.Proceedings of the Royal Society B: Biolog-ical Sciences,283, 20161587.
Condit, R., Hubbell, S. P., & Foster, R. B. (1996). Changes in tree speciesabundance in a Neotropical forest: Impact of climate change.Journalof Tropical Ecology,12, 231–256. https://doi.org/10.1017/S0266467400009433
Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natu-ral communities and their role in community stability and organiza-tion.American Naturalist,111, 1119–1144. https://doi.org/10.1086/283241
Conway, T. J., & Tans, P. P. (2016). Trends in atmospheric carbon diox-ide. Retrieved from https://www.esrl.noaa.gov/gmd/ccgg/trends
Coomes, D. A., Lines, E. R., & Allen, R. B. (2011). Moving on from Meta-bolic Scaling Theory: Hierarchical models of tree growth and asym-metric competition for light.Journal of Ecology,99, 748–756.https://doi.org/10.1111/j.1365-2745.2011.01811.x
Davis, M. B. (1989). Lags in vegetation response to greenhouse warming.Climatic Change,15,75–82. https://doi.org/10.1007/BF00138846
Devictor, V., van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D.,Heliölä, J.,...Jiguet, F. (2012). Differences in the climatic debts ofbirds and butterflies at a continental scale.Nature Climate Change,2,121. https://doi.org/10.1038/nclimate1347
Diaz, S., Lavorel, S., De Bello, F., Quetier, F., Grigulis, K., & Robson, M.(2007). Incorporating plant functional diversity effects in ecosystemservice assessments.Proceedings of the National Academy of Sciencesof the United States of America,104, 20684–20689. https://doi.org/10.1073/pnas.0704716104
Doughty, C. E., Wolf, A., Morueta‐Holme, N., Jørgensen, P. M., Sandel,B., Violle, C.,...Galetti, M. (2016). Megafauna extinction, tree speciesrange reduction, and carbon storage in Amazonian forests.Ecography,39, 194–203. https://doi.org/10.1111/ecog.01587
Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections offuture meteorological drought and wet periods in the Amazon.Pro-ceedings of the National Academy of Sciences of the United States ofAmerica,112, 13172–13177. https://doi.org/10.1073/pnas.1421010112
Duque, A., Stevenson, P. R., & Feeley, K. J. (2015). Thermophilization ofadult and juvenile tree communities in the northern tropical Andes.Proceedings of the National Academy of Sciences,112, 10744–10749.https://doi.org/10.1073/pnas.1506570112
Engelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T.,Turner, B. L., & Hubbell, S. P. (2007). Drought sensitivity shapes spe-cies distribution patterns in tropical forests.Nature,447,80–82.https://doi.org/10.1038/nature05747
Enquist, B. J., & Enquist, C. F. (2011). Long‐term change within aNeotropical forest: Assessing differential functional and floristic responses to disturbance and drought.Global Change Biology,17,1408–1424. https://doi.org/10.1111/j.1365-2486.2010.02326.x
Enquist, B. J., West, G. B., & Brown, J. H. (2009). Extensions and evalua-tions of a general quantitative theory of forest structure and dynam-ics.Proceedings of the National Academy of Sciences,106, 7046–7051.https://doi.org/10.1073/pnas.0812303106
Enquist, B. J., West, G. B., Charnov, E. L., & Brown, J. H. (1999). Allomet-ric scaling of production and life‐history variation in vascular plants.Nature,401, 907–911. https://doi.org/10.1038/44819
Erfanian, A., Wang, G., & Fomenko, L. (2017). Unprecedented droughtover tropical South America in 2016: Significantly under‐predicted bytropical SST.Scientific Reports,7, 5811. https://doi.org/10.1038/s41598-017-05373-2
Espinoza, J. C., Marengo, J. A., Ronchail, J., Carpio, J. M., Flores, L. N., &Guyot, J. L. (2014). The extreme 2014 flood in south‐western Ama-zon basin: The role of tropical‐subtropical South Atlantic SST gradi-ent.Environmental Research Letters,9, 124007. https://doi.org/10.1088/1748-9326/9/12/124007
Esquivel‐Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., ter Steege,H., Lopez‐Gonzalez, G.,...Phillips, O. L. (2017). Seasonal drought lim-its tree species across the Neotropics.Ecography,40, 618–629.https://doi.org/10.1111/ecog.01904
Esquivel‐Muelbert, A., Galbraith, D., Dexter, K. G., Lewis, S. L., ter Steege,H.,...Phillips, O. L. (2017). Biogeographic distributions of neotropicaltrees reflect their directly measured drought tolerances.ScientificReports,7, 8334. https://doi.org/10.1038/s41598-017-08105-8
Falster, D. S., & Westoby, M. (2003). Plant height and evolutionarygames.Trends in Ecology and Evolution,18, 337–343. https://doi.org/10.1016/S0169-5347(03)00061-2
Falster, D. S., & Westoby, M. (2005). Alternative height strategies among45 dicot rain forest species from tropical Queensland, Australia.Jour-nal of Ecology,93, 521–535. https://doi.org/10.1111/j.0022-0477.2005.00992.x
Fauset, S., Baker, T. R., Lewis, S. L., Feldpausch, T. R., Affum‐Baffoe, K.,Foli, E. G.,...Swaine, M. D. (2012). Drought‐induced shifts in thefloristic and functional composition of tropical forests in Ghana.Ecol-ogy Letters,15, 1120–1129. https://doi.org/10.1111/j.1461-0248.2012.01834.x
Fauset, S., Johnson, M. O., Gloor, M., Baker, T. R., Monteagudo, M. A.,Brienen, R. J., & ,..., O. L. (2015). Hyperdominance in Amazonianforest carbon cycling.Nature Communications,6, 6857. https://doi.org/10.1038/ncomms7857
Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P., & Foster, R. B. (2011).Directional changes in the species composition of a tropical forest.Ecology,92, 871–882. https://doi.org/10.1890/10-0724.1
Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi,Y.,...Saatchi, S. (2011). Upslope migration of Andean trees.Journalof Biogeography,38, 783–791. https://doi.org/10.1111/j.1365-2699.2010.02444.x
Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Mon-teagudo Mendoza, A.,...Phillips, O. L. (2012). Tree height integratedinto pantropical forest biomass estimates.Biogeosciences,9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012
Feldpausch, T. R., Phillips, O. L., Brienen, R. J. W., Gloor, E., Lloyd, J.,Lopez‐Gonzalez, G.,...Vos, V. A. (2016). Amazon forest response torepeated droughts.Global Biogeochemical Cycles,30, 964–982.https://doi.org/10.1002/2015GB005133
Fisher, J. I., Hurtt, G. C., Thomas, R. Q., & Chambers, J. Q. (2008). Clus-tered disturbances lead to bias in large‐scale estimates based on for-est sample plots.Ecology Letters,11, 554–563. https://doi.org/10.1111/j.1461-0248.2008.01169.x
Flores, O., & Coomes, D. A. (2011). Estimating the wood density of spe-cies for carbon stock assessments.Methods in Ecology and Evolution,2, 214–220. https://doi.org/10.1111/j.2041-210X.2010.00068.x
Francis, A. P., & Currie, D. J. (2003). A globally consistent richness‐cli-mate relationship for angiosperms.American Naturalist,161, 523–536. https://doi.org/10.1086/368223
Fyllas, N. M., Patiño, S., Baker, T. R., Bielefeld Nardoto, G., Martinelli, L.A., Quesada, C. A.,...Lloyd, J. (2009). Basin‐wide variations in foliarproperties of Amazonian forest: Phylogeny, soils and climate.Biogeosciences,6, 2677–2708. https://doi.org/10.5194/bg-6-2677-2009
Fyllas, N. M., Quesada, C. A., & Lloyd, J. (2012). Deriving plant functionaltypes for Amazonian forests for use in vegetation dynamics models.Perspectives in Plant Ecology, Evolution and Systematics,14,97–110.https://doi.org/10.1016/j.ppees.2011.11.001
Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y., Domingues,L. G.,...Lloyd, J. (2014). Drought sensitivity of Amazonian carbonbalance revealed by atmospheric measurements.Nature,506,76–80.https://doi.org/10.1038/nature12957
Gentry, A. H. (1988). Changes in plant community diversity and floristiccomposition on environmental and geographical gradients.Annals ofthe Missouri Botanical Garden,75,1–34. https://doi.org/10.2307/2399464
Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira,R. S., Uriarte, M., & Gentine, P. (2018). Tall Amazonian forests areless sensitive to precipitation variability.Nature Geoscience,11, 405–409. https://doi.org/10.1038/s41561-018-0133-5
Gloor, M., Barichivich, J., Ziv, G., Brienen, R., Schöngart, J., Peylin, P.,...Baker, J. (2015). Recent Amazon climate as background for possibleongoing and future changes of Amazon humid forests.Global Biogeo-chemical Cycles,29, 1384–1399. https://doi.org/10.1002/2014GB005080
Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high‐resolution grids of monthly climatic observations–the CRU TS3.10Dataset.International Journal of Climatology,34, 623–642. https://doi.org/10.1002/joc.3711
Hilker, T., Lyapustin, A. I., Tucker, C. J., Hall, F. G., Myneni, R. B., Wang,Y.,...Sellers, P. J. (2014). Vegetation dynamics and rainfall sensitivityof the Amazon.Proceedings of the National Academy of Sciences,111,16041–16046. https://doi.org/10.1073/pnas.1404870111
Hubbell, S. P. (2001).The unified neutral theory of biodiversity and biogeog-raphy. Princenton, NJ: Princenton University Press.Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu,G.,...Stocker, E. F. (2007). The TRMM Multisatellite PrecipitationAnalysis (TMPA): Quasi‐Global, Multiyear, Combined‐Sensor Precipi-tation Estimates at Fine Scales.Journal of Hydrometeorology,8,38–55. https://doi.org/10.1175/JHM560.1
Jiménez‐Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría‐Artigas, A.,Takahashi, K., Malhi, Y.,...Schrier, G. (2016). Record‐breaking warm-ing and extreme drought in the Amazon rainforest during the courseof El Niño 2015–2016.Scientific Reports,6, 33130. https://doi.org/10.1038/srep33130
Jiménez‐Muñoz, J. C., Sobrino, J. A., Mattar, C., & Malhi, Y. (2013).Spatial and temporal patterns of the recent warming of theAmazon forest.Journal of Geophysical Research: Atmospheres,118,5204–5215.
