Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama

Climate variability has made us change our perspective on the study of insect pests and pest insects, focusing on preserving or maintaining efficient production systems in the world economy. The four species of the genus Anastrepha were selected for this study due to their colonization and expansion...

Full description

Autores:
Batista Degracia, Arturo
Ávila Jiménez, Julián Leonardo
Barba Alvarado, Anovel Amet
Atencio Valdespino, Randy
Altamiranda Saavedra, Mariano Augusto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/3948
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/3948
Palabra clave:
Geographical distribution
Distribución geográfica
Distribution géographique
Distribuição geográfica
Horticulture
Horticultura
Panama
Panamá
ENSO Anastrepha
ENOS Anastrefa
Neotropics
Neotrópicos
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id RepoTdea2_36c6d65be8287a9c29960fe3ce6f57fa
oai_identifier_str oai:dspace.tdea.edu.co:tdea/3948
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama
title Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama
spellingShingle Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama
Geographical distribution
Distribución geográfica
Distribution géographique
Distribuição geográfica
Horticulture
Horticultura
Panama
Panamá
ENSO Anastrepha
ENOS Anastrefa
Neotropics
Neotrópicos
title_short Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama
title_full Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama
title_fullStr Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama
title_full_unstemmed Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama
title_sort Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama
dc.creator.fl_str_mv Batista Degracia, Arturo
Ávila Jiménez, Julián Leonardo
Barba Alvarado, Anovel Amet
Atencio Valdespino, Randy
Altamiranda Saavedra, Mariano Augusto
dc.contributor.author.none.fl_str_mv Batista Degracia, Arturo
Ávila Jiménez, Julián Leonardo
Barba Alvarado, Anovel Amet
Atencio Valdespino, Randy
Altamiranda Saavedra, Mariano Augusto
dc.subject.agrovoc.none.fl_str_mv Geographical distribution
Distribución geográfica
Distribution géographique
Distribuição geográfica
Horticulture
Horticultura
Panama
Panamá
topic Geographical distribution
Distribución geográfica
Distribution géographique
Distribuição geográfica
Horticulture
Horticultura
Panama
Panamá
ENSO Anastrepha
ENOS Anastrefa
Neotropics
Neotrópicos
dc.subject.proposal.none.fl_str_mv ENSO Anastrepha
ENOS Anastrefa
Neotropics
Neotrópicos
description Climate variability has made us change our perspective on the study of insect pests and pest insects, focusing on preserving or maintaining efficient production systems in the world economy. The four species of the genus Anastrepha were selected for this study due to their colonization and expansion characteristics. Models of the potential distribution of these species are scarce in most neotropical countries, and there is a current and pressing demand to carry out this type of analysis in the face of the common scenarios of climate variability. We analyzed 370 presence records with statistical metrics and 16 bioclimatic variables. The MaxEnt method was used to evaluate the effect of the ENSO cycle on the potential distribution of the species Anastrepha grandis (Macquart), Anastrepha serpetina (Wiedemann), Anastrepha obliqua (Macquart), and Anastrepha striata (Schiner) as imported horticultural pests in the neotropics and Panama. A total of 3472 candidate models were obtained for each species, and the environmental variables with the greatest contribution to the final models were LST range and LST min for A. grandis, PRECIP range and PRECIP min for A. serpentina, LST range and LST min for A. obliqua, and LST min and LST max for A. striata. The percentage expansion of the range of A. grandis in all environmental scenarios was 26.46 and the contraction of the range was 30.80; the percentage expansion of the range of A. serpentina in all environmental scenarios was 3.15 and the contraction of the range was 28.49; the percentage expansion of the range of A. obliqua in all environmental scenarios was 5.71 and the contraction of the range was 3.40; and the percentage expansion of the range of A. striata in all environmental scenarios was 41.08 and the contraction of the range was 7.30, and we selected the best model, resulting in a wide distribution (suitable areas) of these species in the neotropics that was influenced by the variability of climatic events (El Niño, Neutral, and La Niña). Information is provided on the phytosanitary surveillance systems of the countries in areas where these species could be established, which is useful for defining policies and making decisions on integrated management plans according to sustainable agriculture. Keywords: geographic distribution; ENSO Anastrepha; horticulture; neotropics; Panama
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-11T13:06:11Z
dc.date.available.none.fl_str_mv 2023-10-11T13:06:11Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/3948
dc.identifier.eissn.spa.fl_str_mv 2075-4450
url https://dspace.tdea.edu.co/handle/tdea/3948
identifier_str_mv 2075-4450
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 20
dc.relation.citationissue.spa.fl_str_mv 714
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 14
dc.relation.ispartofjournal.spa.fl_str_mv Insects
dc.relation.references.spa.fl_str_mv Montealegre, J.; Pabon, J. La Variabilidad Climática Interanual asociada al ciclo El Niño-La Niña–Oscilación del Sury su efecto en el patrón pluviométrico de Colombia. Meteorol. Colombina 2000, 2, 7–21. [Google Scholar]
Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–324. [Google Scholar] [CrossRef]
Organización de las Naciones Unidas. Convención Marco De Las Naciones Unidas Sobre El Cambio Climático; Organización de las Naciones Unidas: NewYork, NY, USA, 2015; p. 40. Available online: https://unfccc.int/resource/docs/2015/cop21/spa/l09s.pdf (accessed on 1 March 2023).
D’Antoni, H.L. Cambio global. Procesos naturales e intervención humana. Acta Bioquímica Clínica Latinoam. 2012, 46, 1–76. [Google Scholar]
Moyano, E.; Paniagua, Á.; Lafuente, R. Políticas ambientales, cambio climático y opinión pública en escenarios regionales. El caso de Andalucía. Rev. Int. Sociol. 2009, 67, 681–699. [Google Scholar] [CrossRef]
Intergovernmental Panel on Climate Change. Climate Change, Impact, Adaptation and Vulnerability, Summary for Policymakers; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; p. 40. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf (accessed on 3 March 2023).
Gonzales, G.F.; Zevallos, A.; Gonzales, C.C.; Nuñez, D.; Gastañaga, C.; Cabezas, C.; Steenland, K. Environmental pollution, climate variability and climate change: A review of health impacts on the peruvian population. Rev. Peru. Med. Exp. Salud Publica 2014, 31, 547–556. [Google Scholar]
Zotelo, C. Variabilidad climática y ciclos naturales. In Jornada sobre “Evolución y Futuro del Desarrollo de Producciones Agrícola-Ganaderas en el SO Bonaerense”; Universidad Nacional de la Plata: Bahía Blanca, Argentina, 2011; pp. 374–381. Available online: http://sedici.unlp.edu.ar/handle/10915/27824 (accessed on 5 March 2023).
Zotelo, C. Variabilidad climática y ciclos naturales. In Jornada sobre “Evolución y Futuro del Desarrollo de Producciones Agrícola-Ganaderas en el SO Bonaerense”; Universidad Nacional de la Plata: Bahía Blanca, Argentina, 2011; pp. 374–381. Available online: http://sedici.unlp.edu.ar/handle/10915/27824 (accessed on 5 March 2023).
Krishnamurthy, L.; Vecchi, G.A.; Msadek, R.; Murakami, H.; Wittenberg, A.; Zeng, F. Impact of strong ENSO on regional tropical cyclone activity in a high-resolution climate model in the North Pacific and North Atlantic Oceans. J. Clim. 2016, 29, 2375–2394. [Google Scholar] [CrossRef]
Collins, M.; CMIP Modeling Groups. El Niño- or La Niña-like climate change? Clim. Dyn. 2005, 24, 89–104. [Google Scholar] [CrossRef]
Balvanera, P.; Astier, M.; Gurri, F.D.; Zermeño, H.I. Resiliencia, vulnerabilidad y sustentabilidad de sistemas socioecológicos en México. Rev. Mex. Biodivers. 2017, 88, 141–149. [Google Scholar] [CrossRef]
Gouveia, S.F.; Hortal, J.; Tejedo, M.; Duarte, H.; Cassemiro, F.A.; Navas, C.A.; Diniz, F.J.A. Climatic niche at physiological and macroecological scales: The thermal tolerance-geographical range interface and niche dimensionality. Blackwell Publishing. Glob. Ecol. Biogeogr. 2014, 23, 446–456. [Google Scholar] [CrossRef]
Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S.; et al. Complex responses of global insect pestss to climate warming. Front. Ecol. Environ. 2020, 18, 141–150. [Google Scholar] [CrossRef]
Comisión Económica para América Latina. La economía del Cambio Climático en América Latina y el Caribe: Paradojas y Desafíos del Desarrollo Sostenible. Programa EUROCLIMA Cambio Climático, Componente Socioeconómico 2015. (CEC/10/001). Available online: https://hdl.handle.net/11362/37311 (accessed on 10 March 2023).
Sanchez, R.R. Respuestas Urbanas al Cambio Climático en América Latina. Documentos de Proyectos e Investigación. CEPAL-Naciones Unidas. Instituto Interamericano para la Investigación del Cambio Global No. 563. 2013. Available online: https://hdl.handle.net/11362/36622 (accessed on 15 March 2023).
Magrin, G. Adaptación al Cambio Climático en América Latina y el Caribe. Documentos de Proyectos e Investigación. CEPAL-Naciones Unidas. Instituto Interamericano para la Investigación del Cambio Global No. 692. 2015. Available online: https://hdl.handle.net/11362/39842 (accessed on 15 March 2023).