Joetzjer, E., Douville, H., Delire, C., & Ciais, P. (2013). Present‐day andfuture Amazonian precipitation in global climate models: CMIP5 ver-sus CMIP3.Climate Dynamics,41, 2921–2936. https://doi.org/10.1007/s00382-012-1644-1
Laurance, W. F. (2004). Forest‐climate interactions in fragmented tropicallandscapes.Philosophical Transactions of the Royal Society of LondonSeries B‐Biological Sciences,359, 345–352. https://doi.org/10.1098/rstb.2003.1430
Laurance, W. F., Oliveira, A. A., Laurance, S. G., Condit, R., Nascimento,H. E. M., Sanchez‐Thorin, A. C.,...Dick, C. W. (2004). Pervasivealteration of tree communities in undisturbed Amazonian forests.Nature,428, 171–175. https://doi.org/10.1038/nature02383
Lenoir, J., Gegout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H.(2008). A significant upward shift in plant species optimum elevationduring the 20th century.Science,320, 1768–1771. https://doi.org/10.1126/science.1156831
Levine, N. M., Zhang, K., Longo, M., Baccini, A., Phillips, O. L., Lewis, S.L.,...Moorcroft, P. R. (2016). Ecosystem heterogeneity determinesthe ecological resilience of the Amazon to climate change.Proceed-ings of the National Academy of Sciences,113, 793–797. https://doi. / org/10.1073/pnas.1511344112
Levis, C., Costa, F. R. C., Bongers, F., Peña‐Claros, M., Clement, C. R.,Junqueira, A. B.,...Ter Steege, H. (2017). Persistent effects of pre‐Columbian plant domestication on Amazonian forest composition.Science,355, 925–931. https://doi.org/10.1126science.aal0157
Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F., &Nepstad, D. (2011). The 2010 Amazon drought.Science,331, 554.https://doi.org/10.1126/science.1200807
Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T. A., & Laurance, W. F.(2009). Changing ecology of tropical forests: evidence and drivers. In:Annual Review of Ecology Evolution and Systematics. Palo Alto,Annual Reviews.Lewis, S. L., Lopez‐Gonzalez, G., Sonke, B., Affum‐Baffoe, K., Baker, T. R.,Ojo, L. O.,...Wöll, H. (2009). Increasing carbon storage in intact Afri-can tropical forests.Nature,457, 1003–1006. https://doi.org/10.1038/nature07771
Lloyd, J., & Farquhar, G. D. (1996). The CO2dependence of photosynthe-sis, plant growth responses to elevated atmospheric CO2concentra-tions and their interaction with soil nutrient status.1. Generalprinciples and forest ecosystems.Functional Ecology,10,4–32.https://doi.org/10.2307/2390258
Lloyd, J., & Farquhar, G. D. (2008). Effects of rising temperatures andCO2on the physiology of tropical forest trees.Philosophical Transac-tions of the Royal Society B‐Biological Sciences,363, 1811–1817.https://doi.org/10.1098/rstb.2007.0032
Lopez‐Gonzalez, G., Lewis, S. L., Burkitt, M., & Phillips, O. L. (2011). For-estPlots.net: A web application and research tool to manage andanalyse tropical forest plot data.Journal of Vegetation Science,22,610–613. https://doi.org/10.1111/j.1654-1103.2011.01312.x
Malhi, Y., Phillips, O. L., Lloyd, J., Baker, T., Wright, J., Almeida, S.,...Vin-ceti, B. (2002). An international network to monitor the structure,composition and dynamics of Amazonian forests (RAINFOR).Journalof Vegetation Science,13, 439–450. https://doi.org/10.1111/j.1654-1103.2002.tb02068.x
Marengo, J. A., & Espinoza, J. C. (2016). Extreme seasonal droughts andfloods in Amazonia: Causes, trends and impacts.International Journalof Climatology,36, 1033–1050. https://doi.org/10.1002/joc.4420
Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., de Oliveira, G.S., de Oliveira, R.,...Foster Brown, I. (2008). The drought of Amazo-nia in 2005.Journal of Climate,21, 495–516. https://doi.org/10.1175/2007JCLI1600.1
Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., & Rodriguez, D.A. (2011). The drought of 2010 in the context of historical droughtsin the Amazon region.Geophysical Research Letters,38, L12703.
McDowell, N. G., & Allen, C. D. (2015). Darcy's law predicts widespreadforest mortality under climate warming.Nature Climate Change,5,669–672. https://doi.org/10.1038/nclimate2641
McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuildingcommunity ecology from functional traits.Trends in Ecology and Evo-lution,21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002
McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly,M., & Ackerly, D. D. (2015). Twentieth‐century shifts in forest struc-ture in California: Denser forests, smaller trees, and increased domi-nance of oaks.Proceedings of the National Academy of Sciences,112,1458–1463. https://doi.org/10.1073/pnas.1410186112
McMichael, C. N. H., Matthews‐Bird, F., Farfan‐Rios, W., & Feeley, K. J.(2017). Ancient human disturbances may be skewing our understanding of Amazonian forests.Proceedings of the NationalAcademy of Sciences,114, 522–527. https://doi.org/10.1073/pnas.1614577114
Muller‐Landau, H. C. (2004). Interspecific and inter‐site variation in woodspecific gravity of tropical trees.Biotropica,36,20–32.
Nascimento, H. E. M., Laurance, W. F., Condit, R., Laurance, S. G., D'an-gelo, S., & Andrade, A. C. (2005). Demographic and life‐history corre-lates for Amazonian trees.Journal of Vegetation Science,16, 625–634.https://doi.org/10.1111/j.1654-1103.2005.tb02405.x
Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P., & Cardinot, G.(2007). Mortality of large trees and lianas following experimentaldrought in an amazon forest.Ecology,88, 2259–2269. https://doi.org/10.1890/06-1046.1
Osuri, A. M., Ratnam, J., Varma, V., Alvarez‐Loayza, P., Hurtado Astaiza,J., Bradford, M.,...Sankaran, M. (2016). Contrasting effects of defau-nation on aboveground carbon storage across the global tropics.Nat-ure Communications,7, 11351. https://doi.org/10.1038/ncomms11351
Pan, Y. D., Birdsey, R. A., Fang, J. Y., Houghton, R., Kauppi, P. E., Kurz,W. A.,...Hayes, D. (2011). A large and persistent carbon sink in theworld's forests.Science,333, 988–993. https://doi.org/10.1126/science.1201609
Patiño, S., Lloyd, J., Paiva, R., Baker, T. R., Quesada, C. A., Mercado, L.M.,...Phillips, O. L. (2009). Branch xylem density variations acrossthe Amazon Basin.Biogeosciences,6, 545–568.
Penone, C., Davidson, A. D., Shoemaker, K. T., Di Marco, M., Rondinini,C., Brooks, T. M.,...Costa, G. C. (2014). Imputation of missing datain life‐history trait datasets: Which approach performs the best?Methods in Ecology and Evolution,5, 961–970. https://doi.org/10.1111/2041-210X.12232
Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M., & Levi, T. (2016).Dispersal limitation induces long‐term biomass collapse in overhuntedAmazonian forests.Proceedings of the National Academy of Sciences,113,892–897. https://doi.org/10.1073/pnas.1516525113
Peres, C. A., & Lake, I. R. (2003). Extent of nontimber resource extractionin tropical forests: Accessibility to game vertebrates by hunters in theAmazon basin.Conservation Biology,17, 521–535. https://doi.org/10.1046/j.1523-1739.2003.01413.x
Peres, C. A., & Palacios, E. (2007). Basin‐wide effects of game harvest onvertebrate population densities in Amazonian forests: Implications foranimal‐mediated seed dispersal.Biotropica,39, 304–315. https://doi.org/10.1111/j.1744-7429.2007.00272.x
Phillips, O. L., Aragao, L., Lewis, S. L., Fisher, J. B., Lloyd, J., López‐Gonzá-lez, G.,...Lezama, A. (2009). Drought sensitivity of the amazon rain-forest.Science,323, 1344–1347. https://doi.org/10.1126/science.1164033
Phillips, O., Baker, T., Feldpausch, T., Brienen, R., Almeida, S., Arroyo, L.,...Vásquez, R. (2016). RAINFOR field manual for plot establishmentand remeasurement.Phillips, O. L., & Gentry, A. H. (1994). Increasing turnover through time intropical forests.Science,263, 954–958. https://doi.org/10.1126/science.263.5149.954
Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nunez, P. V., Vas-quez, R. M.,...Grace, J. (1998). Changes in the carbon balance oftropical forests: Evidence from long‐term plots.Science,282, 439–442. https://doi.org/10.1126/science.282.5388.439
Phillips, O. L., Van Der Heijden, G., Lewis, S. L., López‐González, G., Ara-gão, L. E., Lloyd, J.,...Vilanova, E. (2010). Drought‐mortality relation-ships for tropical forests.New Phytologist,187, 631–646. https://doi.org/10.1111/j.1469-8137.2010.03359.x
Pitman, N. C. A., Terborgh, J. W., Silman, M. R., Percy Nùñez, V., Neill, D.A., Ceron, C. E.,...Aulestia, M. (2002). A comparison of tree speciesdiversity in two upper Amazonian forests.Ecology,83, 3210–3224.https://doi.org/10.1890/0012-9658(2002)083[3210:ACOTSD]2.0.CO;2
Pokhrel, Y. N., Fan, Y., & Miguez‐Macho, G. (2014). Potential hydrologicchanges in the Amazon by the end of the 21st century and thegroundwater buffer.Environmental Research Letters,9, 084004.
Poorter, L., Bongers, F., Sterck, F. J., & Wöll, H. (2005). Beyond theregeneration phase: Differentiation of height–light trajectories amongtropical tree species.Journal of Ecology,93, 256–267. https://doi.org/10.1111/j.1365-2745.2004.00956.x
Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J. C., Peña‐Claros, M.,...Sass‐Klaassen, U. (2010). The importance of woodtraits and hydraulic conductance for the performance and life historystrategies of 42 rainforest tree species.New Phytologist,185, 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x
Qie, L., Lewis, S. L., Sullivan, M. J. P., Lopez‐Gonzalez, G., Pickavance, G.C., Sunderland, T., & ,..., O. L. (2017). Long‐term carbon sink in Bor-neo's forests halted by drought and vulnerable to edge effects.Nat-ure Communications,8, 1966.
Rowland, L., Da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks, O.J., Oliveira, A. A.,...Meir, P. (2015). Death from drought in tropicalforests is triggered by hydraulics not carbon starvation.Nature,528,119–122.
Sakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña‐Claros, M.,Heinke, J.,...Thonicke, K. (2016). Resilience of Amazon forestsemerges from plant trait diversity.Nature Climate Change,6, 1032–1036. https://doi.org/10.1038/nclimate3109
Stahl, C., Hérault, B., Rossi, V., Burban, B., Bréchet, C., & Bonal, D.(2013). Depth of soil water uptake by tropical rainforest trees duringdry periods: Does tree dimension matter?Oecologia,173, 1191–1201. https://doi.org/10.1007/s00442-013-2724-6
Svenning, J.‐C., & Sandel, B. (2013). Disequilibrium vegetation dynamicsunder future climate change.American Journal of Botany,100, 1266–1286. https://doi.org/10.3732/ajb.1200469
Ter Steege, H., Nigel, C. A., Sabatier, D., Baraloto, C., Salomão, R. P.,Guevara, J. E.,...Silman, M. R. (2013). Hyperdominance in the Ama-zonian tree flora.Science,342, 325.Terborgh, J., Nuñez‐Iturri, G., Pitman, N. C., Valverde, F. H., Alvarez, P.,Swamy, V.,...Paine, C. E. (2008). Tree recruitment in an empty for-est.Ecology,89, 1757–1768. https://doi.org/10.1890/07-0479.1
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L.,Collingham, Y. C., & Williams, S. E. (2004). Extinction risk from cli-mate change.Nature,427, 145–148. https://doi.org/10.1038/nature02121
Van Der Sande, M. T., Arets, E. J. M. M., Peña‐Claros, M., Luciana deAvila, A., Roopsind, A., Mazzei, L.,...Poorter, L. (2016). Old‐growthNeotropical forests are shifting in species and trait composition.Eco-logical Monographs,86(2), 228–243. https://doi.org/10.1890/15-1815.1
Van Der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A.,Bongers, F., Pons, T. L., Terburg, G.,...Zuidema, P. A. (2015). Nogrowth stimulation of tropical trees by 150 years of CO2fertilizationbut water‐use efficiency increased.Nature Geoscience,8,24–28.https://doi.org/10.1038/ngeo2313
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., & Kattge, J. (2014).The emergence and promise of functional biogeography.Proceedingsof the National Academy of Sciences of the United States of America,111, 13690–13696. https://doi.org/10.1073/pnas.1415442111
Wright, S. J. (1992). Seasonal drought, soil fertility and the species den-sity of tropical forest plant communities.Trends in Ecology and Evolu-tion,7, 260–263. https://doi.org/10.1016/0169-5347(92)90171-7
Wright, S. J. (2005). Tropical forests in a changing environment.Trends inEcology and Evolution,20, 553–560. https://doi.org/10.1016/j.tree.2005.07.009
Zalamea, P. C., Heuret, P., Sarmiento, C., Rodríguez, M., Berthouly, A.,Guitet, S.,...Stevenson, P. R. (2012). The genus cecropia: A biologi-cal clock to estimate the age of recently disturbed areas in the n eotropics.PLoS ONE,7, e42643. https://doi.org/10.1371/journal.pone.0042643
Zanne, A. E., Lopez‐Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis,S. L.,...Chave, J. (2009). Data from: Towards a worldwide woodeconomics spectrum.Dryad Data Repository. https://doi.org/10.5061/dryad.234
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G.,...Zeng, N. (2016). Greening of the Earth and its drivers.Nature ClimateChange,6, 791. https://doi.org/10.1038/nclimate3004
Zuleta, D., Duque, A., Cardenas, D., Muller‐Landau, H. C., & Davies, S.(2017). Drought‐induced mortality patterns and rapid biomass recov-ery in a terra firme forest in the Colombian Amazon.Ecology,98,2538–2546. https://doi.org/10.1002/ecy.1950
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 18 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Bosques amazónicos
dc.publisher.spa.fl_str_mv PubMed Central Europe PMC
dc.publisher.place.spa.fl_str_mv Reino Unido
dc.source.spa.fl_str_mv https://onlinelibrary.wiley.com/doi/10.1111/gcb.14413
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/2837/1/Compositional%20response%20of%20Amazon%20forests%20to%20climate%20change.pdf