Rascón, V.A.E.; Cervantes, R.E. Vulnerabilidad social y clima extremo en estudios de América Latina. 2000–2019. Tlalli. Rev. Investig. Geogr. 2022, 8, 6–32. [Google Scholar] [CrossRef]
Sheldon, K.S. Climate change in the tropics: Ecological and evolutionary responses at low latitudes. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 303–333. [Google Scholar] [CrossRef]
Régnière, J.; Powell, J.; Bentz, B.; Nealis, V. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. J. Insect Physiol. 2012, 58, 634–647. [Google Scholar] [CrossRef]
Freeman, B.G.; Scholer, M.N.; Ruiz, V.; Fitzpatrick, J.W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. USA 2018, 115, 11982–11987. [Google Scholar] [CrossRef]
Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 2007, 10, 1115–1123. [Google Scholar] [CrossRef]
Powell, A.J.; Logan, A.J. Insect seasonality: Circle map analysis of temperature-driven life cycles. Theor. Popul. Biol. 2005, 3, 161–179. [Google Scholar] [CrossRef]
Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 2008, 213, 63–72. [Google Scholar] [CrossRef]
Peterson, A.; Soberón, J.; Pearson, R.; Anderson, R.; Martínez, M.E.; Nakamura, M.; Araújo, M. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar] [CrossRef]
Beckler, A.A.; French, B.W.; Chandler, L.D. Using GIS in areawide pests management: A case study in South Dakota. Trans. GIS 2005, 9, 109–127. [Google Scholar] [CrossRef]
Aluja, M.; Birke, A.; Ceymann, M.; Guillén, L.; Arrigoni, E.; Baumgartner, D.; Pascacio, C.; Villafán, J. Agroecosystem resilience to an invasive insect species that could expand its geographical range in response to global climate change. Agric. Ecosyst. Environ. 2014, 186, 54–63. [Google Scholar] [CrossRef]
Peterson, A.T. Uses and requirements of ecological niche models and related distributional models. Biodivers. Inform. 2006, 3, 59–72. [Google Scholar] [CrossRef]
Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
Aluja, M.; Mangan, R.L. Fruit fly Diptera: Tephritidae host status determination: Critical conceptual, methodological, and regulatory considerations. Annu. Rev. Entomol. 2008, 53, 473–502. [Google Scholar] [CrossRef]
Norrbom, A.L. Host Plant Database for anastrepha and toxotrypana (Diptera: Tephritidae: Toxotrypanini). Diptera Data Dissemination Disk. CD—Not a Journal. 2004. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo115=108854. (accessed on 17 March 2023).
Norrbom, A.L.; Neder, L.E. New neotropical species of Trupanea Diptera: Tephritidae with unusual wing patterns. Zootaxa 2014, 3821, 443–456. [Google Scholar] [CrossRef] [PubMed]
Hernandez, O.V. El género Anastrepha Schiner en México Diptera: Tephritidae, taxonomía, distribución y sus plantas huéspedes. La Cienc. Y El Hombre 1992, 12, 190–191. [Google Scholar]
Hernández, O.V.; Bartolucci, A.F.; Morales, V.P.; Frías, D.; Selivon, D. Cryptic species of the Anastrepha fraterculus complex: A multivariate approach for the recognition of South American morphotypes. Ann. Entomol. Soc. 2012, 105, 305–318. [Google Scholar] [CrossRef]
Norrbom, A.L.; Korytkowski, C.A. New species of Anastrepha Diptera: Tephritidae, with a key for the species of the megacantha clade. Systematic Entomology Lab., USDA, ARS, c/o Smithsonian Institution. Zootaxa 2012, 34781, 11. [Google Scholar] [CrossRef]
Cruz, B.; Bacca, M.L.; Nelson, A. Diversidad de las Moscas de las frutas Diptera: Tephritidae y sus parasitoides en siete minicipios del departamento de Narino. Boletín Científico. Cent. Museos. Mus. Hist. Nat. 2017, 21, 81–98. [Google Scholar] [CrossRef]
Hernández, O.V.; Gómez, A.J.; Sánchez, A.; McPheron, B.; Aluja, M. Morphometric analysis of Mexican and South American populations of the Anastrepha fraterculus complex (Diptera: Tephritidae) and recognition of a distinct Mexican morphotype. Bull. Entomol. Res. 2004, 94, 487–499. [Google Scholar] [CrossRef]
Selivon, D.; Perondini, A.L.; Morgante, J.S. A Genetic–Morphological Characterization of Two Cryptic Species of the Anastrepha fraterculus Complex (Diptera: Tephritidae). Ann. Entomol. Soc. 2005, 98, 367–381. [Google Scholar] [CrossRef]
Silva, J.C.; Dutra, S.V.; Santos, M.S.; Silva, N.M.O.; Vidal, D.V.; Nink, R.V.; Guimarães, J.G.; Araujo, E.L. Diversity of Anastrepha spp. (Diptera: Tephritidae) and Associated Braconid Parasitoids from Native and Exotic Hosts in Southeastern Bahia, Brazil. Environ. Entomol. 2021, 39, 1457–1465. [Google Scholar] [CrossRef]
Nolasco, N.; Iannacone, J. Fluctuación estacional de moscas de la fruta Anastrepha spp. y Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) en trampas McPhail en Piura y en Ica, Perú. Acta Zool. Mex. 2008, 24, 33–44. [Google Scholar] [CrossRef]
Aluja, M.; Rull, J.; Sivinski, J.; Allen, L.; Norrbom, A.; Wharton, R.M.; Díaz, F.; López, M. Fruit Flies of the Genus Anastrepha (Diptera: Tephritidae) and Associated Native Parasitoids (Hymenoptera) in the Tropical Rainforest Biosphere Reserve of Montes Azules, Chiapas, Mexico. Environ. Entomol. 2003, 32, 1377–1385. [Google Scholar] [CrossRef]
Diznarda, S.B.; Flores, R.; Terrazas, G.G.; Leyva, R.E. Evaluación Económica de la Campaña Nacional Contra las Moscas de la Fruta en los Estados de Baja California, Guerrero Nuevo León, Sinaloa, Sonora y Tamaulipas; IICA-Ciudad de Mexico D.F: México city, Mexico, 2010; Available online: http://repiica.iica.int/docs/B2041e/B2041e.pdf (accessed on 17 March 2023).
Valderrama, J.K.; Serrano, M.S.; Fischer, G. Mortalidad de larvas de Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) en frutos de feijoa (Acca sellowiana [O. Berg] Burret) sometidos a un tratamiento cuarentenario de frio. Rev. Colomb. Entomol. 2005, 31, 171–176. [Google Scholar] [CrossRef]
Saavedra, D.J.; Galeano, O.P.; Canal, N. Ecological relationships between host fruits, frugivorous flies and parasitoids in a fragment of tropical dry forest. Rev. Sci. Agric. 2017, 34, 32–49. [Google Scholar] [CrossRef]
Sequeira, R.; Millar, L.; Bartels, D. Identification of Susceptible Areas for the Establishment of Anastrepha spp. Fruit Flies in the United States and Analysis of Selected Pathways; USDA-APHISPPQ Center for Plant Health Science and Technology: Raleigh, North Carolina, 2001; p. 47. Available online: https://www.aphis.usda.gov/plant_health/plant_pests_info/fruit_flies/downloads/isa.pdf (accessed on 18 March 2023).
Godefroid, M.; Cruaud, A.; Rossi, J.P.; Rasplus, J.Y. Assessing the Risk of Invasion by Tephritid Fruit Flies: Intraspecific Divergence Matters. PLoS ONE 2015, 10, 8. [Google Scholar] [CrossRef]
Fu, L.Z.H.; Huang, G.S.; Wu, X.X.; Ni, W.L.; Qü, W.W. The current and future potential geographic range of West Indian fruit fly, Anastrepha obliqua (Diptera: Tephritidae). Insect Sci. 2014, 21, 234–244. [Google Scholar] [CrossRef]
Vázquez, P.; Escalona, A.H.; Segura, G.; Esparza, O.L.G. Modelación de la distribución geográfica potencial de dos especies de psitácidos neotropicales utilizando variables climáticas y topográficas. Acta Zool. Mex. 2014, 30, 471–490. [Google Scholar] [CrossRef]
Jiménez, M.E.; Núñez, M.R.G.; Maradiaga, B.E.J. Distribución temporal de insectos asociados a maracuyá (Passiflora edulis Sims) en Matagalpa, Nicaragua. La Calera 2020, 20, 10–19. [Google Scholar] [CrossRef]
Altamiranda, S.M.; Gutiérrez, D.J.; Araque, A.; Valencia, D.J.; Gutiérrez, R.; Martínez, R.A. Effect of El Niño Southern Oscillation cycle on the potential distribution of cutaneous leishmaniasis vector species in Colombia. PLoS Negl. Trop. Diseases 2020, 14, e0008324. [Google Scholar] [CrossRef]
Food and Agriculture Organization of the Unites Nations, Fondo Internacional de Desarrollo Agricola, Organization Mundial de la Salud, Programa Mundial de Alimentos y Fondo de las Naciones Unidas por la Infancia. Versión Resumida de El Estado de la Seguridad Alimentaria y la Nutrición en el Mundo. Transformación de los Sistemas Alimentarios para que Promuevan Dietas Asequibles y Saludables. Roma. 2020. Available online: https://www.fao.org/documents/card/en/c/ca9699es (accessed on 18 March 2023).
Food and Agriculture Organization of the Unites Nations; Centro de Cooperacion Internacional en Investigación Agrícola para el Desarrollo; Frutas y Hortalizas—Oportunidades y Desafíos para la Agricultura Sostenible a Pequeña Escala. Roma. 2021. Available online: https://www.fao.org/documents/card/en/c/cb4173es (accessed on 19 March 2023).
Food and Agriculture Organization of the Unites Nations. Análisis del Mercado de las Principales Frutas Tropicales en Roma. 2022. Available online: https://www.fao.org/3/cb6897es/cb6897es.pdf (accessed on 19 March 2023).