https://dspace.tdea.edu.co/bitstream/tdea/2837/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/2837/3/Compositional%20response%20of%20Amazon%20forests%20to%20climate%20change.pdf.txt
https://dspace.tdea.edu.co/bitstream/tdea/2837/4/Compositional%20response%20of%20Amazon%20forests%20to%20climate%20change.pdf.jpg
bitstream.checksum.fl_str_mv 148510113344ddd724b1a9a0eaed9772
2f9959eaf5b71fae44bbf9ec84150c7a
efaf4c7add75f885f0a62d624751965c
d8289f173ee2515b6be856f1cdb6597c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189207839375360
spelling Esquivel Muelbert, Adrianee9d3eb8a-8508-40a8-8f0e-f79c6595de0cBaker, Timothy R.7f4d01d5-99f0-4259-808e-ccfcd0b428c5Dexter, Kyle G.32b7e6d0-f7a6-4cda-b835-d890008e7ff5Lewis, Simon L.60a68ea6-43d1-4896-9013-4692a89ed041Brienen, Roel Jacobus Wilhelmusa21a377d-4ed0-49dd-a254-368b4b7a4402Feldpausch, Ted R.0a0d59d6-251f-4ce4-92bd-233cd6ed2ac0Lloyd, Jonathan165c2754-7bbe-48ee-be90-033ea7eb8318Monteagudo Mendoza, Abel Lorenzo4e114f8a-02fe-4a4b-b1cc-8a422bdda5d3Arroyo Padilla, Luzmilaa0edfb5d-fcdd-420d-b023-75efc94968deÁlvarez Dávila, Esteban26b7a281-24dc-46cc-b138-b2d161ba5857Higuchi, Niroa5d40814-0e3f-4be3-bdc8-59519d4a6dfdSchwantes Marimon, Beatriz2b0f926d-6937-4f86-ab68-27880aa1a13fMarimon Junior, Ben Hur1324c96d-be89-4a04-9847-483722ce4de8Silveira, Marcos18c2db36-7ba8-4f68-9a59-c74d83f569ebVilanova Torre, Emilio Javiere6e4ca1c-919d-4fe8-aa80-5f8310d102c2Gloor, Emanuela02daa94-9c75-4bfa-a9e1-1dda9f443444Singh Malhi, Yadvinder827459e8-147d-461f-9eba-22b6e5497c79Chave, Jérômed2f0572c-8b43-4eb9-8c21-e621eda900deBarlow, Josf89e0898-c078-4813-934f-dd5ea978704fBonal, Damien83d0a9ef-3c13-437f-886a-7d1da30b93e3Dávila Cardozo, Nállarett Marina4ac6a6ec-ecc1-4d29-a4d7-d17dc1fe666fErwin, Terry55926c8c-622c-401c-beda-2f7bd31094e9Fauset, Sophie465467c6-1430-40b7-a4b1-ad7af5b13d62Hérault, Bruno6d0e766e-9d92-44c6-8bdb-453408235995Laurance, Susan G. W.bb1e597b-01d4-441e-ae83-f9fc2bf51ac0Poorter, Lourens46a8ebb5-683e-4e93-9439-453d45f0914eQie, Laneffe9519-fc01-4f1e-abf0-308dbcff61eeStahl, Clementafad037b-54d8-4fc7-af62-ece87f8bf135Sullivan, Martin J. P.22b5beba-4baa-418d-94a7-21ddb213b8bcTer Steege, Hans69911633-6362-4f40-8328-941789d5085eVos, Vincent Antoinec2e34cd8-fd9e-4036-af79-ecfdf4fcb377Zuidema, Pieter A.be3bdf64-5608-4cd8-a3a4-9369eee647efAlmeida, Everton Cristoead13c18-0551-4b23-bb47-6d8406f8346fOliveira, Edmar Almeida dee41c4fa4-7096-48b2-b40b-86c68d2e5293Andrade, Ana Cristina Segalin de3be9df06-63b8-404d-bb6c-315b7ea8f404Aparecida Vieira, Simone07b761c7-dd65-4d7b-ba63-fa6b82afd39bAragão, Luiz Eduardo Oliveira e Cruz de50d68b75-1880-4453-a411-96374c324548Araujo Murakami, Alejandrodc973041-0478-404e-a654-96b43b6dd6eeArets, Ericc2fef3cc-3ee8-450f-b19b-7ee55ee3b898Aymard Corredor, Gerardo Antonio35c7a593-942f-4f9b-b057-1f9c1775a152Baraloto, Christopherf03c527e-03ef-4689-8a33-30161c538497Barbosa Camargo, Plíniob887b5f0-0d46-4884-b153-d40b4555067cGonçalves Barroso, Jorcely967f309a-ffe1-4381-8615-6e98cdc9a08aBongers, Frans6a8e9cf4-9c6c-4042-976b-e3e5388d0f42Boot, Rene938e9280-74c8-4563-ac8b-eb3e9ebf1dcaCampana Camargo, José Luís294ff526-b383-4ace-83b0-03be111a81b5Castro, Wendesona6097acc-3df4-4fd1-b028-c2e453a461a9Chama Moscoso, Victorbcdda72a-9e7f-494e-8885-b1b2241c465eComiskey, James A.b9719407-eb74-4337-b75d-c4d010be74b4Cornejo Valverde, Fernandoe8c2f060-19a7-4ba8-a07a-821c4e61022fLolada Costa, Antonio Carlosad54055d-e4e8-4de7-8136-b7101043fabcdel Águila Pasquel, Jhon46636df4-b167-4f8e-b1d8-9317d8a6111fDi Fiore, Anthonyca778d2f-5464-4989-81f4-98ddc26e97bfDuque Barreiro, Luisa Fernanda4eace56d-53a9-4ec6-b25b-523447a19cafDuque, Luisa Fernanda098429d8-7443-45d9-82e6-18083a373cbbda Silva, Fernando Elías5f2a4860-be6f-4621-a32e-985eb3a668d6Engel, Julien8c07bbb2-8c16-4635-8d7c-b07648072cf7Flores Llampazo, Gerardo Rafaelc5e693cf-6375-44b2-ba98-3e837aca75e1Galbraith, David9a838107-e80e-4493-a839-158883706699Herrera Fernández, Rafael2f439cdb-5a71-450b-a3ca-ac1f1feb6f4aHonorio Coronado, Eurídice Noraab85632d-38b6-4de1-973d-c0023b440db2Hubau, Wannes91292a35-6144-49c7-b618-3c74ddd8229eJiménez Rojas, Eliana María5219e214-6b8c-415f-8b8c-09542fdb788bNogueira Lima, Adriano José7e4926ac-18b5-4647-b9b5-86aff8690926Umetsu, Ricardo Keichid4d71313-2e9d-4154-9264-b8c794ac62e5Laurance, William F.a17bb00c-be92-4ce0-9590-6952b91c860cLópez González, Gabrielab301b96c-b120-4fb2-b54a-9758301930a5Lovejoy, Thomasebff69f7-8fad-41e7-9587-6e3cc67744f2Melo Cruz, Omar Aurelio7b3e1664-d327-4c3b-b11b-4d8e7ae8000cMorandi, Paulo Sérgio85b2e1bd-6a0c-417e-b8b1-3dd4856e06abNeill, David Alanb58503d4-9ba7-4257-b335-612864a82dc6Nuñez Vargas, Mario Percyde05db3b-0762-4f67-9e38-2117969189d8Pallqui Camacho, ‪Nadir Carolina8a367d14-d5fb-43ce-8bbb-96c8b1dd7ad1Parada Gutiérrez, Alexander4a324079-b4bb-4905-8306-9b5e471160a3Pardo Molina, Guido337087eb-8bdc-4c49-a698-44d4ad3bbbb9Peacock, Julie31f28b37-7040-4197-9100-369d21b6bbccPeña Claros, Marielos0bc9be34-be6f-46d4-95a5-3555c2a53e41María Cristina, Peñuela Moraa9ba97a1-fb0b-4bbd-93bc-6e2abc893659Petronelli, Pascal30ee497a-64e1-4c08-8be7-d03b8f797bd2Pickavance, Georgia C.fa42d43a-823e-4932-a9aa-f6a86fdc3d3aPitman, Nigel Charles Andrew62a74cce-b33c-48b2-868d-0392cfec766bPrieto Cruz, Adriana009794e3-4e45-4c68-a048-0849313d9b7cQuesada, Carlos Alberto1deb0ba4-45e1-4ad8-914e-b58fe849c0f6Ramírez Angulo, Hirma Coromoto6d6e024e-8701-4dca-8346-bd25f8cd54f2Réjou Méchain, Maxime6ac6b0ad-582f-42aa-b040-fbfbb0311413Restrepo Correa, Zorayda9fccaaa2-0139-4049-ac9b-3bc7b2849abfRoopsind, Anand77edb477-dcc4-41b5-8a2a-672c9b973d24Rudas Lleras, Agustínfc84c4c5-2e28-4469-bd2a-11cfa9d9f646Salomão, Rafael de Paiva42a9c943-15e9-4875-88cb-13a5535d033eMacedo Silva, José Natalino919d7b69-5fe9-4b4a-aee2-e33a6a5cd35aSilva Espejo, Javier Eduardo06045fc5-6e62-4a9e-9f36-08ffab819b4bSingh, James27ebe16b-10e5-4626-9b71-49cafbcc3d78Stropp, Juliana47c534cf-ce5d-4793-9c92-025b71ddfb89Terborgh, John Whittle5711c8f7-d2a9-4cf6-b80c-3d130652e66cThomas Caesar, Raquel S.3e7ce8ea-0d1f-476b-b722-90df29e02f11Toledo, Marisol5ef0fee1-4ab0-408c-a0b5-2405f0929f76Torres Lezama, Armando4640a594-7c1a-43ea-9d6e-e779c57b47f8Valenzuela Gamarra, Luis7fe1df7b-7c82-459f-8629-78018d8b4137van der Meer, Peter J.e5dc5597-e68b-4ee4-955a-ea7cf4a757eevan der Heijden, Geertje5c8e3088-0a4c-4172-976f-b5601298fd5evan der Hout, Petercff27aac-1364-4910-a02b-6fb370b9df0cVásquez Martínez, Rodolfodfdc9970-b9c5-4ad1-86ae-8d26b9217682Vela, César IAd57d21ec-0b20-46a5-9fb9-501baba4c831Guimarães Vieira, Ima Céliadc5462ea-ebac-4177-9312-0c0cde52fb56Phillips, Oliver Lawrencea789b53b-8729-48fa-a969-26f3a1981fe8Bosques amazónicos2023-04-30T04:59:47Z2023-04-30T04:59:47Z20181354-1013https://dspace.tdea.edu.co/handle/tdea/28371365-2486Most of the planet's diversity is concentrated in the tropics, which includes manyregions undergoing rapid climate change. Yet, while climate‐induced biodiversitychanges are widely documented elsewhere, few studies have addressed this issuefor lowland tropical ecosystems. Here we investigate whether the floristic and func-tional composition of intact lowland Amazonian forests have been changing by eval-uating records from 106 long‐term inventory plots spanning 30 years. We analysethree traits that have been hypothesized to respond to different environmental dri-vers (increase in moisture stress and atmospheric CO2concentrations): maximumtree size, biogeographic water‐deficit affiliation and wood density. Tree communitieshave become increasingly dominated by large‐statured taxa, but to date there hasbeen no detectable change in mean