Instituto Interamericano de Cooperación para la Agricultura. La Fruticultura en Panamá: Su Potencial Socioeconómico e Iniciativas para su Desarrollo; Ministerio de Desarrollo Agropecuario, Instituto de Innovación Agropecuaria de Panamá, Ciudad de Panamá: Ancon, Panamá, 2008; Volume 167, p. 23. Available online: http://repiica.iica.int/docs/b0760e/b0760e.pdf (accessed on 19 March 2023).
Ministerio de Desarrollo Agropecuario. Panamá. Cierre Agrícola Nacional. Dirección de Agricultura. Documento Panamá. 2020–21. Available online: https://mida.gob.pa/ (accessed on 20 March 2023).
Olson, D.; Dinerstein, E.; Wikram, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Biosci. J. 2001, 51, 933. [Google Scholar] [CrossRef]
Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.B.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hansen, M.; Locke, M.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Biosci. J. 2017, 67, 534–545. [Google Scholar] [CrossRef]
Myers, N.; Mittermeier, R.; Mittermeier, C. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L. Climate Change-Mitigation of Climate Change; OSTI Identifier: 21017235; Intergovernmental Panel on Climate Change, Geneva (Switzerland). Working Group III; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2007. Available online: https://www.osti.gov/biblio/21017235 (accessed on 3 June 2023).
Jarvis, A.; Hijmans, R. The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23. [Google Scholar] [CrossRef]
Ramírez, O.; Ruiz, G.; Corral, J.A.; Pérez, M.C.; Villavicencio, G.R.; Mena, M.; Puga, N. Impactos del cambio climático en la distribución geográfica de Gossypium hirsutum L. en México. Rev. Mex. Cienc. 2014, 5, 1885–1895. [Google Scholar]
Morrone, J.J. Biogeographical regionalisation of the Neotropical region. Zootaxa 2014, 3782, 1–110. [Google Scholar] [CrossRef] [PubMed]
Jaén, S.O. Geografía de Panamá. Estudio Introductorio y Antología; Universidad de Panamá, Cuidad de Panama, Campus Central: Panama City, Panama, 1985; p. 472. Available online: https://books.google.com.pa/books?id=WlBrAAAAMAAJ&source=gbs_navlinks_s (accessed on 5 March 2023).
Makay, A. Cien años de Geografía en Panamá. Universidad de Panamá. Articulo. 2003. Available online: http://bdigital.binal.ac.pa/bdp/artpma/cienanosdegeografia.pdf (accessed on 25 March 2023).
Uchoa, A.M. Fruit Flies (Diptera: Tephritoidea): Biology, Host Plants, Natural Enemies, and the Implications to Their Natural Control; IntechOpen: London, UK, 2012; Volume 12, pp. 271–300. [Google Scholar] [CrossRef]
Alvarado, G.L.; Medianero, E. Especies de parasitoides asociados a moscas de la fruta del género Anastrepha (Diptera: Tephritidae) en Panamá, República de Panamá. Scientia 2021, 25, 47–62. [Google Scholar]
Uchôa, M.A.; Nicácio, J. New records of Neotropical fruit flies (Tephritidae), lance flies (Lonchaeidae) (Diptera: Tephritoidea), and their host plants in the South Pantanal and adjacent areas, Brazil. Ann. Entomol. Soc. 2010, 103, 723–733. [Google Scholar] [CrossRef]
Cobos, M.E.; Jiménez, L.; Nuñez, P.C.; Romero, A.D.; Simoes, M. Sample data and training modules for cleaning biodiversity information. Biodiversity 2018, 13, 49–50. [Google Scholar] [CrossRef]
Lammens, A.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
Shaw, J.G.; Sanchez, M.; Spishakoff, L.M.; Trujillo, G.F.; Loppez, D. Dispersal and Migration of Tepa-Sterilized Mexican Fruit Flies. J. Econ. Entomol. 1967, 60, 992–994. [Google Scholar] [CrossRef]
Chambers, D.L.; OConnell, T.B. A Flight Mill for Studies with the Mexican Fruit Fly. Ann. Entomol. Soc. 1969, 62, 917–920. [Google Scholar] [CrossRef]
Mayara, R.; Dos Santos, M.D.; Martins, M.; Fornazier, J.M.; Uramoto, K.; Ferreira, F.; Zucchi, R.A.; Conde, W.A. Aggregation and spatio-temporal dynamics of fruit flies (Diptera, Tephritidae) in papaya orchards associated with different area delimitations in Brazil. Acta Sci. 2020, 44. [Google Scholar] [CrossRef]
Mayara, R.; Dos Santos, M.D.; Martins, M.; Fornazier, J.M.; Uramoto, K.; Ferreira, F.; Zucchi, R.A.; Conde, W.A. Aggregation and spatio-temporal dynamics of fruit flies (Diptera, Tephritidae) in papaya orchards associated with different area delimitations in Brazil. Acta Sci. 2020, 44. [Google Scholar] [CrossRef]
Bureau of Meteorology. Climate Influences Timeline. Australian Government. 2018. Available online: http://www.bom.gov.au/ (accessed on 13 November 2018).
National Weather Service. National Oceanic and Atmospheric Administration; NOAA’s Climate Prediction Center, National Weather Service: Silver Spring, MD, USA, 2018. Available online: https://www.weather.gov/ (accessed on 18 November 2018).
Dupin, J.; Smith, S.D. Integrating historical biogeography and environmental niche evolution to understand the geographic distribution of Datureae. Am. J. Bot. 2019, 106, 667–678. [Google Scholar] [CrossRef]
Wei, R.; Chan, K.W.; So, W.W.M. A systematic review of remote laboratory work in science education with the support of visualizing its structure through the Hist Cite and Cite Space software. Int. J. Sci. Math. Educ. 2017, 15, 1217–1236. [Google Scholar] [CrossRef]
Moo-Llanes, D.A.; Arenas, C.Y.; Baak, B.C. Shifts ecological niche of Lutzomyia peruensis under climate change scenarios in Peru. Med. Vet. Entomol. 2017, 31, 123–131. [Google Scholar] [CrossRef]
NASA, MO DIS Web 2018. Available online: https://modis.gsfc.nasa.gov/ (accessed on 19 December 2018).
NOAA National Oceanic and Atmospheric Administration, What Are El Nino and La Nina? 2020. Available online: https://oceanservice.noaa.gov/facts/ninonina.html (accessed on 20 December 2020).
Acker, J.; Leptoukh, G. Online analysis improves the use of NASA earth science data. Eos Trans. Am. Geophys. Union 2007, 88, 14–17. [Google Scholar] [CrossRef]
Lobo, J.; Jiménez, V.A.; Real, R. AUC: Erratum: Predicting species distribution: Offering more than simple habitat models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
Carrington, A.M.; Manuel, D.G.; Fieguth, P.W.; Ramsay, T.; Osmani, V.; Wernly, B.; Bennett, C.; Hawken, S.; Magwood, O.; Sheikh, Y.; et al. Deep ROC Analysis and AUC as Balanced Average Accuracy, for Improved Classifier Selection, Audit and Explanation. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 329–341. [Google Scholar] [CrossRef]
Barve, N.; Barve, V.; Jiménez, V.A.; Lira, N.A.; Maher, S.P.; Peterson, A.T.; Soberón, J.; Villalobos, F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 2011, 222, 1810–1819. [Google Scholar] [CrossRef]
Cruz, C.G.; Villaseñor, J.L.; López, M.L.; Martínez, M.E.; Ortiz, E. Selección de predictores ambientales para el modelado de la distribución de especies en Maxent. Rev. Chapingo. Ser. 2014, 20, 187–201. [Google Scholar]
Díaz, A.C.J.; Romero, A.L.V.; Miranda, E.D.R. Neotropical páramos as biogeographic units. Biol. Trop. 2020, 68, 503–516. [Google Scholar] [CrossRef]
Anderson, R.P.; Peterson, T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Modell. 2003, 162, 211–232. [Google Scholar] [CrossRef]
Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
Mateo, R.; Felcisimo, Á.M.; Muñoz, J. Species distributions models: A synthetic revisión. Rev. Chil. Hist. Nat. 2011, 84, 217–240. [Google Scholar] [CrossRef]
Moo, L.D.A.; López, O.T.; Torres, M.J.A.; Mosso, G.C.; Casas, M.M.; Samy, A.M. Assessing the Potential Distributions of the Invasive Mosquito Vector Aedes albopictus and Its Natural Wolbachia Infections in México. Insects 2021, 12, 143. [Google Scholar] [CrossRef]
Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
Cobos, M.E.; Peterson, A.T.; Osorio, O.L.; Jiménez, G.D. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol. Inform. 2019, 53. [Google Scholar] [CrossRef]
Pliscoff, P.; Fuentes, T. Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: Una revisión de las nuevas herramientas y enfoques disponibles. Rev. Geogr. Norte Gd. 2011, 48, 61–79. [Google Scholar] [CrossRef]
Owens, H.L.; Campbell, L.P.; Dornak, L.L.; Saupe, E.E.; Barve, N.; Soberón, J.; Ingenloff, K.; Lira, N.A.; Hensz, C.M.; Myers, C.E.; et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Modell. 2013, 263, 10–18. [Google Scholar] [CrossRef]
Brown, J.L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
Brown, J.L.; Bennett, J.R.; Connor, M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef]
Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2006, 34, 102–117. [Google Scholar] [CrossRef]
Pinto, J.N.; Bares, C.J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 2021, 11, 16448. [Google Scholar] [CrossRef] [PubMed]
Paini, D.R.; Sheppard, A.W.; Cook, D.C.; De Barro, P.J.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef]
Lódola, A. Contratistas, Cambios Tecnológicos y Organizacionales en el Agro Argentino, Documentos de Proyectos No. 176. Available online: https://hdl.handle.net/11362/36772 (accessed on 25 April 2023).
Atencio, V.R.; Collantes, G.R.; Caballero, E.M.; Hernández, A.P.; Vaña, H.M. Impacto de los Insectos en la Seguridad Alimentaria en Panamá. Sci. Agropecu 2021, 36, 139–165. [Google Scholar]
Amat, E.; Altamiranda, S.M.; Canal, N.; Gómez, P.L. Changes in the potential distribution of the guava fruit fly Anastrepha striata (Diptera, Tephritidae) under current and possible future climate scenarios in Colombia. Bull. Entomol. Res. 2022, 112, 469–480. [Google Scholar] [CrossRef]
Machado, T.C.; Krüger, P.; Edson, N.D.; Mello, G.F. Potential global distribution of the south American cucurbit fruit fly Anastrepha grandis (Diptera: Tephritidae). Crop Prot. 2021, 45, 0261–2194. [Google Scholar] [CrossRef]
Silva, J.G. Biologia e Comportamento de Anastrepha Grandis (Macquart, 1846) (Diptera: Tephritidae); Dissertação Mestrado. Universidade de São Paulo: São Paulo, Brazil, 1991; Available online: https://repositorio.usp.br/item/000733447. (accessed on 1 March 2023).
Topón, R.L.M. Ciclo Biológico de la Mosca de la Fruta del Género (anastrepha spp.) a dos temperaturas, Universidad Tecníca de Cotopaxi. Latacunga Tesis en Ingieneria Agronomica, Av. Simón Rodríguez, Latacunga, Ecuador. 2020, p. 93. Available online: http://repositorio.utc.edu.ec/handle/27000/7050. (accessed on 15 April 2023).
Fúnez, X.I. Características Biológicas de Anastrepha Grandis (Macuart,1846) en Relación con su Hospedero Natural, Fevillea Cordifolia en Darién, Panamá. Maestría Thesis, Universidad de Panamá, Ciudad de Panamá, Panamá, 2014. Available online: http://up-rid.up.ac.pa/id/eprint/348. (accessed on 15 April 2023).
Bonebrake, T.C.; Deutsch, C.A. Climate heterogeneity modulates impact of warming on tropical insects. Ecology 2012, 93, 449–455. [Google Scholar] [CrossRef]
De La Vega, G.J.; Schilman, P.E. La importancia de la fisiología en la distribución geográfica de los insectos. Rev. Soc. Entomol. Arg. 2015, 74, 101–108. [Google Scholar]
Addo, B.A.; Chown, S.L.; Gaston, K.J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2000, 267, 739–745. [Google Scholar] [CrossRef]
Addo, B.A.; Chown, S.L.; Gaston, K.J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2000, 267, 739–745. [Google Scholar] [CrossRef]
Esparza, M. La sequía y la escasez de agua en México: Situación actual y perspectivas futuras. Secuencia 2014, 89, 193–219. [Google Scholar] [CrossRef]
González, O.D.; Córdoba, A.A.; Dáttilo, W.; Noriega, L.A.; Sánchez, G.R.A.; Villalobos, F. Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 2020, 95, 802–821. [Google Scholar] [CrossRef] [PubMed]
Bruniard, E.D. La diagonal árida Argentina: Un límite climático real. Rev. Geográfica 1982, 95, 5–20. [Google Scholar]
Mason, S.J.; Goddard, L. Probabilistic Precipitation Anomalies Associated with EN SO. Research Paper. Bull. Am. Meteorol. Soc. 2001, 82, 619–638. [Google Scholar] [CrossRef]
Karlin, M.S. Cambios temporales del clima en la subregión del Chaco Árido. Multequina 2012, 21, 3–16. [Google Scholar]
Fava, G.A.; Acosta, J.C.; Blanco, G.M. The effects of seasonality and precipitation in the avifauna of the Argentine Southern Chaco Serrano. Rev. Biol. Trop. 2017, 65, 953–961. [Google Scholar] [CrossRef]
Flores, A.R.; Kazuz, Y.E.M.; García, V.E.; Ayala, B.A.; Garrido, R.E.R.; Aceves, M.A.C.; Sánchez, O.M.A.; Tejacal, A.I. Control de Anastrepha serpentina (Wiedemann) y calidad de los frutos de zapote mamey Pouteria sapota (Jacq) Moore & Stearn tratados con aire caliente forzado. Rev. Chapingo. Ser. Cienc. 2009, 15, 9–15. [Google Scholar]
Pinson, E.P.; Tejada, L.O.; Toledo, J.; Enkerlin, W.; Hurtado, C.H.; Valle, J.; Pérez, J.N.; Liedo, P. Caracterización de la adaptación de anastrepha serpentina (wied.) (diptera: Tephritidae) a condiciones de cría masiva. Fol. Entomol. Mex. 2006, 45, 97–112. [Google Scholar]
Alexander, M.; Kulminski, F.M.; Irina, V.; Culminskaya, K.G.; Arbeev, S.V.; Ukraintseva, J.R.; Carey, A.I. Date of eclosion modulates longevity: Insights across dietary-restriction gradients and female reproduction in the mexfly Anastrepha ludens. Exp. Gerontol. 2009, 44, 718–726. [Google Scholar] [CrossRef]
Alonso, E.H. Sincronía Biológica, Relación Interespecífica y Análisis de Calidad Hospedera de Pouteria Buenaventurensis (Sapotacea) con Anastrepha Serpentina y Anastrepha Intermedia, n.sp. en Altos de Pacora. Maestría Thesis, Universidad de Panamá, Ciudad de Panamá, Panamá, 2000. Available online: http://up-rid.up.ac.pa/id/eprint/3949 (accessed on 15 April 2023).
Omkar, R.S.; Pandey, P. Effect of temperature on development and immature survival of Zygogramma bicolorata (Coleoptera: Chrysomelidae) under laboratory conditions. Int. J. Trop. Insect Sci. 2008, 28, 130–135. [Google Scholar] [CrossRef]
Chaverri, L.G.; Soto, M.J.; Jirón, L.F. Biology and ecology of Anastrepha obliqua (diptera: Tephritidae), plague of Anacardiaceae plants in tropical America. II. Mature stages. Agron. Mesoam. 2006, 10, 99–102. [Google Scholar] [CrossRef]
Soto, M.J.; Chaverri, L.G.; Jirón, L.F. Notes on the biology and ecology of Anastrepha obliqua (Diptera: Tephritidae), pests of plants in Tropical América. I. Imnature forms. Agron. Mesoam. 2016, 8, 116–120. [Google Scholar] [CrossRef]
Hernández, E.; Ruiz, M.L.; Toledo, J.; Montoya, P.; Liedo, P.; Aceituno, M.M.; Perales, H. A comparison of sexual competitiveness and demographic traits of Anastrepha obliqua (Macquart) (Diptera: Tephritidae) among fruit-associated populations. Bull. Entomol. Res. 2019, 109, 333–341. [Google Scholar] [CrossRef]
Candanedo, M.; Villarreal, D.; Bernal, S. Uso de registros de temperatura máxima promedio de las estaciones meteorológicas de ETESA, para la creación de mapas de temperatura mediante el uso de programa ArcGIS. Rev. De Iniciación Científica 2020, 6, 9–14. [Google Scholar] [CrossRef]
Kemp, W.P.; Bosch, J. Effect of Temperature on Osmia lignaria (Hymenoptera: Megachilidae) Prepupa–Adult Development, Survival, and Emergence. J. Econ. Entomol. 2005, 98, 1917–1923. [Google Scholar] [CrossRef]
Bateman, M.A. The Ecology of Fruit Flies. Annu. Rev. Entomo. 1972, 17, 493–518. [Google Scholar] [CrossRef]
Cruz, L.L.; Malo, E.A.; Rojas, J.C. Sex Pheromone of Anastrepha striata. J. Chem. Ecol. 2015, 41, 458–464. [Google Scholar] [CrossRef] [PubMed]
Péres, D.; Aluja, M. Anastrepha striata (Diptera: Tephritidae) Females That Mate with Virgin Males Live Longer. Ann. Entomol. Soc. Am. 2004, 97, 1336–1341. [Google Scholar] [CrossRef]
García, A.E.C.; Martínez, A.J.O.; Gómez, P.L.M. Distribución Geográfica Potencial de Anastrepha Striata (Schiner 1868)(Diptera: Tephritidae) en Colombia; Documento de conferencia, III Congreso Colombiano de Zoología: Medellín, Colombia, 2010; Available online: https://dspace.tdea.edu.co/handle/tdea/1462 (accessed on 12 May 2023).