wood density or water deficit affiliation at thecommunity level, despite most forest plots having experienced an intensification ofthe dry season. However, among newly recruited trees, dry‐affiliated genera havebecome more abundant, while the mortality of wet‐affiliated genera has increasedin those plots where the dry season has intensified most. Thus, a slow shift to amore dry‐affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate‐change drivers, but yet to signifi-cantly impact whole‐community composition. The Amazon observational record sug-gests that the increase in atmospheric CO2is driving a shift within treecommunities to large‐statured species and that climate changes to date will impactforest composition, but long generation times of tropical trees mean that biodiver-sity change is lagging behind climate change.KEYWORDSbioclimatic niches, climate change, compositional shifts, functional traits, temporal trends,tropical forests18 páginasapplication/pdfengPubMed Central Europe PMCReino Unidohttps://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://onlinelibrary.wiley.com/doi/10.1111/gcb.14413Compositional response of Amazon forests to climate changeArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a855613925Global change biologyAllen, R. G., Smith, M., Pereira, L. S., & Perrier, A. (1994). An update forthe calculation of reference evapotranspiration.ICID Bulletin,43,35–92.Aragão, L., Malhi, Y., Roman‐Cuesta, R. M., Saatchi, S., Anderson, L. O.,& Shimabukuro, Y. E. (2007). Spatial patterns and fire response ofrecent Ammazonian droughts.Geophysical Research Letters,34,L07701Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A.,...Vásquez Martínez, R. (2004). Variation in wood density determinesspatial patterns in Amazonian forest biomass.Global Change Biology,10, 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.xBaraloto, C., Paine, C. E. T., Patino, S., Bonal, D., Herault, B., & Chave, J.(2010). Functional trait variation and sampling strategies in species‐rich plant communities.Functional Ecology,24, 208–216. https://doi.org/10.1111/j.1365-2435.2009.01600.xBaker, T. R., Vela Díaz, D. M., Chama Moscoso, V., Navarro, H. G., Mon-teagudo, A., Pinto, R.,...Phillips, O. L. (2016). Consistent, smalleffects of treefall disturbances on the composition and diversity offour Amazonian forests.Journal of Ecology,104, 497–506 https://doi.org/10.1111/1365-2745.12529Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed‐effects models using lme4.Journal of Statistical Software,67, 48Bello, C., Galetti, M., Pizo, M. A., Magnago, L. F., Rocha, M. F., Lima, R.A.,...Jordano, P. (2015). Defaunation affects carbon storage in tropi-cal forests.Science Advances,11, e1501105. https://doi.org/10.1126/sciadv.1501105Bennett, A. C., Mcdowell, N. G., Allen, C. D., & Anderson‐Teixeira, K. J.(2015). Larger trees suffer most during drought in forests worldwide.Nature Plants,1, 15139. https://doi.org/10.1038/nplants.2015.139Blonder, B., Moulton, D. E., Blois, J., Enquist, B. J., Graae, B. J., Macias‐Fauria, M.,...Svenning, J. C. (2017). Predictability in communitydynamics.Ecology Letters,20, 293–306. https://doi.org/10.1111/ele.12736Boisier, J. P., Ciais, P., Ducharne, A., & Guimberteau, M. (2015). Projectedstrengthening of Amazonian dry season by constrained climate modelsimulations.Nature Climate Change,5, 656–660. https://doi.org/10.1038/nclimate2658Bowler, D. E., Hof, C., Haase, P., Kröncke, I., Schweiger, O., Adrian, R.,...Böhning‐Gaese, K. (2017). Cross‐realm assessment of climate changeimpacts on species’abundance trends.Nature Ecology and Evolution,1, 67. https://doi.org/10.1038/s41559-016-0067Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R.,Lloyd, J., & Zagt, R. J. (2015). Long‐term decline of the Amazon carbonsink.Nature,519, 344–348 https://doi.org/10.1038/nature14283Butt, N., Malhi, Y., New, M., Macía, M. J., Lewis, S. L., Lopez‐Gonzalez,G.,...Phillips, O. L. (2014). Shifting dynamics of climate‐functionalgroups in old‐growth Amazonian forests.Plant Ecology and Diversity,7, 267–279 https://doi.org/10.1080/17550874.2012.715210Cardoso, D., Särkinen, T., Alexander, S., Amorim, A. M., Bittrich, V., Celis,M.,...Forzza, R. C. (2017). Amazon plant diversity revealed by a tax-onomically verified species list.Proceedings of the National Academyof Sciences,114, 10695–10700. https://doi.org/10.1073/pnas.1706756114Chambers, J. Q., Negron‐Juarez, R. I., Marra, D. M., Di Vittorio, A., Tews,J., Roberts, D.,...Higuchi, N. (2013). The steady‐state mosaic of dis-turbance and succession across an old‐growth Central Amazon forestlandscape.Proceedings of the National Academy of Sciences,110,3949–3954. https://doi.org/10.1073/pnas.120289411052Chapman, C. A., & Chapman, L. J. (1995). Survival without dispersers:seedling recruitment under parents.Conservation Biology,9, 675–678.https://doi.org/10.1046/j.1523-1739.1995.09030675.xChave, J., Condit, R., Muller‐Landau, H. C., Thomas, S. C., Ashton, P. S.,Bunyavejchewin, S.,...Losos, E. C. (2008). Assessing evidence for apervasive alteration in tropical tree communities.Plos Biology,6, 455–462.Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne,A. E. (2009). Towards a worldwide wood economics spectrum.Ecol-ogy Letters,12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.xChen, I.‐C., Shiu, H.‐J., Benedick, S., Holloway, J. D., Chey, V. K., Barlow,H. S.,...Thomas, C. D. (2009). Elevation increases in moth assem-blages over 42 years on a tropical mountain.Proceedings of theNational Academy of Sciences of the United States of America,106,1479–1483. https://doi.org/10.1073/pnas.0809320106Coelho de Souza, F., Dexter, K. G., Phillips, O. L., Brienen, R. J., Chave, J.,Galbraith, D. R.,...Baker, T. R. (2016). Evolutionary heritage influ-ences Amazon tree ecology.Proceedings of the Royal Society B: Biolog-ical Sciences,283, 20161587.Condit, R., Hubbell, S. P., & Foster, R. B. (1996). Changes in tree speciesabundance in a Neotropical forest: Impact of climate change.Journalof Tropical Ecology,12, 231–256. https://doi.org/10.1017/S0266467400009433Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natu-ral communities and their role in community stability and organiza-tion.American Naturalist,111, 1119–1144. https://doi.org/10.1086/283241Conway, T. J., & Tans, P. P. (2016). Trends in atmospheric carbon diox-ide. Retrieved from https://www.esrl.noaa.gov/gmd/ccgg/trendsCoomes, D. A., Lines, E. R., & Allen, R. B. (2011). Moving on from Meta-bolic Scaling Theory: Hierarchical models of tree growth and asym-metric competition for light.Journal of Ecology,99, 748–756.https://doi.org/10.1111/j.1365-2745.2011.01811.xDavis, M. B. (1989). Lags in vegetation response to greenhouse warming.Climatic Change,15,75–82. https://doi.org/10.1007/BF00138846Devictor, V., van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D.,Heliölä, J.,...Jiguet, F. (2012). Differences in the climatic debts ofbirds and butterflies at a continental scale.Nature Climate Change,2,121. https://doi.org/10.1038/nclimate1347Diaz, S., Lavorel, S., De Bello, F., Quetier, F., Grigulis, K., & Robson, M.