Ferrer, S.Y.; Jacho, S.A.A.; Wilmer, R.; Zambrano, U.; Absalo, P.J.A.; Vázquez, P.F.; Herminio, A.; Zambrano, M.G.J.; Castillo, M.M.J.; Rosado, C.A.; et al. Invasiones Biológicas en Agroecosistemas de Ecuador Continental: Nicho Ecológico de Especies Exóticas y Cultivos Agrícolas Bajo Riesgo. Acta Biol. Colomb. 2021, 26, 352–364. [Google Scholar] [CrossRef]
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Neotrópico
dc.publisher.spa.fl_str_mv MDPI AG
dc.publisher.place.spa.fl_str_mv Suiza
dc.source.spa.fl_str_mv https://www.mdpi.com/2075-4450/14/8/714
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/3948/4/Evaluation%20of%20the%20Effect%20of%20the%20ENSO%20Cycle%20on%20the%20Distribution%20Potential%20of%20the%20Genus%20Anastrepha%20of%20Horticultural%20Importance%20in%20the%20Neotropics%20and%20Panama.pdf.jpg
https://dspace.tdea.edu.co/bitstream/tdea/3948/3/Evaluation%20of%20the%20Effect%20of%20the%20ENSO%20Cycle%20on%20the%20Distribution%20Potential%20of%20the%20Genus%20Anastrepha%20of%20Horticultural%20Importance%20in%20the%20Neotropics%20and%20Panama.pdf.txt
https://dspace.tdea.edu.co/bitstream/tdea/3948/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/3948/1/Evaluation%20of%20the%20Effect%20of%20the%20ENSO%20Cycle%20on%20the%20Distribution%20Potential%20of%20the%20Genus%20Anastrepha%20of%20Horticultural%20Importance%20in%20the%20Neotropics%20and%20Panama.pdf
bitstream.checksum.fl_str_mv 6e9826064d77246034ae7dd3f7890971
3b15602ac5c17248840ee46d53e39ee6
2f9959eaf5b71fae44bbf9ec84150c7a
6f888dfec6ffe1aae7348f73b146078e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189281902395392
spelling Batista Degracia, Arturo97260a4e-0edf-483b-98f4-ea15134848ceÁvila Jiménez, Julián Leonardo99b6667d-ed84-4c97-a082-41d0d39f4302Barba Alvarado, Anovel Amet67c4abb7-9c67-49af-8857-eb813a181ba0Atencio Valdespino, Randy5cced2a6-3832-4046-a638-7429d3d67574Altamiranda Saavedra, Mariano Augusto24e8d03f-69f2-4f3b-9982-7a16d1d76798Neotrópico2023-10-11T13:06:11Z2023-10-11T13:06:11Z2023https://dspace.tdea.edu.co/handle/tdea/39482075-4450Climate variability has made us change our perspective on the study of insect pests and pest insects, focusing on preserving or maintaining efficient production systems in the world economy. The four species of the genus Anastrepha were selected for this study due to their colonization and expansion characteristics. Models of the potential distribution of these species are scarce in most neotropical countries, and there is a current and pressing demand to carry out this type of analysis in the face of the common scenarios of climate variability. We analyzed 370 presence records with statistical metrics and 16 bioclimatic variables. The MaxEnt method was used to evaluate the effect of the ENSO cycle on the potential distribution of the species Anastrepha grandis (Macquart), Anastrepha serpetina (Wiedemann), Anastrepha obliqua (Macquart), and Anastrepha striata (Schiner) as imported horticultural pests in the neotropics and Panama. A total of 3472 candidate models were obtained for each species, and the environmental variables with the greatest contribution to the final models were LST range and LST min for A. grandis, PRECIP range and PRECIP min for A. serpentina, LST range and LST min for A. obliqua, and LST min and LST max for A. striata. The percentage expansion of the range of A. grandis in all environmental scenarios was 26.46 and the contraction of the range was 30.80; the percentage expansion of the range of A. serpentina in all environmental scenarios was 3.15 and the contraction of the range was 28.49; the percentage expansion of the range of A. obliqua in all environmental scenarios was 5.71 and the contraction of the range was 3.40; and the percentage expansion of the range of A. striata in all environmental scenarios was 41.08 and the contraction of the range was 7.30, and we selected the best model, resulting in a wide distribution (suitable areas) of these species in the neotropics that was influenced by the variability of climatic events (El Niño, Neutral, and La Niña). Information is provided on the phytosanitary surveillance systems of the countries in areas where these species could be established, which is useful for defining policies and making decisions on integrated management plans according to sustainable agriculture. Keywords: geographic distribution; ENSO Anastrepha; horticulture; neotropics; Panama20 páginasapplication/pdfengMDPI AGSuizahttps://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://www.mdpi.com/2075-4450/14/8/714Evaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and PanamaArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8520714114InsectsMontealegre, J.; Pabon, J. La Variabilidad Climática Interanual asociada al ciclo El Niño-La Niña–Oscilación del Sury su efecto en el patrón pluviométrico de Colombia. Meteorol. Colombina 2000, 2, 7–21. [Google Scholar]Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–324. [Google Scholar] [CrossRef]Organización de las Naciones Unidas. Convención Marco De Las Naciones Unidas Sobre El Cambio Climático; Organización de las Naciones Unidas: NewYork, NY, USA, 2015; p. 40. Available online: https://unfccc.int/resource/docs/2015/cop21/spa/l09s.pdf (accessed on 1 March 2023).D’Antoni, H.L. Cambio global. Procesos naturales e intervención humana. Acta Bioquímica Clínica Latinoam. 2012, 46, 1–76. [Google Scholar]Moyano, E.; Paniagua, Á.; Lafuente, R. Políticas ambientales, cambio climático y opinión pública en escenarios regionales. El caso de Andalucía. Rev. Int. Sociol. 2009, 67, 681–699. [Google Scholar] [CrossRef]Intergovernmental Panel on Climate Change. Climate Change, Impact, Adaptation and Vulnerability, Summary for Policymakers; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; p. 40. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf (accessed on 3 March 2023).Gonzales, G.F.; Zevallos, A.; Gonzales, C.C.; Nuñez, D.; Gastañaga, C.; Cabezas, C.; Steenland, K. Environmental pollution, climate variability and climate change: A review of health impacts on the peruvian population. Rev. Peru. Med. Exp. Salud Publica 2014, 31, 547–556. [Google Scholar]Zotelo, C. Variabilidad climática y ciclos naturales. In Jornada sobre “Evolución y Futuro del Desarrollo de Producciones Agrícola-Ganaderas en el SO Bonaerense”; Universidad Nacional de la Plata: Bahía Blanca, Argentina, 2011; pp. 374–381. Available online: http://sedici.unlp.edu.ar/handle/10915/27824 (accessed on 5 March 2023).Zotelo, C. Variabilidad climática y ciclos naturales. In Jornada sobre “Evolución y Futuro del Desarrollo de Producciones Agrícola-Ganaderas en el SO Bonaerense”; Universidad Nacional de la Plata: Bahía Blanca, Argentina, 2011; pp. 374–381. Available online: http://sedici.unlp.edu.ar/handle/10915/27824 (accessed on 5 March 2023).Krishnamurthy, L.; Vecchi, G.A.; Msadek, R.; Murakami, H.; Wittenberg, A.; Zeng, F. Impact of strong ENSO on regional tropical cyclone activity in a high-resolution climate model in the North Pacific and North Atlantic Oceans. J. Clim. 2016, 29, 2375–2394. [Google Scholar] [CrossRef]Collins, M.; CMIP Modeling Groups. El Niño- or La Niña-like climate change? Clim. Dyn. 2005, 24, 89–104. [Google Scholar] [CrossRef]Balvanera, P.; Astier, M.; Gurri, F.D.; Zermeño, H.I. Resiliencia, vulnerabilidad y sustentabilidad de sistemas socioecológicos en México. Rev. Mex. Biodivers. 2017, 88, 141–149. [Google Scholar] [CrossRef]Gouveia, S.F.; Hortal, J.; Tejedo, M.; Duarte, H.; Cassemiro, F.A.; Navas, C.A.; Diniz, F.J.A. Climatic niche at physiological and macroecological scales: The thermal tolerance-geographical range interface and niche dimensionality. Blackwell Publishing. Glob. Ecol. Biogeogr. 2014, 23, 446–456. [Google Scholar] [CrossRef]Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S.; et al. Complex responses of global insect pestss to climate warming. Front. Ecol. Environ. 2020, 18, 141–150. [Google Scholar] [CrossRef]Comisión Económica para América Latina. La economía del Cambio Climático en América Latina y el Caribe: Paradojas y Desafíos del Desarrollo Sostenible. Programa EUROCLIMA Cambio Climático, Componente Socioeconómico 2015. (CEC/10/001). Available online: https://hdl.handle.net/11362/37311 (accessed on 10 March 2023).Sanchez, R.R. Respuestas Urbanas al Cambio Climático en América Latina. Documentos de Proyectos e Investigación. CEPAL-Naciones Unidas. Instituto Interamericano para la Investigación del Cambio Global No. 563. 2013. Available online: https://hdl.handle.net/11362/36622 (accessed on 15 March 2023).Magrin, G. Adaptación al Cambio Climático en América Latina y el Caribe. Documentos de Proyectos e Investigación. CEPAL-Naciones Unidas. Instituto Interamericano para la Investigación del Cambio Global No. 692. 