(2007). Incorporating plant functional diversity effects in ecosystemservice assessments.Proceedings of the National Academy of Sciencesof the United States of America,104, 20684–20689. https://doi.org/10.1073/pnas.0704716104Doughty, C. E., Wolf, A., Morueta‐Holme, N., Jørgensen, P. M., Sandel,B., Violle, C.,...Galetti, M. (2016). Megafauna extinction, tree speciesrange reduction, and carbon storage in Amazonian forests.Ecography,39, 194–203. https://doi.org/10.1111/ecog.01587Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections offuture meteorological drought and wet periods in the Amazon.Pro-ceedings of the National Academy of Sciences of the United States ofAmerica,112, 13172–13177. https://doi.org/10.1073/pnas.1421010112Duque, A., Stevenson, P. R., & Feeley, K. J. (2015). Thermophilization ofadult and juvenile tree communities in the northern tropical Andes.Proceedings of the National Academy of Sciences,112, 10744–10749.https://doi.org/10.1073/pnas.1506570112Engelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T.,Turner, B. L., & Hubbell, S. P. (2007). Drought sensitivity shapes spe-cies distribution patterns in tropical forests.Nature,447,80–82.https://doi.org/10.1038/nature05747Enquist, B. J., & Enquist, C. F. (2011). Long‐term change within aNeotropical forest: Assessing differential functional and floristic responses to disturbance and drought.Global Change Biology,17,1408–1424. https://doi.org/10.1111/j.1365-2486.2010.02326.xEnquist, B. J., West, G. B., & Brown, J. H. (2009). Extensions and evalua-tions of a general quantitative theory of forest structure and dynam-ics.Proceedings of the National Academy of Sciences,106, 7046–7051.https://doi.org/10.1073/pnas.0812303106Enquist, B. J., West, G. B., Charnov, E. L., & Brown, J. H. (1999). Allomet-ric scaling of production and life‐history variation in vascular plants.Nature,401, 907–911. https://doi.org/10.1038/44819Erfanian, A., Wang, G., & Fomenko, L. (2017). Unprecedented droughtover tropical South America in 2016: Significantly under‐predicted bytropical SST.Scientific Reports,7, 5811. https://doi.org/10.1038/s41598-017-05373-2Espinoza, J. C., Marengo, J. A., Ronchail, J., Carpio, J. M., Flores, L. N., &Guyot, J. L. (2014). The extreme 2014 flood in south‐western Ama-zon basin: The role of tropical‐subtropical South Atlantic SST gradi-ent.Environmental Research Letters,9, 124007. https://doi.org/10.1088/1748-9326/9/12/124007Esquivel‐Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., ter Steege,H., Lopez‐Gonzalez, G.,...Phillips, O. L. (2017). Seasonal drought lim-its tree species across the Neotropics.Ecography,40, 618–629.https://doi.org/10.1111/ecog.01904Esquivel‐Muelbert, A., Galbraith, D., Dexter, K. G., Lewis, S. L., ter Steege,H.,...Phillips, O. L. (2017). Biogeographic distributions of neotropicaltrees reflect their directly measured drought tolerances.ScientificReports,7, 8334. https://doi.org/10.1038/s41598-017-08105-8Falster, D. S., & Westoby, M. (2003). Plant height and evolutionarygames.Trends in Ecology and Evolution,18, 337–343. https://doi.org/10.1016/S0169-5347(03)00061-2Falster, D. S., & Westoby, M. (2005). Alternative height strategies among45 dicot rain forest species from tropical Queensland, Australia.Jour-nal of Ecology,93, 521–535. https://doi.org/10.1111/j.0022-0477.2005.00992.xFauset, S., Baker, T. R., Lewis, S. L., Feldpausch, T. R., Affum‐Baffoe, K.,Foli, E. G.,...Swaine, M. D. (2012). Drought‐induced shifts in thefloristic and functional composition of tropical forests in Ghana.Ecol-ogy Letters,15, 1120–1129. https://doi.org/10.1111/j.1461-0248.2012.01834.xFauset, S., Johnson, M. O., Gloor, M., Baker, T. R., Monteagudo, M. A.,Brienen, R. J., & ,..., O. L. (2015). Hyperdominance in Amazonianforest carbon cycling.Nature Communications,6, 6857. https://doi.org/10.1038/ncomms7857Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P., & Foster, R. B. (2011).Directional changes in the species composition of a tropical forest.Ecology,92, 871–882. https://doi.org/10.1890/10-0724.1Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi,Y.,...Saatchi, S. (2011). Upslope migration of Andean trees.Journalof Biogeography,38, 783–791. https://doi.org/10.1111/j.1365-2699.2010.02444.xFeldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Mon-teagudo Mendoza, A.,...Phillips, O. L. (2012). Tree height integratedinto pantropical forest biomass estimates.Biogeosciences,9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012Feldpausch, T. R., Phillips, O. L., Brienen, R. J. W., Gloor, E., Lloyd, J.,Lopez‐Gonzalez, G.,...Vos, V. A. (2016). Amazon forest response torepeated droughts.Global Biogeochemical Cycles,30, 964–982.https://doi.org/10.1002/2015GB005133Fisher, J. I., Hurtt, G. C., Thomas, R. Q., & Chambers, J. Q. (2008). Clus-tered disturbances lead to bias in large‐scale estimates based on for-est sample plots.Ecology Letters,11, 554–563. https://doi.org/10.1111/j.1461-0248.2008.01169.xFlores, O., & Coomes, D. A. (2011). Estimating the wood density of spe-cies for carbon stock assessments.Methods in Ecology and Evolution,2, 214–220. https://doi.org/10.1111/j.2041-210X.2010.00068.xFrancis, A. P., & Currie, D. J. (2003). A globally consistent richness‐cli-mate relationship for angiosperms.American Naturalist,161, 523–536. https://doi.org/10.1086/368223Fyllas, N. M., Patiño, S., Baker, T. R., Bielefeld Nardoto, G., Martinelli, L.A., Quesada, C. A.,...Lloyd, J. (2009). Basin‐wide variations in foliarproperties of Amazonian forest: Phylogeny, soils and climate.Biogeosciences,6, 2677–2708. https://doi.org/10.5194/bg-6-2677-2009Fyllas, N. M., Quesada, C. A., & Lloyd, J. (2012). Deriving plant functionaltypes for Amazonian forests for use in vegetation dynamics models.Perspectives in Plant Ecology, Evolution and Systematics,14,97–110.https://doi.org/10.1016/j.ppees.2011.11.001Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y., Domingues,L. G.,...Lloyd, J. (2014). Drought sensitivity of Amazonian carbonbalance revealed by atmospheric measurements.Nature,506,76–80.https://doi.org/10.1038/nature12957Gentry, A. H. (1988). Changes in plant community diversity and floristiccomposition on environmental and geographical gradients.Annals ofthe Missouri Botanical Garden,75,1–34. https://doi.org/10.2307/2399464Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira,R. S., Uriarte, M., & Gentine, P. (2018). Tall Amazonian forests areless sensitive to precipitation variability.Nature Geoscience,11, 405–409. https://doi.org/10.1038/s41561-018-0133-5Gloor, M., Barichivich, J., Ziv, G., Brienen, R., Schöngart, J., Peylin, P.,...Baker, J. (2015). Recent Amazon climate as background for possibleongoing and future changes of Amazon humid forests.Global Biogeo-chemical Cycles,29, 1384–1399. https://doi.org/10.1002/2014GB005080Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high‐resolution grids of monthly climatic observations–the CRU TS3.10Dataset.International Journal of Climatology,34, 623–642. https://doi.org/10.1002/joc.3711Hilker, T., Lyapustin, A. I., Tucker, C. J., Hall, F. G., Myneni, R. B., Wang,Y.,...Sellers, P. J. (2014). Vegetation dynamics and rainfall sensitivityof the Amazon.Proceedings of the National Academy of Sciences,111,16041–16046. https://doi.org/10.1073/pnas.1404870111Hubbell, S. P. (2001).The unified neutral theory of biodiversity and biogeog-raphy. Princenton, NJ: Princenton University Press.Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu,G.,...Stocker, E. F. (2007). The TRMM Multisatellite PrecipitationAnalysis (TMPA): Quasi‐Global, Multiyear, Combined‐Sensor Precipi-tation Estimates at Fine Scales.Journal of Hydrometeorology,8,38–55. https://doi.org/10.1175/JHM560.1Jiménez‐Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría‐Artigas, A.,Takahashi, K., Malhi, Y.,...Schrier, G. (2016). Record‐breaking warm-ing and extreme drought in the Amazon rainforest during the courseof El Niño 2015–2016.Scientific Reports,6, 33130. https://doi.org/10.1038/srep33130Jiménez‐Muñoz, J. C., Sobrino, J. A., Mattar, C., & Malhi, Y. (2013).Spatial and temporal patterns of the recent warming of theAmazon forest.Journal of Geophysical Research: Atmospheres,118,5204–5215.Joetzjer, E., Douville, H., Delire, C., & Ciais, P. (2013). Present‐day andfuture Amazonian precipitation in global climate models: CMIP5 ver-sus CMIP3.Climate Dynamics,41, 2921–2936. https://doi.org/10.1007/s00382-012-1644-1Laurance, W. F. (2004). Forest‐climate interactions in fragmented tropicallandscapes.Philosophical Transactions of the Royal Society of LondonSeries B‐Biological Sciences,359, 345–352. https://doi.org/10.1098/rstb.2003.1430Laurance, W. F., Oliveira, A. A., Laurance, S. G., Condit, R., Nascimento,H. E. M., Sanchez‐Thorin, A. C.,...Dick, C. W. (2004). Pervasivealteration of tree communities in undisturbed Amazonian forests.Nature,428, 171–175. https://doi.org/10.1038/nature02383Lenoir, J., Gegout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H.(2008). A significant upward shift in plant species optimum elevationduring the 20th century.Science,320, 1768–1771. https://doi.org/10.1126/science.1156831Levine, N. M., Zhang, K., Longo, M., Baccini, A., Phillips, O. L., Lewis, S.L.,...Moorcroft, P. R. (2016). Ecosystem heterogeneity determinesthe ecological resilience of the Amazon to climate change.Proceed-ings of the National Academy of Sciences,113, 793–797. https://doi. / org/10.1073/pnas.1511344112Levis, C., Costa, F. R. C., Bongers, F., Peña‐Claros, M., Clement, C. R.,Junqueira, A. B.,...Ter Steege, H. (2017). Persistent effects of pre‐Columbian plant domestication on Amazonian forest composition.Science,355, 925–931. https://doi.org/10.1126science.aal0157Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F., &Nepstad, D. (2011). The 2010 Amazon drought.Science,331, 554.https://doi.org/10.1126/science.1200807Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T. A., & Laurance, W. F.(2009). Changing ecology of tropical forests: evidence and drivers. In:Annual Review of Ecology Evolution and Systematics. Palo Alto,Annual Reviews.Lewis, S. L., Lopez‐Gonzalez, G., Sonke, B., Affum‐Baffoe, K., Baker, T. R.,Ojo, L. O.,...Wöll, H. (2009). Increasing carbon storage in intact Afri-can tropical forests.Nature,457, 1003–1006. https://doi.org/10.1038/nature07771Lloyd, J., & Farquhar, G. D. (1996). The CO2dependence of photosynthe-sis, plant growth responses to elevated atmospheric CO2concentra-tions and their interaction with soil nutrient status.1. Generalprinciples and forest ecosystems.Functional Ecology,10,4–32.https://doi.org/10.2307/2390258Lloyd, J., & Farquhar, G. D. (2008). Effects of rising temperatures andCO2on the physiology of tropical forest trees.Philosophical Transac-tions of the Royal Society B‐Biological Sciences,363, 1811–1817.https://doi.org/10.1098/rstb.2007.0032Lopez‐Gonzalez, G., Lewis, S. L., Burkitt, M., & Phillips, O. L. (2011). For-estPlots.net: A web application and research tool to manage andanalyse tropical forest plot data.Journal of Vegetation Science,22,610–613. https://doi.org/10.1111/j.1654-1103.2011.01312.xMalhi, Y., Phillips, O. L., Lloyd, J., Baker, T., Wright, J., Almeida, S.,...Vin-ceti, B. (2002). An international network to monitor the structure,composition and dynamics of Amazonian forests (RAINFOR).Journalof Vegetation Science,13, 439–450. https://doi.org/10.1111/j.1654-1103.2002.tb02068.xMarengo, J. A., & Espinoza, J. C. (2016). Extreme seasonal droughts andfloods in Amazonia: Causes, trends and impacts.International Journalof Climatology,36, 1033–1050. https://doi.org/10.1002/joc.4420Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., de Oliveira, G.S., de Oliveira, R.,...Foster Brown, I. (2008). The drought of Amazo-nia in 2005.Journal of Climate,21, 495–516. https://doi.org/10.1175/2007JCLI1600.1Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., & Rodriguez, D.A. (2011). The drought of 2010 in the context of historical droughtsin the Amazon region.Geophysical Research Letters,38, L12703.McDowell, N. G., & Allen, C. D. (2015). Darcy's law predicts widespreadforest mortality under climate warming.Nature Climate Change,5,669–672. https://doi.org/10.1038/nclimate2641McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuildingcommunity ecology from functional traits.Trends in Ecology and Evo-lution,21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly,M., & Ackerly, D. D. (2015). Twentieth‐century shifts in forest struc-ture in California: Denser forests, smaller trees, and increased domi-nance of oaks.Proceedings of the National Academy of Sciences,112,1458–1463. https://doi.org/10.1073/pnas.1410186112McMichael, C. N. H., Matthews‐Bird, F., Farfan‐Rios, W., & Feeley, K. J.(2017). Ancient human disturbances may be skewing our understanding of Amazonian forests.Proceedings of the NationalAcademy of Sciences,114, 522–527. https://doi.org/10.1073/pnas.1614577114Muller‐Landau, H. C. (2004). Interspecific and inter‐site variation in woodspecific gravity of tropical trees.Biotropica,36,20–32.Nascimento, H. E. M., Laurance, W. F., Condit, R., Laurance, S. G., D'an-gelo, S., & Andrade, A. C. (2005). Demographic and life‐history corre-lates for Amazonian trees.Journal of Vegetation Science,16, 625–634.https://doi.org/10.1111/j.1654-1103.2005.tb02405.xNepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P., & Cardinot, G.(2007). Mortality of large trees and lianas following experimentaldrought in an amazon forest.Ecology,88, 2259–2269. https://doi.org/10.1890/06-1046.1Osuri, A. M., Ratnam, J., Varma, V., Alvarez‐Loayza, P., Hurtado Astaiza,J., Bradford, M.,...Sankaran, M. (2016). Contrasting effects of defau-nation on aboveground carbon storage across the global tropics.Nat-ure Communications,7, 11351. https://doi.org/10.1038/ncomms11351Pan, Y. D., Birdsey, R. A., Fang, J. Y., Houghton, R., Kauppi, P. E., Kurz,W. A.,...Hayes, D. (2011). A large and persistent carbon sink in theworld's forests.Science,333, 988–993. https://doi.org/10.1126/science.1201609Patiño, S., Lloyd, J., Paiva, R., Baker, T. R., Quesada, C. A., Mercado, L.M.,...Phillips, O. L. (2009). Branch xylem density variations acrossthe Amazon Basin.Biogeosciences,6, 545–568.Penone, C., Davidson, A. D., Shoemaker, K. T., Di Marco, M., Rondinini,C., Brooks, T. M.,...Costa, G. C. (2014). Imputation of missing datain life‐history trait datasets: Which approach performs the best?Methods in Ecology and Evolution,5, 961–970. https://doi.org/10.1111/2041-210X.12232Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M., & Levi, T. (2016).Dispersal limitation induces long‐term biomass collapse in overhuntedAmazonian forests.Proceedings of the National Academy of Sciences,113,892–897. https://doi.org/10.1073/pnas.1516525113Peres, C. A., & Lake, I. R. (2003). Extent of nontimber resource extractionin tropical forests: Accessibility to game vertebrates by hunters in theAmazon basin.Conservation Biology,17, 521–535. https://doi.org/10.1046/j.1523-1739.2003.01413.xPeres, C. A., & Palacios, E. (2007). Basin‐wide effects of game harvest onvertebrate population densities in Amazonian forests: Implications foranimal‐mediated seed dispersal.Biotropica,39, 