2015. Available online: https://hdl.handle.net/11362/39842 (accessed on 15 March 2023).Rascón, V.A.E.; Cervantes, R.E. Vulnerabilidad social y clima extremo en estudios de América Latina. 2000–2019. Tlalli. Rev. Investig. Geogr. 2022, 8, 6–32. [Google Scholar] [CrossRef]Sheldon, K.S. Climate change in the tropics: Ecological and evolutionary responses at low latitudes. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 303–333. [Google Scholar] [CrossRef]Régnière, J.; Powell, J.; Bentz, B.; Nealis, V. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. J. Insect Physiol. 2012, 58, 634–647. [Google Scholar] [CrossRef]Freeman, B.G.; Scholer, M.N.; Ruiz, V.; Fitzpatrick, J.W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. USA 2018, 115, 11982–11987. [Google Scholar] [CrossRef]Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 2007, 10, 1115–1123. [Google Scholar] [CrossRef]Powell, A.J.; Logan, A.J. Insect seasonality: Circle map analysis of temperature-driven life cycles. Theor. Popul. Biol. 2005, 3, 161–179. [Google Scholar] [CrossRef]Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 2008, 213, 63–72. [Google Scholar] [CrossRef]Peterson, A.; Soberón, J.; Pearson, R.; Anderson, R.; Martínez, M.E.; Nakamura, M.; Araújo, M. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar] [CrossRef]Beckler, A.A.; French, B.W.; Chandler, L.D. Using GIS in areawide pests management: A case study in South Dakota. Trans. GIS 2005, 9, 109–127. [Google Scholar] [CrossRef]Aluja, M.; Birke, A.; Ceymann, M.; Guillén, L.; Arrigoni, E.; Baumgartner, D.; Pascacio, C.; Villafán, J. Agroecosystem resilience to an invasive insect species that could expand its geographical range in response to global climate change. Agric. Ecosyst. Environ. 2014, 186, 54–63. [Google Scholar] [CrossRef]Peterson, A.T. Uses and requirements of ecological niche models and related distributional models. Biodivers. Inform. 2006, 3, 59–72. [Google Scholar] [CrossRef]Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]Aluja, M.; Mangan, R.L. Fruit fly Diptera: Tephritidae host status determination: Critical conceptual, methodological, and regulatory considerations. Annu. Rev. Entomol. 2008, 53, 473–502. [Google Scholar] [CrossRef]Norrbom, A.L. Host Plant Database for anastrepha and toxotrypana (Diptera: Tephritidae: Toxotrypanini). Diptera Data Dissemination Disk. CD—Not a Journal. 2004. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo115=108854. (accessed on 17 March 2023).Norrbom, A.L.; Neder, L.E. New neotropical species of Trupanea Diptera: Tephritidae with unusual wing patterns. Zootaxa 2014, 3821, 443–456. [Google Scholar] [CrossRef] [PubMed]Hernandez, O.V. El género Anastrepha Schiner en México Diptera: Tephritidae, taxonomía, distribución y sus plantas huéspedes. La Cienc. Y El Hombre 1992, 12, 190–191. [Google Scholar]Hernández, O.V.; Bartolucci, A.F.; Morales, V.P.; Frías, D.; Selivon, D. Cryptic species of the Anastrepha fraterculus complex: A multivariate approach for the recognition of South American morphotypes. Ann. Entomol. Soc. 2012, 105, 305–318. [Google Scholar] [CrossRef]Norrbom, A.L.; Korytkowski, C.A. New species of Anastrepha Diptera: Tephritidae, with a key for the species of the megacantha clade. Systematic Entomology Lab., USDA, ARS, c/o Smithsonian Institution. Zootaxa 2012, 34781, 11. [Google Scholar] [CrossRef]Cruz, B.; Bacca, M.L.; Nelson, A. Diversidad de las Moscas de las frutas Diptera: Tephritidae y sus parasitoides en siete minicipios del departamento de Narino. Boletín Científico. Cent. Museos. Mus. Hist. Nat. 2017, 21, 81–98. [Google Scholar] [CrossRef]Hernández, O.V.; Gómez, A.J.; Sánchez, A.; McPheron, B.; Aluja, M. Morphometric analysis of Mexican and South American populations of the Anastrepha fraterculus complex (Diptera: Tephritidae) and recognition of a distinct Mexican morphotype. Bull. Entomol. Res. 2004, 94, 487–499. [Google Scholar] [CrossRef]Selivon, D.; Perondini, A.L.; Morgante, J.S. A Genetic–Morphological Characterization of Two Cryptic Species of the Anastrepha fraterculus Complex (Diptera: Tephritidae). Ann. Entomol. Soc. 2005, 98, 367–381. [Google Scholar] [CrossRef]Silva, J.C.; Dutra, S.V.; Santos, M.S.; Silva, N.M.O.; Vidal, D.V.; Nink, R.V.; Guimarães, J.G.; Araujo, E.L. Diversity of Anastrepha spp. (Diptera: Tephritidae) and Associated Braconid Parasitoids from Native and Exotic Hosts in Southeastern Bahia, Brazil. Environ. Entomol. 2021, 39, 1457–1465. [Google Scholar] [CrossRef]Nolasco, N.; Iannacone, J. Fluctuación estacional de moscas de la fruta Anastrepha spp. y Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) en trampas McPhail en Piura y en Ica, Perú. Acta Zool. Mex. 2008, 24, 33–44. [Google Scholar] [CrossRef]Aluja, M.; Rull, J.; Sivinski, J.; Allen, L.; Norrbom, A.; Wharton, R.M.; Díaz, F.; López, M. Fruit Flies of the Genus Anastrepha (Diptera: Tephritidae) and Associated Native Parasitoids (Hymenoptera) in the Tropical Rainforest Biosphere Reserve of Montes Azules, Chiapas, Mexico. Environ. Entomol. 2003, 32, 1377–1385. [Google Scholar] [CrossRef]Diznarda, S.B.; Flores, R.; Terrazas, G.G.; Leyva, R.E. Evaluación Económica de la Campaña Nacional Contra las Moscas de la Fruta en los Estados de Baja California, Guerrero Nuevo León, Sinaloa, Sonora y Tamaulipas; IICA-Ciudad de Mexico D.F: México city, Mexico, 2010; Available online: http://repiica.iica.int/docs/B2041e/B2041e.pdf (accessed on 17 March 2023).Valderrama, J.K.; Serrano, M.S.; Fischer, G. Mortalidad de larvas de Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) en frutos de feijoa (Acca sellowiana [O. Berg] Burret) sometidos a un tratamiento cuarentenario de frio. Rev. Colomb. Entomol. 2005, 31, 171–176. [Google Scholar] [CrossRef]Saavedra, D.J.; Galeano, O.P.; Canal, N. Ecological relationships between host fruits, frugivorous flies and parasitoids in a fragment of tropical dry forest. Rev. Sci. Agric. 2017, 34, 32–49. [Google Scholar] [CrossRef]Sequeira, R.; Millar, L.; Bartels, D. Identification of Susceptible Areas for the Establishment of Anastrepha spp. Fruit Flies in the United States and Analysis of Selected Pathways; USDA-APHISPPQ Center for Plant Health Science and Technology: Raleigh, North Carolina, 2001; p. 47. Available online: https://www.aphis.usda.gov/plant_health/plant_pests_info/fruit_flies/downloads/isa.pdf (accessed on 18 March 2023).Godefroid, M.; Cruaud, A.; Rossi, J.P.; Rasplus, J.Y. Assessing the Risk of Invasion by Tephritid Fruit Flies: Intraspecific Divergence Matters. PLoS ONE 2015, 10, 8. [Google Scholar] [CrossRef]Fu, L.Z.H.; Huang, G.S.; Wu, X.X.; Ni, W.L.; Qü, W.W. The current and future potential geographic range of West Indian fruit fly, Anastrepha obliqua (Diptera: Tephritidae). Insect Sci. 2014, 21, 234–244. [Google Scholar] [CrossRef]Vázquez, P.; Escalona, A.H.; Segura, G.; Esparza, O.L.G. Modelación de la distribución geográfica potencial de dos especies de psitácidos neotropicales utilizando variables climáticas y topográficas. Acta Zool. Mex. 2014, 30, 471–490. [Google Scholar] [CrossRef]Jiménez, M.E.; Núñez, M.R.G.; Maradiaga, B.E.J. Distribución temporal de insectos asociados a maracuyá (Passiflora edulis Sims) en Matagalpa, Nicaragua. La Calera 2020, 20, 10–19. [Google Scholar] [CrossRef]Altamiranda, S.M.; Gutiérrez, D.J.; Araque, A.; Valencia, D.J.; Gutiérrez, R.; Martínez, R.A. Effect of El Niño Southern Oscillation cycle on the potential distribution of cutaneous leishmaniasis vector species in Colombia. PLoS Negl. Trop. Diseases 2020, 14, e0008324. [Google Scholar] [CrossRef]Food and Agriculture Organization of the Unites Nations, Fondo Internacional de Desarrollo Agricola, Organization Mundial de la Salud, Programa Mundial de Alimentos y Fondo de las Naciones Unidas por la Infancia. Versión Resumida de El Estado de la Seguridad Alimentaria y la Nutrición en el Mundo. Transformación de los Sistemas Alimentarios para que Promuevan Dietas Asequibles y Saludables. Roma. 2020. Available online: https://www.fao.org/documents/card/en/c/ca9699es (accessed on 18 March 2023).Food and Agriculture Organization of the Unites Nations; Centro de Cooperacion Internacional en Investigación Agrícola para el Desarrollo; Frutas y Hortalizas—Oportunidades y Desafíos para la Agricultura Sostenible a Pequeña Escala. Roma. 2021. Available online: https://www.fao.org/documents/card/en/c/cb4173es (accessed on 19 March 2023).Food and Agriculture Organization of the Unites Nations. Análisis del Mercado de las Principales Frutas Tropicales en Roma. 2022. Available online: https://www.fao.org/3/cb6897es/cb6897es.pdf (accessed on 19 March 2023).Instituto Interamericano de Cooperación para la Agricultura. La Fruticultura en Panamá: Su Potencial Socioeconómico e Iniciativas para su Desarrollo; Ministerio de Desarrollo Agropecuario, Instituto de Innovación Agropecuaria de Panamá, Ciudad de Panamá: Ancon, Panamá, 2008; Volume 167, p. 23. Available online: http://repiica.iica.int/docs/b0760e/b0760e.pdf (accessed on 19 March 2023).Ministerio de Desarrollo Agropecuario. Panamá. Cierre Agrícola Nacional. Dirección de Agricultura. Documento Panamá. 2020–21. Available online: https://mida.gob.pa/ (accessed on 20 March 2023).Olson, D.; Dinerstein, E.; Wikram, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Biosci. J. 2001, 51, 933. [Google Scholar] [CrossRef]Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.B.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hansen, M.; Locke, M.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Biosci. J. 2017, 67, 534–545. [Google Scholar] [CrossRef]Myers, N.; Mittermeier, R.; Mittermeier, C. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L. Climate Change-Mitigation of Climate Change; OSTI Identifier: 21017235; Intergovernmental Panel on Climate Change, Geneva (Switzerland). Working Group III; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2007. Available online: https://www.osti.gov/biblio/21017235 (accessed on 3 June 2023).Jarvis, A.; Hijmans, R. The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23. [Google Scholar] [CrossRef]Ramírez, O.; Ruiz, G.; Corral, J.A.; Pérez, M.C.; Villavicencio, G.R.; Mena, M.; Puga, N. Impactos del cambio climático en la distribución geográfica de Gossypium hirsutum L. en México. Rev. Mex. Cienc. 2014, 5, 1885–1895. [Google Scholar]Morrone, J.J. Biogeographical regionalisation of the Neotropical region. Zootaxa 2014, 3782, 1–110. [Google Scholar] [CrossRef] [PubMed]Jaén, S.O. Geografía de Panamá. Estudio Introductorio y Antología; Universidad de Panamá, Cuidad de Panama, Campus Central: Panama City, Panama, 1985; p. 472. Available online: https://books.google.com.pa/books?id=WlBrAAAAMAAJ&source=gbs_navlinks_s (accessed on 5 March 2023).Makay, A. Cien años de Geografía en Panamá. Universidad de Panamá. Articulo. 2003. Available online: http://bdigital.binal.ac.pa/bdp/artpma/cienanosdegeografia.pdf (accessed on 25 March 2023).Uchoa, A.M. Fruit Flies (Diptera: Tephritoidea): Biology, Host Plants, Natural Enemies, and the Implications to Their Natural Control; IntechOpen: London, UK, 2012; Volume 12, pp. 271–300. [Google Scholar] [CrossRef]Alvarado, G.L.; Medianero, E. Especies de parasitoides asociados a moscas de la fruta del género Anastrepha (Diptera: Tephritidae) en Panamá, República de Panamá. Scientia 2021, 25, 47–62. [Google Scholar]Uchôa, M.A.; Nicácio, J. New records of Neotropical fruit flies (Tephritidae), lance flies (Lonchaeidae) (Diptera: Tephritoidea), and their host plants in the South Pantanal and adjacent areas, Brazil. Ann. Entomol. Soc. 2010, 103, 723–733. [Google Scholar] [CrossRef]Cobos, M.E.; Jiménez, L.; Nuñez, P.C.; Romero, A.D.; Simoes, M. Sample data and training modules for cleaning biodiversity information. Biodiversity 2018, 13, 49–50. [Google Scholar] [CrossRef]Lammens, A.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]Shaw, J.G.; Sanchez, M.; Spishakoff, L.M.; Trujillo, G.F.; Loppez, D. Dispersal and Migration of Tepa-Sterilized Mexican Fruit Flies. J. Econ. Entomol. 1967, 60, 992–994. [Google Scholar] [CrossRef]Chambers, D.L.; OConnell, T.B. A Flight Mill for Studies with the Mexican Fruit Fly. Ann. Entomol. Soc. 1969, 62, 917–920. [Google Scholar] [CrossRef]Mayara, R.; Dos Santos, M.D.; Martins, M.; Fornazier, J.M.; Uramoto, K.; Ferreira, F.; Zucchi, R.A.; Conde, W.A. Aggregation and spatio-temporal dynamics of fruit flies (Diptera, Tephritidae) in papaya orchards associated with different area delimitations in Brazil. Acta Sci. 2020, 44. [Google Scholar] [CrossRef]Mayara, R.; Dos Santos, M.D.; Martins, M.; Fornazier, J.M.; Uramoto, K.; Ferreira, F.; Zucchi, R.A.; Conde, W.A. Aggregation and spatio-temporal dynamics of fruit flies (Diptera, Tephritidae) in papaya orchards associated with different area delimitations in Brazil. Acta Sci. 2020, 44. [Google Scholar] [CrossRef]Bureau of Meteorology. Climate Influences Timeline. Australian Government. 2018. Available online: http://www.bom.gov.au/ (accessed on 13 November 2018).National Weather Service. National Oceanic and Atmospheric Administration; NOAA’s Climate Prediction Center, National Weather Service: Silver Spring, MD, USA, 2018. Available online: https://www.weather.gov/ (accessed on 18 November 2018).Dupin, J.; Smith, S.D. Integrating historical biogeography and environmental niche evolution to understand the geographic distribution of Datureae. Am. J. Bot. 2019, 106, 667–678. [Google Scholar] [CrossRef]Wei, R.; Chan, K.W.; So, W.W.M. A systematic review of remote laboratory work in science education with the support of visualizing its structure through the Hist Cite and Cite Space software. Int. J. Sci. Math. Educ. 2017, 15, 1217–1236. [Google Scholar] [CrossRef]Moo-Llanes, D.A.; Arenas, C.Y.; Baak, B.C. Shifts ecological niche of Lutzomyia peruensis under climate change scenarios in Peru. Med. Vet. Entomol. 2017, 31, 123–131. [Google Scholar] [CrossRef]NASA, MO DIS Web 2018. Available online: https://modis.gsfc.nasa.gov/ (accessed on 19 December 2018).NOAA National Oceanic and Atmospheric Administration, What Are El Nino and La Nina? 2020. Available online: https://oceanservice.noaa.gov/facts/ninonina.html (accessed on 20 December 2020).Acker, J.; Leptoukh, G. Online analysis improves the use of NASA earth science data. Eos Trans. Am. Geophys. Union 2007, 88, 14–17. [Google Scholar] [CrossRef]Lobo, J.; Jiménez, V.A.; Real, R. AUC: Erratum: Predicting species distribution: Offering more than simple habitat models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]Carrington, A.M.; Manuel, D.G.; Fieguth, P.W.; Ramsay, T.; Osmani, V.; Wernly, B.; Bennett, C.; Hawken, S.; Magwood, O.; Sheikh, Y.; et al. Deep ROC Analysis and AUC as Balanced Average Accuracy, for Improved Classifier Selection, Audit and Explanation. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 329–341. [Google Scholar] [CrossRef]Barve, N.; Barve, V.; Jiménez, V.A.; Lira, N.A.; Maher, S.P.; Peterson, A.T.; Soberón, J.; Villalobos, F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 2011, 222, 1810–1819. [Google Scholar] [CrossRef]Cruz, C.G.; Villaseñor, J.L.; López, M.L.; Martínez, M.E.; Ortiz, E. Selección de predictores ambientales para el modelado de la distribución de especies en Maxent. Rev. Chapingo. Ser. 2014, 20, 187–201. [Google Scholar]Díaz, A.C.J.; Romero, A.L.V.; Miranda, E.D.R. Neotropical páramos as biogeographic units. Biol. Trop. 2020, 68, 503–516. [Google Scholar] [CrossRef]Anderson, R.P.; Peterson, T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Modell. 2003, 162, 211–232. [Google Scholar] [CrossRef]Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]Mateo, R.; Felcisimo, Á.M.; Muñoz, J. Species distributions models: A synthetic revisión. Rev. Chil. Hist. Nat. 2011, 84, 217–240. [Google Scholar] [CrossRef]Moo, L.D.A.; López, O.T.; Torres, M.J.A.; Mosso, G.C.; Casas, M.M.; Samy, A.M. Assessing the Potential Distributions of the Invasive Mosquito Vector Aedes albopictus and Its Natural Wolbachia Infections in México. Insects 2021, 12, 143. [Google Scholar] [CrossRef]Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]Cobos, M.E.; Peterson, A.T.; Osorio, O.L.; Jiménez, G.D. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol. Inform. 2019, 53. [Google Scholar] [CrossRef]Pliscoff, P.; Fuentes, T. Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: Una revisión de las nuevas herramientas y enfoques disponibles. Rev. Geogr. Norte Gd. 2011, 48, 61–79. [Google Scholar] [CrossRef]Owens, H.L.; Campbell, L.P.; Dornak, L.L.; Saupe, E.E.; Barve, N.; Soberón, J.; Ingenloff, K.; Lira, N.A.; Hensz, C.M.; Myers, C.E.; et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Modell. 2013, 263, 10–18. [Google Scholar] [CrossRef]Brown, J.L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]Brown, J.L.; Bennett, J.R.; Connor, M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef]Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2006, 34, 102–117. [Google Scholar] [CrossRef]Pinto, J.N.; Bares, C.J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 2021, 11, 16448. [Google Scholar] [CrossRef] [PubMed]Paini, D.R.; Sheppard, A.W.; Cook, D.C.; De Barro, P.J.