304–315. https://doi.org/10.1111/j.1744-7429.2007.00272.xPhillips, O. L., Aragao, L., Lewis, S. L., Fisher, J. B., Lloyd, J., López‐Gonzá-lez, G.,...Lezama, A. (2009). Drought sensitivity of the amazon rain-forest.Science,323, 1344–1347. https://doi.org/10.1126/science.1164033Phillips, O., Baker, T., Feldpausch, T., Brienen, R., Almeida, S., Arroyo, L.,...Vásquez, R. (2016). RAINFOR field manual for plot establishmentand remeasurement.Phillips, O. L., & Gentry, A. H. (1994). Increasing turnover through time intropical forests.Science,263, 954–958. https://doi.org/10.1126/science.263.5149.954Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nunez, P. V., Vas-quez, R. M.,...Grace, J. (1998). Changes in the carbon balance oftropical forests: Evidence from long‐term plots.Science,282, 439–442. https://doi.org/10.1126/science.282.5388.439Phillips, O. L., Van Der Heijden, G., Lewis, S. L., López‐González, G., Ara-gão, L. E., Lloyd, J.,...Vilanova, E. (2010). Drought‐mortality relation-ships for tropical forests.New Phytologist,187, 631–646. https://doi.org/10.1111/j.1469-8137.2010.03359.xPitman, N. C. A., Terborgh, J. W., Silman, M. R., Percy Nùñez, V., Neill, D.A., Ceron, C. E.,...Aulestia, M. (2002). A comparison of tree speciesdiversity in two upper Amazonian forests.Ecology,83, 3210–3224.https://doi.org/10.1890/0012-9658(2002)083[3210:ACOTSD]2.0.CO;2Pokhrel, Y. N., Fan, Y., & Miguez‐Macho, G. (2014). Potential hydrologicchanges in the Amazon by the end of the 21st century and thegroundwater buffer.Environmental Research Letters,9, 084004.Poorter, L., Bongers, F., Sterck, F. J., & Wöll, H. (2005). Beyond theregeneration phase: Differentiation of height–light trajectories amongtropical tree species.Journal of Ecology,93, 256–267. https://doi.org/10.1111/j.1365-2745.2004.00956.xPoorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J. C., Peña‐Claros, M.,...Sass‐Klaassen, U. (2010). The importance of woodtraits and hydraulic conductance for the performance and life historystrategies of 42 rainforest tree species.New Phytologist,185, 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.xQie, L., Lewis, S. L., Sullivan, M. J. P., Lopez‐Gonzalez, G., Pickavance, G.C., Sunderland, T., & ,..., O. L. (2017). Long‐term carbon sink in Bor-neo's forests halted by drought and vulnerable to edge effects.Nat-ure Communications,8, 1966.Rowland, L., Da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks, O.J., Oliveira, A. A.,...Meir, P. (2015). Death from drought in tropicalforests is triggered by hydraulics not carbon starvation.Nature,528,119–122.Sakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña‐Claros, M.,Heinke, J.,...Thonicke, K. (2016). Resilience of Amazon forestsemerges from plant trait diversity.Nature Climate Change,6, 1032–1036. https://doi.org/10.1038/nclimate3109Stahl, C., Hérault, B., Rossi, V., Burban, B., Bréchet, C., & Bonal, D.(2013). Depth of soil water uptake by tropical rainforest trees duringdry periods: Does tree dimension matter?Oecologia,173, 1191–1201. https://doi.org/10.1007/s00442-013-2724-6Svenning, J.‐C., & Sandel, B. (2013). Disequilibrium vegetation dynamicsunder future climate change.American Journal of Botany,100, 1266–1286. https://doi.org/10.3732/ajb.1200469Ter Steege, H., Nigel, C. A., Sabatier, D., Baraloto, C., Salomão, R. P.,Guevara, J. E.,...Silman, M. R. (2013). Hyperdominance in the Ama-zonian tree flora.Science,342, 325.Terborgh, J., Nuñez‐Iturri, G., Pitman, N. C., Valverde, F. H., Alvarez, P.,Swamy, V.,...Paine, C. E. (2008). Tree recruitment in an empty for-est.Ecology,89, 1757–1768. https://doi.org/10.1890/07-0479.1Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L.,Collingham, Y. C., & Williams, S. E. (2004). Extinction risk from cli-mate change.Nature,427, 145–148. https://doi.org/10.1038/nature02121Van Der Sande, M. T., Arets, E. J. M. M., Peña‐Claros, M., Luciana deAvila, A., Roopsind, A., Mazzei, L.,...Poorter, L. (2016). Old‐growthNeotropical forests are shifting in species and trait composition.Eco-logical Monographs,86(2), 228–243. https://doi.org/10.1890/15-1815.1Van Der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A.,Bongers, F., Pons, T. L., Terburg, G.,...Zuidema, P. A. (2015). Nogrowth stimulation of tropical trees by 150 years of CO2fertilizationbut water‐use efficiency increased.Nature Geoscience,8,24–28.https://doi.org/10.1038/ngeo2313Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., & Kattge, J. (2014).The emergence and promise of functional biogeography.Proceedingsof the National Academy of Sciences of the United States of America,111, 13690–13696. https://doi.org/10.1073/pnas.1415442111Wright, S. J. (1992). Seasonal drought, soil fertility and the species den-sity of tropical forest plant communities.Trends in Ecology and Evolu-tion,7, 260–263. https://doi.org/10.1016/0169-5347(92)90171-7Wright, S. J. (2005). Tropical forests in a changing environment.Trends inEcology and Evolution,20, 553–560. https://doi.org/10.1016/j.tree.2005.07.009Zalamea, P. C., Heuret, P., Sarmiento, C., Rodríguez, M., Berthouly, A.,Guitet, S.,...Stevenson, P. R. (2012). The genus cecropia: A biologi-cal clock to estimate the age of recently disturbed areas in the n eotropics.PLoS ONE,7, e42643. https://doi.org/10.1371/journal.pone.0042643Zanne, A. E., Lopez‐Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis,S. L.,...Chave, J. (2009). Data from: Towards a worldwide woodeconomics spectrum.Dryad Data Repository. https://doi.org/10.5061/dryad.234Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G.,...Zeng, N. (2016). Greening of the Earth and its drivers.Nature ClimateChange,6, 791. https://doi.org/10.1038/nclimate3004Zuleta, D., Duque, A., Cardenas, D., Muller‐Landau, H. C., & Davies, S.(2017). Drought‐induced mortality patterns and rapid biomass recov-ery in a terra firme forest in the Colombian Amazon.Ecology,98,2538–2546. https://doi.org/10.1002/ecy.1950Biological traitsRasgos biológicosFrait biologiqueTropical forestsBosques tropicalesFloresta tropicalForêt tropicaleClimate ChangeCambio ClimáticoMudança ClimáticaChangement climatiqueBioclimatic nichesCompositional shiftsFunctional traitsTemporal trendsORIGINALCompositional response of Amazon forests to climate change.pdfCompositional response of Amazon forests to climate change.pdfapplication/pdf1352035https://dspace.tdea.edu.co/bitstream/tdea/2837/1/Compositional%20response%20of%20Amazon%20forests%20to%20climate%20change.pdf148510113344ddd724b1a9a0eaed9772MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/2837/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTCompositional response of Amazon forests to climate change.pdf.txtCompositional response of Amazon forests to climate change.pdf.txtExtracted texttext/plain104618https://dspace.tdea.edu.co/bitstream/tdea/2837/3/Compositional%20response%20of%20Amazon%20forests%20to%20climate%20change.pdf.txtefaf4c7add75f885f0a62d624751965cMD53open accessTHUMBNAILCompositional response of Amazon forests to climate change.pdf.jpgCompositional response of Amazon forests to climate change.pdf.jpgGenerated Thumbnailimage/jpeg21555https://dspace.tdea.edu.co/bitstream/tdea/2837/4/Compositional%20response%20of%20Amazon%20forests%20to%20climate%20change.pdf.jpgd8289f173ee2515b6be856f1cdb6597cMD54open accesstdea/2837oai:dspace.tdea.edu.co:tdea/28372023-05-07 00:01:22.947An error occurred on the license name.|||https://creativecommons.org/licenses/by/4.0/open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=