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef]Lódola, A. Contratistas, Cambios Tecnológicos y Organizacionales en el Agro Argentino, Documentos de Proyectos No. 176. Available online: https://hdl.handle.net/11362/36772 (accessed on 25 April 2023).Atencio, V.R.; Collantes, G.R.; Caballero, E.M.; Hernández, A.P.; Vaña, H.M. Impacto de los Insectos en la Seguridad Alimentaria en Panamá. Sci. Agropecu 2021, 36, 139–165. [Google Scholar]Amat, E.; Altamiranda, S.M.; Canal, N.; Gómez, P.L. Changes in the potential distribution of the guava fruit fly Anastrepha striata (Diptera, Tephritidae) under current and possible future climate scenarios in Colombia. Bull. Entomol. Res. 2022, 112, 469–480. [Google Scholar] [CrossRef]Machado, T.C.; Krüger, P.; Edson, N.D.; Mello, G.F. Potential global distribution of the south American cucurbit fruit fly Anastrepha grandis (Diptera: Tephritidae). Crop Prot. 2021, 45, 0261–2194. [Google Scholar] [CrossRef]Silva, J.G. Biologia e Comportamento de Anastrepha Grandis (Macquart, 1846) (Diptera: Tephritidae); Dissertação Mestrado. Universidade de São Paulo: São Paulo, Brazil, 1991; Available online: https://repositorio.usp.br/item/000733447. (accessed on 1 March 2023).Topón, R.L.M. Ciclo Biológico de la Mosca de la Fruta del Género (anastrepha spp.) a dos temperaturas, Universidad Tecníca de Cotopaxi. Latacunga Tesis en Ingieneria Agronomica, Av. Simón Rodríguez, Latacunga, Ecuador. 2020, p. 93. Available online: http://repositorio.utc.edu.ec/handle/27000/7050. (accessed on 15 April 2023).Fúnez, X.I. Características Biológicas de Anastrepha Grandis (Macuart,1846) en Relación con su Hospedero Natural, Fevillea Cordifolia en Darién, Panamá. Maestría Thesis, Universidad de Panamá, Ciudad de Panamá, Panamá, 2014. Available online: http://up-rid.up.ac.pa/id/eprint/348. (accessed on 15 April 2023).Bonebrake, T.C.; Deutsch, C.A. Climate heterogeneity modulates impact of warming on tropical insects. Ecology 2012, 93, 449–455. [Google Scholar] [CrossRef]De La Vega, G.J.; Schilman, P.E. La importancia de la fisiología en la distribución geográfica de los insectos. Rev. Soc. Entomol. Arg. 2015, 74, 101–108. [Google Scholar]Addo, B.A.; Chown, S.L.; Gaston, K.J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2000, 267, 739–745. [Google Scholar] [CrossRef]Addo, B.A.; Chown, S.L.; Gaston, K.J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2000, 267, 739–745. [Google Scholar] [CrossRef]Esparza, M. La sequía y la escasez de agua en México: Situación actual y perspectivas futuras. Secuencia 2014, 89, 193–219. [Google Scholar] [CrossRef]González, O.D.; Córdoba, A.A.; Dáttilo, W.; Noriega, L.A.; Sánchez, G.R.A.; Villalobos, F. Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 2020, 95, 802–821. [Google Scholar] [CrossRef] [PubMed]Bruniard, E.D. La diagonal árida Argentina: Un límite climático real. Rev. Geográfica 1982, 95, 5–20. [Google Scholar]Mason, S.J.; Goddard, L. Probabilistic Precipitation Anomalies Associated with EN SO. Research Paper. Bull. Am. Meteorol. Soc. 2001, 82, 619–638. [Google Scholar] [CrossRef]Karlin, M.S. Cambios temporales del clima en la subregión del Chaco Árido. Multequina 2012, 21, 3–16. [Google Scholar]Fava, G.A.; Acosta, J.C.; Blanco, G.M. The effects of seasonality and precipitation in the avifauna of the Argentine Southern Chaco Serrano. Rev. Biol. Trop. 2017, 65, 953–961. [Google Scholar] [CrossRef]Flores, A.R.; Kazuz, Y.E.M.; García, V.E.; Ayala, B.A.; Garrido, R.E.R.; Aceves, M.A.C.; Sánchez, O.M.A.; Tejacal, A.I. Control de Anastrepha serpentina (Wiedemann) y calidad de los frutos de zapote mamey Pouteria sapota (Jacq) Moore & Stearn tratados con aire caliente forzado. Rev. Chapingo. Ser. Cienc. 2009, 15, 9–15. [Google Scholar]Pinson, E.P.; Tejada, L.O.; Toledo, J.; Enkerlin, W.; Hurtado, C.H.; Valle, J.; Pérez, J.N.; Liedo, P. Caracterización de la adaptación de anastrepha serpentina (wied.) (diptera: Tephritidae) a condiciones de cría masiva. Fol. Entomol. Mex. 2006, 45, 97–112. [Google Scholar]Alexander, M.; Kulminski, F.M.; Irina, V.; Culminskaya, K.G.; Arbeev, S.V.; Ukraintseva, J.R.; Carey, A.I. Date of eclosion modulates longevity: Insights across dietary-restriction gradients and female reproduction in the mexfly Anastrepha ludens. Exp. Gerontol. 2009, 44, 718–726. [Google Scholar] [CrossRef]Alonso, E.H. Sincronía Biológica, Relación Interespecífica y Análisis de Calidad Hospedera de Pouteria Buenaventurensis (Sapotacea) con Anastrepha Serpentina y Anastrepha Intermedia, n.sp. en Altos de Pacora. Maestría Thesis, Universidad de Panamá, Ciudad de Panamá, Panamá, 2000. Available online: http://up-rid.up.ac.pa/id/eprint/3949 (accessed on 15 April 2023).Omkar, R.S.; Pandey, P. Effect of temperature on development and immature survival of Zygogramma bicolorata (Coleoptera: Chrysomelidae) under laboratory conditions. Int. J. Trop. Insect Sci. 2008, 28, 130–135. [Google Scholar] [CrossRef]Chaverri, L.G.; Soto, M.J.; Jirón, L.F. Biology and ecology of Anastrepha obliqua (diptera: Tephritidae), plague of Anacardiaceae plants in tropical America. II. Mature stages. Agron. Mesoam. 2006, 10, 99–102. [Google Scholar] [CrossRef]Soto, M.J.; Chaverri, L.G.; Jirón, L.F. Notes on the biology and ecology of Anastrepha obliqua (Diptera: Tephritidae), pests of plants in Tropical América. I. Imnature forms. Agron. Mesoam. 2016, 8, 116–120. [Google Scholar] [CrossRef]Hernández, E.; Ruiz, M.L.; Toledo, J.; Montoya, P.; Liedo, P.; Aceituno, M.M.; Perales, H. A comparison of sexual competitiveness and demographic traits of Anastrepha obliqua (Macquart) (Diptera: Tephritidae) among fruit-associated populations. Bull. Entomol. Res. 2019, 109, 333–341. [Google Scholar] [CrossRef]Candanedo, M.; Villarreal, D.; Bernal, S. Uso de registros de temperatura máxima promedio de las estaciones meteorológicas de ETESA, para la creación de mapas de temperatura mediante el uso de programa ArcGIS. Rev. De Iniciación Científica 2020, 6, 9–14. [Google Scholar] [CrossRef]Kemp, W.P.; Bosch, J. Effect of Temperature on Osmia lignaria (Hymenoptera: Megachilidae) Prepupa–Adult Development, Survival, and Emergence. J. Econ. Entomol. 2005, 98, 1917–1923. [Google Scholar] [CrossRef]Bateman, M.A. The Ecology of Fruit Flies. Annu. Rev. Entomo. 1972, 17, 493–518. [Google Scholar] [CrossRef]Cruz, L.L.; Malo, E.A.; Rojas, J.C. Sex Pheromone of Anastrepha striata. J. Chem. Ecol. 2015, 41, 458–464. [Google Scholar] [CrossRef] [PubMed]Péres, D.; Aluja, M. Anastrepha striata (Diptera: Tephritidae) Females That Mate with Virgin Males Live Longer. Ann. Entomol. Soc. Am. 2004, 97, 1336–1341. [Google Scholar] [CrossRef]García, A.E.C.; Martínez, A.J.O.; Gómez, P.L.M. Distribución Geográfica Potencial de Anastrepha Striata (Schiner 1868)(Diptera: Tephritidae) en Colombia; Documento de conferencia, III Congreso Colombiano de Zoología: Medellín, Colombia, 2010; Available online: https://dspace.tdea.edu.co/handle/tdea/1462 (accessed on 12 May 2023).Ferrer, S.Y.; Jacho, S.A.A.; Wilmer, R.; Zambrano, U.; Absalo, P.J.A.; Vázquez, P.F.; Herminio, A.; Zambrano, M.G.J.; Castillo, M.M.J.; Rosado, C.A.; et al. Invasiones Biológicas en Agroecosistemas de Ecuador Continental: Nicho Ecológico de Especies Exóticas y Cultivos Agrícolas Bajo Riesgo. Acta Biol. Colomb. 2021, 26, 352–364. [Google Scholar] [CrossRef]Geographical distributionDistribución geográficaDistribution géographiqueDistribuição geográficaHorticultureHorticulturaPanamaPanamáENSO AnastrephaENOS AnastrefaNeotropicsNeotrópicosTHUMBNAILEvaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama.pdf.jpgEvaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama.pdf.jpgGenerated Thumbnailimage/jpeg16596https://dspace.tdea.edu.co/bitstream/tdea/3948/4/Evaluation%20of%20the%20Effect%20of%20the%20ENSO%20Cycle%20on%20the%20Distribution%20Potential%20of%20the%20Genus%20Anastrepha%20of%20Horticultural%20Importance%20in%20the%20Neotropics%20and%20Panama.pdf.jpg6e9826064d77246034ae7dd3f7890971MD54open accessTEXTEvaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama.pdf.txtEvaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama.pdf.txtExtracted texttext/plain86518https://dspace.tdea.edu.co/bitstream/tdea/3948/3/Evaluation%20of%20the%20Effect%20of%20the%20ENSO%20Cycle%20on%20the%20Distribution%20Potential%20of%20the%20Genus%20Anastrepha%20of%20Horticultural%20Importance%20in%20the%20Neotropics%20and%20Panama.pdf.txt3b15602ac5c17248840ee46d53e39ee6MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/3948/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessORIGINALEvaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama.pdfEvaluation of the Effect of the ENSO Cycle on the Distribution Potential of the Genus Anastrepha of Horticultural Importance in the Neotropics and Panama.pdfapplication/pdf5036694https://dspace.tdea.edu.co/bitstream/tdea/3948/1/Evaluation%20of%20the%20Effect%20of%20the%20ENSO%20Cycle%20on%20the%20Distribution%20Potential%20of%20the%20Genus%20Anastrepha%20of%20Horticultural%20Importance%20in%20the%20Neotropics%20and%20Panama.pdf6f888dfec6ffe1aae7348f73b146078eMD51open accesstdea/3948oai:dspace.tdea.edu.co:tdea/39482023-10-12 03:03:15.036An error occurred on the license name.|||https://creativecommons.org/licenses/by/4.0/open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=